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Chapter 1
Introduction

This book focuses on control problems for conservation laws, i.e., equations of the
type:

∂t u+ ∂x f (u) = 0 ut + (f (u))x = 0, (1.1)

where u : R+ × R → R
n is the vector of conserved quantities and f : Rn → R

n is
the flux. Most results will be given for the scalar case (n = 1), but we will present
few results valid in the general case.

We consider four types of control problems and use ω to denote the control
variables. Namely:

• Boundary control: We restrict (1.1) to x ∈ [a, b] and control the boundary
values: u(t, a) = ωa(t), u(t, b) = ωb(t).

• Decentralized control: We consider (1.1) on a network and control distribution
parameters at nodes.

• Distributed control: We assume to control some parameters defining the flux,
thus f = f (u, ω).

• Lagrangian control: We assume the flux depends on the position ofN controlled
particles, f = f (u, y), y = (y1, . . . , yN) and ẏi = ωi .
The interest in conservation laws and their control is motivated by a large and

diverse collection of applications. While classical fluid dynamic problems (also
covering different areas) motivated research since more than hundred years, a new
set of applications motivated recent interests. Many of the latter include problems
formulated on networks, which are represented by topological graphs [142]. Among
many, let us mention the following: vehicular traffic, water canals, supply chains, air
traffic control, data networks, and service networks (gas, water, electricity, etc.).

We give particular attention to vehicular traffic modeling. Classical control
problems in this domain correspond to traffic regulation at fixed locations (such
as traffic lights, traffic signals, pay tolls, etc.), while the advent of autonomy
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and communication has opened the possibility of more distributed and ubiquitous
controls. More precisely, boundary controls correspond to entrance points and tolls
and decentralized controls to traffic signals at junctions. On the other side, variable
speed limit gives rise to distributed control and use of autonomy and communication
to Lagrangian control problems. Summarizing, vehicular traffic presents potential
applications for controls in all the four categories mentioned above. It is well known
that conservation laws are strictly connected to Hamilton-Jacobi equations, thus
we include a chapter on control of the latter. Also in this case, vehicular traffic
applications were among the strongest motivation for researchers.

Many books have been devoted to conservation laws and to their control. Let us
mentions the following by categories:
General theory of conservation laws: [51, 99, 213, 236, 251, 252];
Control problems for hyperbolic equations: [32, 103];
Hyperbolic equations on networks: [103, 233];
Hamilton-Jacobi equations: [27, 126, 225];
Modeling of vehicular traffic: [139, 142, 230].

The book can be used for a one semester course at graduate or advanced
undergraduate level. The undergraduate students should have been previously
exposed to Partial Differential Equations. However, since most of the materials
are based on conservation laws, we included Appendix A dealing with the general
theory of initial-boundary values problems for balance laws (i.e., including possible
of source terms). Readers which are not expert in conservation laws may also
want to use as references the textbooks: [51, 99, 251, 252]; On the other side, the
theory of conservation laws on networks, i.e., topological graphs, was more recently
developed, thus we included Appendix B illustrating the main concepts. The latter
are then thoroughly investigated in Chap. 3 to deal with control problems. There are
at least three possible course design:

1. Traffic modeling using control of conservation laws. This course would be
for investigators more interested in the applications to traffic. Course material:
Chap. 1, Appendix B, Chap. 2 (Sects. 2.1, 2.3.2, 2.3.4, 2.4), Chap. 3 (Sects. 3.1,
3.3, 3.4, 3.6), Chap. 4 (Sects. 4.2–4.4), Chap. 5.

2. Mathematical control theory for balance laws. This is for researchers more
interested in the mathematical aspects of control. Course material: Chap. 1,
Appendix A, Chap. 2 (Sects. 2.1–2.3), Chap. 3 (Sects. 3.1–3.2), Chap. 4
(Sect. 4.1), Chap. 5 (Sects. 5.1–5.3), Chap. 6.

3. Conservation laws on networks and control problems. This is for researchers
interested in the general theory of conservation laws on networks and their
application. Course material: Chap. 1, Appendix A, Appendix B, Chaps. 2, 3
(Sects. 3.1–3.5), Chap. 4 (Sects. 4.1–4.2), Chap. 6.

The book is organized as follows.
Chapter 2 deals with boundary control problems. We first briefly summarize results
for the case of solutions with no shocks (Sect. 2.2). Then illustrate general results
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for attainable sets (Sect. 2.3), Lyapunov techniques for the scalar case with two
boundaries (Sect. 2.4), finally mixed PDE-ODE systems (Sect. 2.5).
Chapter 3 is focused on decentralized controls. These controls act, for instance,
at nodes of a network by regulating fluxes. A perfect example is that of traffic
lights, ramp metering, and pay tolls. The control problem is formulated in terms
of the Riemann solver at nodes (Sect. 3.2), then focusing on signalized junctions
(Sect. 3.3), freeway control (Sect. 3.4), and inflow control (Sect. 3.5). We also
consider the optimization of travel times and emergency management on networks
(Sect. 3.6).
Chapter 4 considers distributed control for conservation laws. The stability of
Riemann solvers is a key ingredient to deal with control problems (Sect. 4.1). Our
main application is variable speed limit, with results on general control problems
(Sect. 4.2), discrete optimization (Sect. 4.3), and systems of equations (Sect. 4.4).
Chapter 5 illustrates Lagrangian control problems. First we introduce coupled ODE-
PDE models for moving bottlenecks (Sect. 5.2) and then we develop numerical
methods (Sect. 5.3). Applications to traffic management are illustrated both numer-
ically and experimentally (Sect. 5.4).
Chapter 6 explores relations between conservation laws, Hamilton-Jacobi equations,
and their control. First strong solutions are considered (Sect. 6.2), then generalized
ones (Sect. 6.3). General optimization problems are then discussed (Sect. 6.4).
Appendix A provides a brief introduction to initial and boundary value problems for
conservation and balance laws, while Appendix B focuses on conservation laws on
networks to model traffic.

The authors wish to thank J.-M. Coron for encouragement during the whole
writing process. They are also thankful to Amaury Hayat for contributing to the
second chapter and to Alexander Keimer and Christian Claudel for contributing to
the sixth chapter.
This work was supported by the following funding: National Science Foundation
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the Joseph and Loretta Lopez Chair (B.P.); the Liao-Cho Chair (A.B.). The authors
are also thankful to their families for the continuing support and patience during the
working of the book.
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Chapter 2
Boundary Control of Conservation Laws
Exhibiting Shocks

2.1 Introduction

This chapter focuses on control of systems of conservation laws with boundary data.
Problems with one or two boundaries are considered and, in particular, we focus on
cases where shocks may be developed by the solution. However, for completeness
we briefly discuss in Sect. 2.2 other existing results where singularities are prevented
via suitable feedback controls such as in [32].

More precisely, let us consider the system of conservation laws

∂tu+ ∂xf (u) = 0, (2.1)

where the unknown u is defined in the set D = {(t, x)| t ≥ 0 and a ≤ x ≤ b},
a ∈ R and b ∈ R ∪ {+∞}, and has values on � ⊆ R

n, with n ≥ 1. The
flux function f : � → R

n is assumed to be smooth (infinitely differentiable)
and each characteristic field to be genuinely nonlinear or linearly degenerate
(see Definition 45 in Appendix A). The initial-boundary value problem (IBVP)
for (2.1) with initial condition u0 : (a, b) 
→ �, and boundary controls ωa, ωb :
R
+ 
→ �, reads

∂tu+ ∂xf (u) = 0, (2.2)

u(0, x) = u0(x), (2.3)

u(t, a) = ωa(t), u(t, b) = ωb(t). (2.4)

For basic theory and well-posedness results for system (2.2)–(2.4), we refer the
reader to Appendix A.8.

© The Author(s) 2022
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6 2 Boundary Control

2.2 Boundary Controls for Smooth Solutions Co-authored by
Amaury Hayat

Many previous studies exist on boundary control of conservation laws for regular
solutions, not presenting shocks. The problem of finding a boundary control to
stabilize a steady state of nonlinear conservations laws goes back to [255] and [158].
In the latter, J. Greenberg and T. Li are studying carefully the C1 solutions along the
characteristics of two coupled conservation laws. These results were later extended
for a general system of conservation laws in [220] and by T.-H. Qin in [245]. They
consider strictly hyperbolic systems of the form (2.1) where all the eigenvalues of
Df (0) are non-vanishing and where the boundary controls are output feedbacks,
meaning that they depend only on the output information of the system. Under
the assumption that the solution is of class C1 it can be assumed without loss of
generality that all the eigenvalues of Df (0) are positive and the output feedbacks
take the generic form

u(t, a) = G(u(t, b)), (2.5)

where G is the feedback function, also assumed to be C1. The result they show is
the following

Theorem 1 The system (2.1) with boundary condition (2.5) is (locally) exponen-
tially stable for the C1 norm provided

ρ∞(G′(0)) = 1. (2.6)

Here the quantity ρ∞ is defined by

ρp(M) = min
{
‖�M�−1‖p : � ∈ D+

n

}
, for p ∈ N

∗ ∪ {+∞}, (2.7)

where D+
n denotes the space of diagonal matrix with positive coefficients and ‖M‖p

refers to the matrix norm supξ∈Rn‖Mξ‖p/‖ξ‖p. Condition (2.6) is only sufficient,
and there is a gap between this condition and the stability condition of the associated
linear system. For the latter, a necessary and sufficient condition for an exponential
stability robust with changes in the propagation speed was shown to be (see [164,
Theorem 6.1])

ρ0(G
′(0)) < 1, where (2.8)

ρ0(G
′(0)) = max{ρ(diag(eiθ1 , . . . , eiθn)G′(0)) : θi ∈ R}. (2.9)

Here ρ(M) denotes the spectral radius of M , for M ∈ Mn(R), and exponential
stability robust with changes in the propagation speed mean that there exists ε > 0
such that, for any ˆDf (0) satisfying | ˆDf (0)−Df (0)| < ε, the system
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∂tu+ ˆDf (0)∂xu = 0, (2.10)

with boundary conditions (2.5) is exponentially stable. Besides, ρ0 ≤ ρ∞ and the
two quantities do not coincide in general. Other studies using a Lyapunov approach
recovered later the same stabilization result in the C1 norm but also extended it to
the Hq norms for q ≥ 2 and to various settings [32, 87, 88, 90, 110]. In particular

Theorem 2 The system (2.1) with boundary condition (2.5) is exponentially stable
in the H2 norm if

ρ2(G
′(0)) < 1. (2.11)

This is interesting as ρ2(G
′(0)) 
= ρ∞(G′(0)) in general, but also ρ2(G

′(0)) =
ρ0(G

′(0)) as long as n ≤ 5 (see [88]). To show these results, they use Lyapunov
function candidates of the form of weighted norms of the solution and its time
derivatives1

Wp,q(t) =
(

q∑
k=0

∫ b

a

n∑
i=1

p
p
i (∂

k
t ui(t, x))

2pe−2μpx dx

)1/2p

dx. (2.12)

For the H2 norm, one can directly use W1,2, as this Lyapunov function candidate
is directly equivalent to the H2 norm. For the C1 norm, one has first to find some
estimates on Wp,1 that have to be uniform on p provided that p is large enough.
Then by letting p go to +∞ one recovers a quantity equivalent to the C1 norm. In
both cases, the question of the stabilization reduces to finding a sufficient condition
on the coefficients pi and μ such that the Lyapunov function candidate decreases
exponentially along the solutions of the system and in a distributional sense.

Theorem 2 was later extended by J.-M. Coron and H.-M. Nguyen to the W2,p

norm with ρp instead of ρ2 in the sufficient condition (2.11), by using a time delay
approach [93]. But, more importantly, they showed that specifying the norm is not
superfluous: a nonlinear system could be exponentially stable in the H2 norm and
not exponentially stable in the C1 norm. More precisely, they showed the following

Theorem 3 Let n ≥ 2 and τ > 0, there exists f ∈ C∞(Rn;Rn) such that Df (u)
is diagonal and Df (0) has distinct positive eigenvalues, and a linear feedback G :
R
n → R

n such that

1 Actually, as we are considering solutions of the conservation laws (2.1), the Lyapunov function
candidates can be expressed only as a function of the solution and its space derivatives. The
expression is then more complicated but it illustrates that the Lyapunov function can be seen as
a functional on functions of one variable, just like the C1 or H2 norm.
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ρ∞(G′(0)) < 1 + τ,
ρ2(G

′(0)) = ρ0(G
′(0)) < 1,

(2.13)

and the system (2.1), (2.5) is not exponentially stable in the C1 norm.

This result implies that for conservations laws, in contrast with finite-dimensional
systems, the stability of the linearized system does not necessarily imply the
stability of the nonlinear system. This explains the gap between the linear condition
ρ0(G

′(0)) < 1 and (2.6). It can further be showed that one always have ρ2(G
′(0)) ≤

ρ∞(G′(0)). This, and the simpler expression of the Lyapunov function for the
H2 norm compared to the C1 norm, explains that several particular systems of
conservation laws were studied in the H2 (or Hp) norm framework (see, e.g., [33,
120, 162, 171]). More practical controllers, like proportional integral controllers,
where also considered, for instance, in [269], or in [92]. In the latter, the authors
apply such controller to a scalar conservation law. They obtain a necessary and
sufficient stability condition by extracting from the solution the part that limits the
stability, using a suitable projector. Then, they conclude by studying carefully this
projection, while using a Lyapunov function for the remaining part of the solution.

For balance laws, the previous results can be generalized but the situation
is intrinsically more complex. Indeed, the steady states to be stabilized are not
necessarily uniform, and the source term can strongly couple the equations: even
the linearized system cannot anymore be written as independent equations where
the coupling only comes from the boundary. To deal with this issue, in [32, Chapter
6] and in [170], the authors used Lyapunov functions similar to (2.12) but where
the coefficients pi are now replaced by space-dependent weights fi(x). A boundary
condition similar to (2.6) or (2.11) appears but it turns out that another condition,
independent of the boundary control and intrinsic to the system, also appears.

It is worth mentioning that more general controls were proposed for balance laws
in order to solve the issues related to the source term. One can cite, for instance, the
backstepping approach. Taking its name from a method used on finite-dimensional
systems, the backstepping approach was adapted to PDEs in [89] and then modified
in [25, 46, 197]. It consists in finding an invertible application to map the balance
laws to a simpler system, usually conservation laws without source term. Then, it is
possible to deduce a control for the balance laws by finding a control on the simpler
system and using this invertible application. The consequence of such strategy is that
the control is often a full-state feedback. This method was first used for hyperbolic
system in [118, 180, 196] by applying a Volterra transform of the second kind,
namely a transform of the following form

(u(t, x)) 
−→
(
u(t, x)−

∫ x

a

K(x, y)u(t, y) dy

)
. (2.14)

In all the above cases, however, the boundary control ensures that the solution
will remain of class C1 or H2, provided the initial data is itself C1 or H2. So,
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shocks can never form. When one wants to deal with solution including shocks
or discontinuous initial data, none of these results can be applied and much less is
known. One can cite [35] where the authors aim at stabilizing a shock steady state
for a scalar equation, from an initial data with a single shock and regular otherwise.
To do so, the authors consider the solution with shock as two regular functions,
one before the shock and one after the shock, coupled with each other by the
boundary conditions and the dynamics of the shock given by the Rankine–Hugoniot
conditions. The problem becomes equivalent to two conservations laws coupled
with an ODE and the goal is to stabilize at the same time both the conservations
laws and the ODE, and this is done defining a kind of hybrid Lyapunov function. The
sufficient stability condition they obtain is an analogous of (2.11). Also, in [241] the
author deals with discontinuous solutions in the BV class. This approach is closer
to the one presented in this book, and the results is quite powerful, but it requires
not only a boundary control but also an internal control. Finally, in [91] the authors
aim at stabilizing a null steady state for two coupled conservation laws starting from
potentially discontinuous solutions. More precisely they show the following

Theorem 4 Let the system (2.1) be strictly hyperbolic and genuinely nonlinear,
assume that the velocities are positive, and thatG is linear. Assume in addition that

inf
α∈(0,∞)

{
max

{
|l1(0).G′(0)r1(0)| + α|l2(0).G′(0)r1(0)|,

|l2(0).G′(0)r2(0)| + α−1|l1(0).G′(0)r2(0)|
}}
< 1,

(2.15)

where l1, l2 and r1, r2 are respectively the left and right eigenvectors of Df (u)
corresponding to the eigenvalues λ1(u) > 0 and λ2(u) > 0.

Then there exists ε > 0, C > 0 and γ > 0 such that for any u0 ∈ BV(0, L) with
‖u0‖BV ≤ ε, there exists an entropy solution in L∞(0,∞;BV(0, L)) to the system
(2.1) with initial condition u0 and satisfying (2.5) for almost all time, and such that

‖u(t, ·)‖BV ≤ Ce−γ t‖u0‖BV, for all t ≥ 0. (2.16)

However, the result has some limitations: there exists a solution which converges
exponentially in the BV norm, but there are no guarantees on its uniqueness.
Besides, the velocities have to be positive meaning that Df (u) has to be definite
positive, which can be assumed without loss of generality when the solutions are
C1, but restrict the cases when the solutions present shocks.

2.3 The Attainable Set

Aim of this section is to characterize the attainable set for the initial-boundary
valued problem (2.2), (2.3), and (2.4), i.e., the set of the profiles which can be
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attained at a fixed time T for a fixed initial datum u0 ∈ L1 (a, b) ∩ L∞ (a, b).
More precisely, given two sets Ua,Ub ⊆ L∞ (0, T ), let us define the attainable set

A (T ,Ua,Ub, u0)={u(T , ·) : u sol. to (2.2) −−(2.4) with ωa ∈ Ua, ωb ∈ Ub} .
(2.17)

We remark that conservation laws, in general, generate discontinuities in finite time
in the solution even if the initial and boundary conditions are smooth. The space of
bounded variation functions represents the correct setting for solutions. Hence the
set A (T ,Ua,Ub, u0) is a subset of BV (a, b).

2.3.1 The Scalar Case with a Single Control

In this section, we consider the conservation law (2.1) on the domain D = (0, T )×
(0,+∞), with T > 0 fixed, n = 1, � = R, a = 0, and b = +∞. The flux function
f is assumed to be smooth (infinitely differentiable) and strictly convex; the strictly
concave case is entirely similar. The initial-boundary value problem in this situation
for (2.1) reads

⎧⎨
⎩
∂tu+ ∂xf (u) = 0, t ∈ (0, T ), x > 0,
u(0, x) = u0(x), x > 0,
u(t, 0) = ω(t), t ∈ (0, T ),

(2.18)

with initial condition u0 ∈ L1
(
R
+) ∩ L∞ (

R
+), and boundary control ω ∈

L∞ (0, T ). The definition of solution to (2.18) is the following one; see also
Appendix A.

Definition 1 A solution to (2.18) is a function u ∈ L1 (D) such that the following
conditions hold.

1. For every k ∈ R and for every ϕ ∈ C1
c
(
D;R+)

∫

�

[|u− k| ∂t ϕ + sgn (u− k) (f (u)− f (k)) ∂x ϕ
]

dx dt ≥ 0.

2. There exists a set E ⊆ (0, T ) with zero measure such that, for every x > 0,

lim
t→0,t 
∈E

∫ x

0
u(t, ξ) dξ =

∫ x

0
u0(ξ) dξ.

3. There exists a set F ⊆ (0,+∞)with zero measure and two functionsϒ : R+ →
R and μ : R+ → {−1, 0, 1} such that, for a.e. t ∈ (0, T ),
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lim
x→0+, x 
∈F

∫ t

0
f (u (s, x)) ds =

∫ t

0
ϒ(s) ds,

lim
x→0+, x 
∈F

sgn f ′ (u (t, x)) = μ(t)

and, for a.e. t ∈ (0, T ),
{
ϒ(t) = f (ω(t)) , if μ(t) ∈ {0, 1} ,
ϒ(t) ≥ f (ω(t)) , if μ(t) = −1.

In [212], LeFloch proved that there exists a semigroup of solutions for (2.18), which
satisfy the requirements of Definition 1. Given a set U ⊆ L∞ (0, T ), let us define the
attainable set (2.17), denoted here by A (T ,U , u0) since there is no boundary control
at b = +∞. When the initial datum u0 is the null function, then the following
characterization holds.

Theorem 5 In the case U = L∞ (0, T ) and u0 ≡ 0, then the attainable set
A(T ,L∞ (0, T ) , 0) is composed by all the functions w ∈ BV (0,+∞) satisfying,
for every x > 0, the following conditions:

1. if w(x) 
= 0, then f ′ (w(x)) ≥ x
T

;
2. if w(x−) 
= 0 and w(y) = 0 for every y > x, then f ′ (w(x−)) > x

T
;

3. The upper Dini derivative D+w(x) := lim sup
h→0

w(x + h)− w(x)
h

satisfies

D+w(x) ≤ f ′ (w(x))
xf ′′ (w(x))

.

The proof of Theorem 5, based on the concept of backwards characteristics (see [99,
Chapter 11] or [98]), was proposed by Ancona and Marson in [12].

When dealing with optimal control problems for (2.18), it is important that the
attainable set is a compact subset of L1

(
R
+). To achieve such a property, one has

to restrict the set of admissible controls U , as in the following result.

Theorem 6 FixN ∈ N\{0}, J ⊆ R
+, and define ū as the unique point of minimum

for the flux f . Assume that

1. G : R+ ↪→ [ū,+∞) is a measurable and uniformly bounded multifunction with
convex and closed values;

2. for every i ∈ {1, · · · , N}, qi : R+ × R → R is a measurable map, convex with
respect to the second variable;

3. for every i ∈ {1, · · · , N}, gi : R+ → R is a measurable map.
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Define the control set

U =
{
ω ∈ L∞ (0, T ) : ω(t) ∈ G(t) for a.e. t,∫ t

0 qi (s, f (ω(s))) ds ≤ gi(t)∀t ∈ J, ∀i ∈ {1, · · · , N}
}
.

Then the attainable set A (T ,U , 0) is a compact subsets of L1(R+) with respect the
strong topology of L1(R+).

For a proof see [12].

2.3.2 The Burgers’ Equation with Two Controls

In this section, we consider the inviscid Burgers’ equation

∂tu+ ∂x
(
u2

2

)
= 0

on the domain D = (0, T ) × (a, b), with T > 0 fixed, n = 1, � = R, and a < b.
The initial-boundary value problem in this situation reads

⎧⎪⎪⎨
⎪⎪⎩

∂tu+ ∂xf (u) = 0, t ∈ (0, T ), x ∈ (a, b),
u(0, x) = u0(x), x ∈ (a, b),
u(t, a) = ωa(t), t ∈ (0, T ),
u(t, b) = ωb(t), t ∈ (0, T ),

(2.19)

with initial condition u0 ∈ BV (a, b), and boundary controls ωa, ωb ∈ L∞ (0, T ).
For the definition of solution to (2.19) see Appendix A. For a later use, we define
the set B composed by all the functions w ∈ BV ([a, b]) satisfying the following
conditions:

1. w(x−) ≥ w(x+) for every x ∈ (a, b);
2. the set {x ∈ (a, b) : w(x−) > w(x+)} is at most countable;
3. for every x̄ ∈ (a, b) such thatw(x̄−) > 0, thenw(x) > x−a

T
for every x ∈ (a, x̄);

4. for every x̄ ∈ (a, b) such thatw(x̄+) < 0, thenw(x) < x−b
T

for every x ∈ (x̄, b);
5. there exists at most one x̄ ∈ (a, b) such that w(x) > 0 for every x ∈ (a, x̄) and
w(x) < 0 for every x ∈ (x̄, b);

6. for every x ∈ (a, b), point of continuity for w such that w(x) 
= 0, the upper

Dini derivative D+w(x) := lim sup
h→0

w(x + h)− w(x)
h

satisfies

D+w(x) ≤ b − a
T

.

When the initial datum u0 is the null function and the final time T > 2 (b − a),
then the following characterization holds; see [179, Theorem 2.1].
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Theorem 7 In the case Ua = Ub = L∞ (0, T ), T > 2 (b − a), and u0 ≡ 0, then
the attainable set A(T ,Ua,Ub, 0) contains the set B.

The proof is based on the return method introduced by Coron in [84].
In the case of a general initial datum u0, then the following theorem holds;

see [179, Theorem 1.1].

Theorem 8 Assume Ua = Ub = L∞ (0,+∞), T > 2 (b − a), and u0 ∈
BV ([a, b]). Then there exists Tc ≥ T , called the time of approximate controllability,
such that the attainable set A(Tc,Ua,Ub, u0) contains the closure in the L1-
topology of B.

2.3.3 Temple Systems on a Bounded Interval

In this section, we consider the system of conservation law (2.1) on the domain
D = (0, T ) × (a, b), with T > 0 fixed, n > 1, � ⊆ R

n, and a < b. We assume
that the system (2.1) is a strictly hyperbolic system of Temple type; see [265]. The
initial-boundary value problem in this situation for (2.1) reads

⎧⎪⎪⎨
⎪⎪⎩

∂tu+ ∂xf (u) = 0, t ∈ (0, T ), x ∈ (a, b),
u(0, x) = u0(x), x ∈ (a, b),
u(t, a) = ωa(t), t ∈ (0, T ),
u(t, b) = ωb(t), t ∈ (0, T ),

(2.20)

with initial condition u0 ∈ L1 (a, b), and boundary controls ωa, ωb ∈ L∞ (0, T ).
Before stating the main result, we need to introduce some notation and assump-

tion. With λ1, . . . , λn we denote the eigenvalues of the Jacobian matrix Df of the
flux; see Appendix A.1 and A.6.2. The strictly hyperbolicity assumption implies
that

λi(u1) < λj (u2)

for every u1, u2 ∈ � and i, j ∈ {1, · · · , n} with i < j . Moreover with z1, · · · , zn
we denote a set of Riemann coordinates, so that the notation zi(u) stands for the i-th
Riemann coordinate evaluated at the point u; see Appendix A.

Given, for every i ∈ {1, · · · , n}, the real numbers αi < βi , define the compact
subset of �

� = {u ∈ � : zi(u) ∈ [αi, βi], i ∈ {1, · · · , n}} .

In the present setting, we suppose that the admissible controls are

Ua = Ub = L∞ ((0, T );�)
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and that the boundary is non-characteristic:

(NC) there exist p ∈ {1, · · · , n} and λmin > 0 such that

λp(u) ≤ −λmin < λmin ≤ λp+1(u)

for every u ∈ �.

For every r > 0, define the following sets

Kra=
{
ϕ∈L∞ ((a, b);�) : zi (ϕ(y))− zi (ϕ(x))

y − x ≤ r

x − a ,
a.e. a < x < y < b
i ∈ {p + 1, · · · , n}

}

Krb=
{
ϕ∈L∞ ((a, b);�) : zi (ϕ(y))− zi (ϕ(x))

y − x ≤ r

b − y ,
a.e. a < x < y < b
i ∈ {1, · · · , p}

}

and

Kr = Kra ∩Krb. (2.21)

The following result holds; see [11, Theorem 2.4 and Theorem 2.7].

Theorem 9 Consider the system (2.20) with initial condition u0 ∈ L1 ((a, b), �)

and boundary controls ωa ∈ Ua , ωb ∈ Ub. Assume that (2.20) is a strictly hyperbolic
Temple system where each characteristic field is genuinely nonlinear and the non-
characteristic condition (NC) holds.

Then:

1. the attainable set A (T ,Ua,Ub, u0) is a compact subset of L1 ((a, b);�), with
respect to the strong topology;

2. for every τ ∈ (0, T ) there exists r > 0 such that

A (t,Ua,Ub, u0) ⊆ Kr

for every t ≥ τ ;
3. if T > 4(b−a)

λmin , then there exists r > 0 such that

Kr ⊆ A (T ,Ua,Ub, u0) .

2.3.4 General Systems on a Bounded Interval

In this section, we consider the system of conservation law (2.1) on the domain
D = (0,+∞) × (a, b), with n > 1, � ⊆ R

n, and a < b. We assume that the
system (2.1) is a strictly hyperbolic system. The initial-boundary value problem in
this situation reads
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⎧⎪⎪⎨
⎪⎪⎩

∂tu+ ∂xf (u) = 0, t > 0, x ∈ (a, b),
u(0, x) = u0(x), x ∈ (a, b),
u(t, a) = ωa(t), t > 0,
u(t, b) = ωb(t), t > 0,

(2.22)

with initial condition u0 ∈ L1 (a, b), and boundary controls ωa, ωb ∈ L∞ (0,+∞).
We assume, similar to Sect. 2.3.3, that the system is strictly hyperbolic, that each
characteristic field is either genuinely nonlinear or linearly degenerate, and that the
non-characteristic condition (NC) holds. Few results are available in the present
setting. In particular, in this part we state a positive result, dealing with asymptotic
stabilization, a negative result about the local controllability around a constant state,
and a positive result for the p-system.

Theorem 10 ([52, Theorem 1]) Fix K , a compact and connected subset of �.
There exist positive constants C0, δ, and κ such that, for every u∗ ∈ K , for every
initial datum u0 ∈ L1 ((a, b);K) with TV (u0) < δ, and for every t > 0,

inf
{∥∥u− u∗∥∥L∞ : u ∈ A (t, u0,Ua,Ub) ,TV (u) ≤ C0e

−2κt
}
≤ C0e

−2κt .

The following result gives a negative answer about the exact controllability
around constant states for a class of 2 × 2 systems, satisfying the following
conditions:

{∇λ1(u) · r1(u) > 0
∇λ2(u) · r2(u) > 0

∀u ∈ � (2.23)

and

⎧
⎨
⎩
r1(u) ∧ r2(u) < 0
r1(u) ∧ (Dr1(u)r1(u)) < 0
r2(u) ∧ (Dr2(u)r2(u)) < 0

∀u ∈ �, (2.24)

where r1 and r2 form a basis of right eigenvectors of the Jacobian matrix Df
(see Appendix A.6.2) and ∧ denotes the wedge product, i.e., if v = (v1, v2) and
w = (w1, w2), then v ∧ w = v1w2 − v2w1. Note that condition (2.24) implies
that the interaction of two shocks of the same family generates a shock in the other
family.

Theorem 11 ([52, Theorem 2]) Fix n = 2. Assume that (2.22) is a strictly hyper-
bolic system, genuinely nonlinear, satisfying the non-characteristic condition (NC)
with p = 1, (2.23) and (2.24).

Then, for every ε > 0, there exists an initial datum u0 ∈ L1 (a, b)with TV (u0) ≤
ε such that, for every t > 0, all the elements in A (t, u0, ωa, ωb) have a countable
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number of shocks. In particular, the attainable set A (t, u0, ωa, ωb) does not contain
constant states.

In the case condition (2.24) does not hold, there exist some systems, where
constant states can be reachable in finite time. For example, the p-system in Eulerian
or Lagrangian coordinates has such property; see [149, 150]. Indeed consider the
system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tρ + ∂xq = 0, t > 0, x ∈ (a, b),
∂tq + ∂x

(
q2

ρ
+ κργ

)
= 0, t > 0, x ∈ (a, b),

(ρ, q) (0, x) = (ρ0(x), q0(x)) , x ∈ (a, b),
(ρ, q) (t, a) = ωa(t), t > 0,
(ρ, q) (t, b) = ωb(t), t > 0,

(2.25)

where κ > 0 and 1 < γ ≤ 3. For later use, we set

cγ = 1
1
2 + γ−1

4
√
γ

(2.26)

and we denote by w1 and w2 the pairs of Riemann invariants, i.e.,

w1 (ρ, q) = q

ρ
+ 2

√
κγ

γ − 1
ρ
γ−1

2 w2 (ρ, q) = q

ρ
− 2

√
κγ

γ − 1
ρ
γ−1

2 . (2.27)

The following controllability result holds.

Theorem 12 ([149, Theorem 1]) Let (ρ̄0, q̄0), (ρ̄1, q̄1) be constant states in
(0,+∞) × R. Set λ̄1 = λ1 (ρ̄1, q̄1) and λ̄2 = λ2 (ρ̄1, q̄1). Then there exist ε1 > 0,
ε2, and T > 0, such that for every (ρ0, q0) , (ρ1, q1) ∈ BV ([a, b]; (0,+∞)× R)

satisfying

‖ρ0 − ρ̄0‖L∞(a,b) + ‖q0 − q̄0‖L∞(a,b) ≤ ε1 TV (ρ0, q0) ≤ ε1,

‖ρ1 − ρ̄1‖L∞(a,b) + ‖q1 − q̄1‖L∞(a,b) ≤ ε2 TV (ρ1, q1) ≤ ε2,

and, for every a ≤ x < y ≤ b,

w2 (ρ1(x), q1(x))− w2 (ρ1(y), q1(y))

x − y ≤ cγ

2
max

{
λ̄2 − λ̄1

1 − y ,
λ̄1

x
,− λ̄1

1 − y
}

w1 (ρ1(x), q1(x))− w1 (ρ1(y), q1(y))

x − y ≤ cγ

2
max

{
λ̄2 − λ̄1

x
,− λ̄2

1 − y ,
λ̄2

x

}
,

where cγ , w1, and w2 are defined in (2.26)–(2.27), there is a weak entropy
admissible solution (ρ, q) (see Definition 47 in Appendix A.8) to (2.25) in [0, T ] ×
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[a, b] such that (ρ, q) (0, x) = (ρ0, q0) (x) and (ρ, q) (T , x) = (ρ1, q1) (x) for a.e.
x ∈ [a, b].

2.4 Lyapunov Stabilization of Scalar Conservation Laws
with Two Boundaries

In this section, we consider stabilization problems for the scalar conservation
law (2.1) on the domain D = (0, T )× (a, b), with T > 0 fixed, n = 1, � = R, and
a < b, which reads

⎧⎪⎪⎨
⎪⎪⎩

∂tu+ ∂xf (u) = 0, t ∈ (0, T ), x ∈ (a, b),
u(0, x) = u0(x), x ∈ (a, b),
u(t, a) = ωa(t), t ∈ (0, T ),
u(t, b) = ωb(t), t ∈ (0, T ),

(2.28)

with initial condition u0 ∈ L1 (a, b), and boundary data ωa, ωb ∈ L∞ (0, T ). In this
section, we assume that the flux f is a strictly convex smooth function such that

lim
u→±∞ f (u) = +∞.

The case of concave flux function is entirely similar. We denote with um the unique
point of minimum for f .

The interest is stemming out from many applications, in particular from traffic
flow, where the interval [a, b] represent a stretch of road and the controls are
possible only at the boundary points, e.g., via controlled access, ramp metering,
or traffic lights.

2.4.1 Approximation of Solutions via Piecewise Smooth
Functions

Here we approximate BV solutions to (2.28) using a special class of piecewise
smooth functions, denoted by PWS+. In the next subsections, Lyapunov stability
analysis for solutions to (2.28) is performed for functions in PWS+.

Definition 2 We define PWS+ as the class of PieceWise Smooth functions v :
(a, b) → R such that there exist a finite number of points a = x0 < x1 < · · · <
xN = b (depending on v) such that

1. v is bounded and of class C∞ on the intervals
(
xj−1, xj

)
for j ∈ {1, . . . , N};

2. v′(x) ≥ 0 for every x ∈ (xj−1, xj
)

and j ∈ {1, . . . , N};
3. v has only downward jumps, i.e. v(xj−) ≥ v(xj+) for j ∈ {1, . . . , N − 1}.
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We note that every BV solution to (2.28) can be approximated, in the L1 topology,
by a function in the class PWS+.

Theorem 13 Consider T > 0, a < b, and let u0 : (a, b) 
→ R, ωa, ωb : (0, T ) 
→
R be functions with bounded total variation. Then, for every ε > 0, there exist
uε ∈ PWS+ and piecewise constant boundary data ωεa, ω

ε
b : (0, T ) 
→ R with

∥∥ωa − ωεa
∥∥
L1(0,T ) ≤ ε

∥∥ωb − ωεb
∥∥
L1(0,T ) ≤ ε

such that the solutions u and uε to (2.28) respectively with initial-boundary data
(u0, ωa, ωb) and with

(
uε0, ω

ε
a, ω

ε
b

)
satisfy, for every 0 ≤ t ≤ T ,

∥∥u(t)− uε(t)∥∥L1(a,b)
≤ ε.

It is also interested to note that solutions to (2.28) with initial data in PWS+ remain
in that class, provided the boundary conditions are piecewise constant.

Theorem 14 Fix T , δ > 0, a < b, and let u0 ∈ PWS+ and ωa, ωb : (0, T ) 
→ R

be piecewise constant. Then the solution u to (2.28) satisfies u(t) ∈ PWS+ for all
times 0 ≤ t ≤ T .

The proofs of Theorem 13 and of Theorem 14 can be found in [40, Theorem 2
and Theorem 3].

2.4.2 Lyapunov Functional

Here we introduce a Lyapunov functional to stabilize (2.28) within the class PWS+.
We fix a constant state u∗ ∈ � and for every solution u to (2.28), we consider its
perturbation around the steady state u∗; thus define ũ = u − u∗. The aim is to
stabilize the solution to u∗.

Since the results in Sect. 2.4.1, we assume that u is in PWS+ and consider the
classical Lyapunov function candidate [195, 197]:

V (t) = 1

2

∫ b

a

ũ2(t, x) dx = 1

2

∫ b

a

(u(t, x)− u∗)2 dx. (2.29)

Notice that t 
→ u(t, ·) is continuous from [0, T ] to L1(a, b), and the function
V (·) is well defined and continuous. We index the jump discontinuities of u(t, ·)
in increasing order of their locations at time t by i = 0, . . . , N(t), including for
notational purposes the boundaries a, b, with x0(t) = a and xN(t) = b, and write:

V (t) = 1

2

N(t)−1∑
i=0

∫ xi+1(t)

xi (t)

ũ2(t, x) dx. (2.30)
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From Theorem 14, we know that for all integers i = 0, . . . , N(t), the function
u(t, ·) is smooth in the domain (xi(t), xi+1(t)). Moreover, the trajectories xi(·)
are differentiable with speed given by the Rankine–Hugoniot relation; see (A.18).
Therefore the function V (·) is differentiable at any time except interaction times of
discontinuities, which is a finite set. More precisely, for every time t such that N(t)
is locally constant and traces are continuous, differentiating expression (2.30) we
get:

dV

dt
(t) = 1

2

N(t)−1∑
i=0

∫ xi+1(t)

xi (t)

∂t ũ
2 dx

+ 1

2

N(t)−1∑
i=0

[
ũ2(t, xi+1(t)−) dxi+1

dt
(t)− ũ2(t, xi(t)+) dxi

dt
(t)

]
.

We can write ∂t ũ2 = 2 ũ ∂t ũ and ∂t ũ = −∂xf (ũ + u∗). Integrating by parts and
indicating by F a primitive of the flux f , we get:

dV

dt
(t) = ũ(t, a) f (ũ(t, a)+ u∗)− ũ(t, b) f (ũ(t, b)+ u∗)

− F(ũ(t, a)+ u∗)+ F(ũ(t, b)+ u∗)

+
N(t)−1∑
i=1

�i
(
ũf (ũ+ u∗)− F(ũ+ u∗))

−
N(t)−1∑
i=1

ũ(t, xi−)+ ũ(t, xi+)
2

�if (ũ+ u∗),

(2.31)

where �i gives the jump at the i-th discontinuity and we used the Rankine–
Hugoniot relation to express the speed of i-th discontinuity. Notice that the first
four terms depend on the boundary trace of the solution, while the last two terms
depend on the shock dynamics inside the domain. Therefore last two terms are
not controllable with boundary control, but they have a stabilizing effect on the
Lyapunov function:

Proposition 1 Given a fixed state u∗ ∈ � and a solution u to (2.28), then the
following inequality holds:

N(t)−1∑
i=1

[
�i
(
ũf (ũ+ u∗)− F(ũ+ u∗))− ũ(t, xi−)+ ũ(t, xi+)

2
�if (ũ+ u∗)

]
≤ 0,

which implies that the jump discontinuity dynamics contributes to the decrease of
the Lyapunov function (2.29).
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For a proof, see [40, Proposition 1].

Remark 1 Stability of the jump discontinuity dynamics is implied by the Oleinik
entropy condition. Thus, for a convex flux, the internal dynamics is strictly
stabilizing, i.e., we have a strict decrease of the Lyapunov function.

Remark 2 Possibly except at discontinuity interaction times, the internal dynamics
is stabilizing letting the Lyapunov function (2.29) decay. This is critical for
boundary stabilization where the control action has no effect inside the domain.

Remark 3 At a time t at which the number of discontinuities is not constant or the
boundary trace is not continuous, the Lyapunov function is not differentiable, how-
ever, the difference between the right and left derivative at t+ and t−, respectively,
can be computed. This is addressed in Sect. 2.4.4.

2.4.3 Control Space and Lyapunov Stability

In this part we introduce control spaces and we show the existence of a boundary
control such that the functional V in (2.29) is decreasing and the system is Lyapunov
stable. We first define the control spaces at x = a and at x = b.

Definition 3 The control space Ca (resp. Cb) is composed by all the couples (ul, ur )
such that the Riemann problem

⎧⎨
⎩
∂t u+ ∂x f (u) = 0

u(0, x) =
{
ul, x < 0,
ur , x > 0,

is solved with waves with non-negative (resp. non positive) speed.

The control spaces Ca and Cb can be characterized in the following way; for a proof
see [40, Proposition 2].

Proposition 2 Let um be the unique point of minimum for the flux function f . A
couple (ul, ur ) belongs to Ca if and only if

either ul = ur
or ul ≥ um, ur ≥ um
or ul ≥ um, ur ≤ um, f (ul) > f (ur).

(2.32)

A couple (ul, ur ) belongs to Cb if and only if

either ul = ur
or ul ≤ m, ur ≤ m
or ul ≥ m, ur ≤ m, f (ul) < f (ur).

(2.33)
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g g

u u
−1 −11 10 0u∗ u∗

0 0

Fig. 2.1 The graph of the function g defined in (2.34), in the case of a Burgers flux function

f (u) = u2 and F(u) = u3

3 , so that um = 0. At the left, the case u∗ = − 1
2 , while, at the right, the

case u∗ = 1
2

The following stability result holds.

Theorem 15 There exist boundary conditions ωa, ωb such that, if the solution u to
the initial-boundary value problem (2.28) is in the class PWS+, then

1. for a.e. t ∈ [0, T ], (ωa(t), u(t, a+)) ∈ Ca;
2. for a.e. t ∈ [0, T ], (u(t, b−), ωb(t)) ∈ Cb;
3. the functional t 
→ V (t), defined in (2.29), is strictly decreasing;
4. the system (2.28) is Lyapunov stable.

For a proof see [40, Theorem 4]. It is possible to describe explicitly a class of
controls described in Theorem 15. To this aim, we first consider a function

g : R −→ R

u 
−→ (u− u∗) f (u)− F(u), (2.34)

where F is a primitive of the flux f ; see Fig. 2.1.

Lemma 1 Let um denote the unique point of minimum of f . The smooth function g
satisfies the following properties.

1. g is strictly increasing in (−∞,min{m,u∗}) ∪ (max{m,u∗},+∞) and strictly
decreasing in (min{m,u∗},max{m,u∗}).

2. For u > v such that f (u) = f (v), we have g(u) > g(v).

The set of boundary controls (ωa(t), ωb(t)) of Theorem 15, which stabilize the
system (2.28), in the case u∗ < um, can be chosen according to the following cases.
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1. If (u(t, a+), u(t, b−)) ∈ [m,+∞)× (m,+∞), then

ωa(t) ∈ [m,u(t, a+)) ωb(t) = u(t, b−).

2. If (u(t, a+), u(t, b−)) ∈ [m,+∞)× (−∞,m], then

ωa(t) ∈ (m,+∞) ωb(t) ∈ (−∞,m) g (ωa(t)) = g (ωb(t)) .

3. If (u(t, a+), u(t, b−)) ∈ (−∞,m)× (−∞,m], then

ωa(t) = u(t, a+) ωb(t) = u∗.

4. If (u(t, a+), u(t, b−)) ∈ (−∞,m) × (m,+∞] and g (u (t, a+)) <

g (u (t, b−)), then

ωa(t) = u(t, a+) ωb(t) = u(t, b−).

5. If (u(t, a+), u(t, b−)) ∈ (−∞,m) × (m,+∞] and g (u (t, a+)) ≥
g (u (t, b−)), then

ωa(t) = u(t, a+) ωb(t) = u∗.

Remark 4 The boundary controls in Theorem 15 provide Lyapunov stability, but
not asymptotic stability in general. In the following section, a greedy controller
is defined and it maximizes the instantaneous decrease of the Lyapunov function
(but also not guaranteeing asymptotic stability). Finally, in Sect. 2.4.5 we design
an improved controller which guarantees asymptotic stability and invariance of the
class PWS+.

2.4.4 Greedy Controls

Here we characterize the values of boundary controls, that minimize the derivative
of the Lyapunov function V (2.29). Since the type of waves generated at the
boundaries influences the value of the derivative of V , we first provide a detailed
description of them. Table 2.1 summarizes the types of waves created at the left
boundary for controls taking values in the control space Ca ; see Definition 3.

Let us characterize the changes in the Lyapunov function, due to the variation in
the number of shock waves in the solution, resulting both from internal interactions
and from the generation or absorption of waves at the boundaries.

Proposition 3 Fix a time t̄ at which the number of jump discontinuities changes.

1. If two shock waves interact at time t̄ , then the derivative of the Lyapunov function
V decreases, i.e., V ′(t̄−) > V ′(t̄+).
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Table 2.1 Waves exiting from the left boundary depending from the boundary control and the
trace of the solution at this boundary

u(t, a+) < um u(t, a+) ≥ um

ωa ≥ um
ωa > u(t, a+): Shock

f (ωa)>f (u(t, a+)): Shock ωa = u(t, a+): No wave

ωa < u(t, a+): Rar. wave

ωa < um
ωa = u(t, a+): No wave Rarefaction with vanishing

boundary trace

2. Assume that a discontinuity wave crosses the left boundary and let us denote u−
the value of the boundary trace at time t̄− and u+ the value of the boundary
trace at time t̄+. The jump in the derivative of the Lyapunov function reads

V ′(t̄+)− V ′(t̄−) = (f (u+)− f (u−))
(
u− + u+

2
− u∗

)
, (2.35)

where the term
(
f (u+)− f (u−)) is positive, since f is a convex flux. Moreover

we have the following cases.

(a) If u∗ < u−+u+
2 , then there is an increase in the derivative of the Lyapunov

function V .
(b) If u∗ > u−+u+

2 , then there is a decrease in the derivative of the Lyapunov
function V .

The case of right boundary can be treated similarly with a change in the sign
in (2.35).

For a proof see [40, Proposition 3]. Proposition 3 can be restated in the case of a
concave flux function. The next result selects the boundary controls that maximize
the decrease rate of the Lyapunov function V in two different cases. In the first
one only rarefaction waves are created, while in the second one shock waves are
produced.

Proposition 4 ([40, Proposition 4]) Let u be a solution to the initial-boundary
value problem (2.28) and let g be the function introduced in (2.34).

1. The boundary controls t 
→ ωra and t 
→ ωrb that minimize the decrease of the
Lyapunov function V without introducing shock waves are given by:

ωra(t)
.= arg min {g(u) : (u, u(t, a+)) ∈ Ca, u ≤ u(t, a+)}

ωrb(t)
.= arg max {g(u) : (u, u(t, b−)) ∈ Cb, u ≥ u(t, b−)} .

2. The boundary controls t 
→ ωsa(t) and t 
→ ωsb(t) that minimize the decrease of
the Lyapunov function V by introducing discontinuities at the boundaries, can
be obtained by:
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Right boundary

Left boundary

(0, u(t, b−))

Case 1.

(0, u∗)

Case 2.

(u(t, a+), u∗)

Case 3.

(u(t, a+), u(t, b−))

Case 4.

Case 5.

Fig. 2.2 Construction of the greedy stabilizing controller for the Burgers flux f (u) = u2 in the
case u∗ < 0 = um. The cases correspond to the ones of the procedure described in Sect. 2.4.4

ωsa(t)
.= arg min {S(u(t, a+), u) : (u, u(t, a+)) ∈ Ca, u > u(t, a+)}

ωsb(t)
.= arg max {S(u(t, b−), u) : (u, u(t, b−)) ∈ Cb, u < u(t, b−)} ,

where

S(u, v) := (f (v)− f (u))
(
u+ v

2
− u∗

)
.

In the case u∗ < um, a greedy boundary control (ωa(t), ωb(t)), maximizing the
instantaneous decrease of the Lyapunov function (2.29), can be constructed in the
following way; see Fig. 2.2.

Case 1. If (u(t, a+), u(t, b−)) ∈ [um,+∞)× (um,+∞), then

ωa(t) = um, ωb(t) = u(t, b−).

Case 2. If (u(t, a+), u(t, b−)) ∈ [um,+∞)× (−∞, um], then
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ωa(t) = um, ωb(t) = u∗.

Case 3. If (u(t, a+), u(t, b−)) ∈ (−∞, um)× (−∞, um], then

ωa(t) = u(t, a+), ωb(t) = u∗.

Case 4. If (u(t, a+), u(t, b−)) ∈ (−∞, um) × (um,+∞) and g (u(t, b−)) >
g (u∗), then

ωa(t) = u(t, a+), ωb(t) = u(t, b−).

Case 5. If (u(t, a+), u(t, b−)) ∈ (−∞, um) × (um,+∞) and g (u(t, b−)) ≤
g (u∗), then

ωa(t) = u(t, a+), ωb(t) = u∗.

We note in Example 1 that with the greedy controller constructed in this part
asymptotic stability may not be obtained. We also illustrate that the naive brute
force control (ωa(t) = u∗, ωb(t) = u∗) may create oscillations at the boundary.

Example 1 Choose u∗ < um and define û by um < û and f (û) = f (u∗). Given
0 < � < (a + b)/2, such that b−a4� ∈ N, and 0 < k < û we consider the following
initial datum

u0(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

um, x ∈ (a, a+b2

)
û− k, x ∈ ( a+b2 + (2p)�, a+b2 + (2p + 1)�

)
p ∈ {0, · · · , b−a4� − 1

}
û+ k, x ∈ ( a+b2 + (2p + 1)�, a+b2 + (2p + 2)�

)
p ∈ {0, · · · , b−a4� − 1

}
.

In such a case, Case 1. applies, hence the boundary controls are (ωa(t) =
um,ωb(t) = u(t, b−)). The characteristic speed of um is zero, thus the right
boundary value converges toward um in infinite time. The solution remains in
the configuration characterized by Case 1., and converges to the steady state um
not reaching the target density u∗. This shows that stability is achieved but not
asymptotic stability.

The brute force control (ωa(t) = u∗, ωb(t) = u∗) has no action on the system
when u(t, b−) = û + k, since the control values are outside of the control space
Cb. While when u(t, b−) = û − k, the brute force control induces slow backward
moving shock waves (û − k, u∗) from the right boundary which interact with fast
forward moving shock waves (û + k, û − k) coming from the initial datum, and
create slow forward moving shock waves (û + k, u∗). Hence we observe large
oscillations at the right boundary, comparable to the oscillations in the initial datum.
More precisely, the trace at the boundary x = b oscillates between the value u∗ and
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values in the interval [û−k, û+k], generating a total variation in time which satisfies

TVt (u(t, b−)) ≥ b − a
4�

(û− k − u∗).

Since � is arbitrary, the boundary oscillations can be arbitrarily large, but in any
case proportional to the oscillations in the initial datum. Eventually all the waves
generating by an oscillating initial datum exit the domain and the naive control
produces backward moving shock waves (um, u∗) which yield convergence.

2.4.5 Lyapunov Asymptotic Stability

Here we design a control strategy, which guarantees Lyapunov asymptotic stability.
More precisely, Theorem 16 shows that the associated solution to (2.28) remains in
the class PWS+ for initial data u0 in the same class. Moreover, in Theorem 17
we state BV estimates for the solution and the boundary controls. Finally, in
Theorem 18, we use the BV estimates to extend the construction to BV initial data
and we state Lyapunov asymptotic stability.

In this part, we restrict to the case u∗ < um for simplicity. Define û > um by
f (û) = f (u∗), ǔ > um by g(ǔ) = g(u∗), and ū = û+ǔ

2 . By Lemma 1, we deduce
that ǔ < û and thus ǔ < ū < û. The specific choice of ū guarantees the decrease of
V (·) (as it would any other control in ]ǔ, û[.) The feedback controls ωa(t), ωb(t),
are defined as:

⎧⎪⎪⎨
⎪⎪⎩

(um, u(t, b−)) if (u(t, a+), u(t, b−)) ∈ [um,+∞)× (ū,+∞) ,
(um, u

∗) if (u(t, a+), u(t, b−)) ∈ [um,+∞)× (−∞, ū] ,
(u(t, a+), u∗) if (u(t, a+), u(t, b−)) ∈ (−∞, um)× (−∞, ū] ,
(u(t, a+), u(t, b−)) if (u(t, a+), u(t, b−)) ∈ (−∞, um)× (ū,+∞) .

(2.36)

Notice that the boundary controls are of feedback type, since they depend only
on the trace of the unknown at the boundaries. Instead, the “nonlocal” boundary
controls, defined in Sect. 2.4.6, depend also on the initial state.
We have the following result.

Theorem 16 Consider an initial datum u0 in PWS+ and the boundary controls
given by formula (2.36). Then the corresponding boundary value problem admits
a unique solution, which belongs to the class PWS+ for all times. Moreover, the
function V (·) is strictly decreasing along the solution and the equation is stable in
the sense of Lyapunov.

To extend the result to general initial data in BV, we need estimates on the total
variation in time of the controls TVt (ωa), TVt (ωb), and in space of the generated
solution TVx(u(t, ·)), which are given by the next result.
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Theorem 17 Consider an initial datum u0 in PWS+, the boundary controls given
by Case 1.–Case 5., and let us indicate by u(t, x) the corresponding solution. Then,
defining C = 2

(
supx |u0(x)− um| + |um − u∗|), we have the following estimates:

TVx(u(t, ·)) ≤ TVx(u0)+ C + |ū− u∗| (2.37)

TVt (ωa) ≤ TVx(u0)+ C (2.38)

TVt (ωb) ≤ TVx(u0)+ C + |ū− u∗| · TVx(u0)+ C
|ū− û| . (2.39)

The proof of Theorem 17 is based on careful estimates on the flux variation and
possible wave patterns generated by the boundary controls; see [40, Theorem 6].
We are now ready to state the last result of this section [40, Theorem 7].

Theorem 18 Consider an initial datum u0 in BV and the boundary controls given
by formula (2.36), then there exists a unique entropic solution to the corresponding
initial-boundary problem such that (2.37), (2.38) and (2.39) hold true. Moreover,
limt→+∞ V (t) = 0, i.e. limt→+∞ ‖u(t, ·)− u∗‖L2 = 0.

To prove Theorem 18, one first uses standard compactness and Helly’s Theorem,
then observe that the solution attains the boundary value and, finally, use the decay
to N-wave solutions, see [226]. Notice that, because of the BV estimates, the
convergence of u actually holds in all Lp norms.

2.4.6 Nonlocal Controls

As we noticed the greedy control may not stabilize the system to u∗, while the
brute force control ua ≡ ub ≡ u∗ may overshoot and produce oscillations. Finally,
control (2.36) stabilizes the system, but the stabilization time can be far from
optimal. Therefore, in this section, we show nonlocal controls ωnla ω

nl
b , which fast

stabilize the system to u∗. We use the term nonlocal to indicate that these controls
depend not only on the values of the traces u(t, a+) and u(t, b−).

We focus again, for simplicity, only on the case u∗ < um. Define A =
supx∈[a,b] u0(x) and Â < um be such that f (Â) = f (A). For every U < Â we
define:

T1(U) = (b − a) (A− U)
f (U)− f (A) , T0(U) = T1 − (b − a)

|f ′(U)| (2.40)

and set ωnla as in (2.36), while:

ωnlb (t) =
{
U, 0 ≤ t ≤ T0,

u∗, T0 < t < +∞. (2.41)
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The meaning of such construction is as follows. First, in the same spirit as [149, 150,
179], we send a large shock (u0(a+), U) with negative speed to move the system in
the zone u < um and then apply the stabilizing control. Notice that T1 is computed
as the maximal time taken by the big shock to cross the interval [a, b], while T0 is
the time at which the characteristic corresponding to u∗ should start from b to reach
a at time T1. These choices will guarantee the desired effect. Notice also that T0 is
a safe choice, but smaller values may give a better performance.

2.4.7 Numerical Examples

In this section, we present numerical results obtained for a benchmark scenario.
The numerical scheme used here is the standard Godunov scheme [154] with 200
cells in space and a time discretization satisfying the tight Courant-Friedrich-Levy
(CFL) condition [216]. We consider the flux function u 
→ u2/2, the equilibrium
state u∗ = −1, and the space domain [0, 1] with the oscillating initial condition

u0(x) = 1 + 0.5 sin(20x). (2.42)

In Fig. 2.3 we present the evolution of the system under four different controllers:
the greedy boundary control (defined in Proposition 4), the brute force boundary
control ua = ub = u∗, the stabilizing control (defined in Sect. 2.4.3), and the
nonlocal control (formula 2.41) with U = −2 and T0 as defined in (2.40). The
greedy control allows oscillations to exit from the right boundary but the solution
does not converge to the steady state u∗ = −1. On the other side the brute force
control converges to the steady state but generates oscillations on the right boundary
as can be seen in Fig. 2.4, top. The stabilizing control also converges but it is less
oscillating with respect to the brute force control. The nonlocal control guarantees
convergence and avoids oscillations. The evolution of the solution under the action
of the stabilizing control and the brute force control are very similar. The decrease
of the corresponding Lyapunov function is represented in Fig. 2.4, bottom. One can
note how the nonlocal control decreases much faster than the other methods.
To study the dependence of the nonlocal control stabilization performance on the
parameters U and T0 we run several simulations with different values of these
parameters, see Fig. 2.5 for U ∈ [−2.1,−1.5] and T0 ∈ [0.5, 2]. The convergence
time is defined as the first time such that V (t) ≤ 0.1. We notice that longest
convergence time corresponds to U = −1.5 and T0 = 0.5 while the fastest
corresponds to U = −2.1 and T0 = 1. Moreover, for each fixed U there exists
an optimal switching time T0 that minimizes the convergence time.
To further illustrate the oscillations of the boundary trace generated by the brute
force control we simulated the case in which the initial datum is strongly oscillating:

u0(x) = 1 + 0.3 sin(50x). (2.43)
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Fig. 2.3 Numerical solution of Burgers equation: Evolution of the solution for the various
controllers with oscillating initial data

In Fig. 2.6 the trace of the brute force control shows, at initial times, one big
oscillations and then the oscillations continues until t = 1. For the stabilizing
control the oscillations are smaller but they extend for a longer period up to time
t = 1.5.

2.5 Mixed Systems PDE-ODE

Here, we present a slightly different system with respect the previous ones of the
present Chapter. More precisely, we consider a system of balance laws (PDE) with
boundary, coupled with a system of ordinary differential equations (ODE). The
coupling condition between the PDE and the ODE is at the level of the boundary.
Moreover, we do not consider explicitly a control for such a system. However,
the solution to the ODE can be seen as an external control for the system of
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Fig. 2.4 Downstream trace and Lyapunov functions: the Lyapunov functions for different
controls are represented in the bottom subfigure. The downstream boundary are represented in
the top subfigure respectively

balance laws. The boundary position for the PDE is not fixed a-priori, but it is
given by a function γ , which is the solution to an ordinary differential equation.
Therefore, we consider the system of conservation laws (2.1) on the domain
D = {(t, x) : t ≥ 0, x ≥ γ (t)}. We present both the mathematical description and
a theoretical result about existence of solutions for the Cauchy problem.

Let us consider the following mixed ODE-PDE systems:

⎧
⎪⎪⎨
⎪⎪⎩

∂tu+ ∂xf (u) = g(u), x > γ (t), t > 0,
b (u (t, γ (t)+)) = B (t, w(t)) , t > 0,
ẇ = F (t, u (t, γ (t)+) , w(t)) , t > 0,
γ̇ (t) = �(w(t)) , t > 0.

(2.44)

Here the unknowns are u = u(t, x), w = w(t), and γ = γ (t). As said before, the
function u is defined for t ≥ 0 and x ≥ γ (t), while w and γ are defined for t ≥ 0.
We assume the following hypotheses.
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Fig. 2.5 Convergence time of the Lyapunov function: dependence of the convergence time of
the Lyapunov function from U and T0. The convergence time is defined as the first time for which
V (t) ≤ 0.1

(MS.1) � ⊆ R
n is an open set. Moreover û ∈ �, ŵ ∈ R

m and x̂ ∈ R. For δ > 0,
define the sets

V =
{
u ∈ û+ (BV ∩ L1)(R;Rn) : u(R) ⊂ �

}
,

Vδ = {u ∈ V : TV(u) ≤ δ} .

(MS.2) The flux function f : � → R
n is smooth. Moreover the system of

balance laws is strictly hyperbolic with each characteristic field either genuinely
nonlinear or linearly degenerate.

(MS.3) For δ > 0, the source function g : Vδ → L1(R;Rn) satisfies, for suitable
L1, L2 > 0, the estimates

∥∥g(u)− g(u′)∥∥L1 ≤ L1
∥∥u− u′∥∥L1 and TV (g(u)) ≤ L2 ,

for every u, u′ ∈ Vδ .
(MS.4) � ∈ C0,1(Rm;R).
(MS.5) There exist c > 0 and p ∈ {1, 2, . . . , n− 1} such that λp(û) < �(ŵ)− c

and λp+1(û) > �(ŵ)+ c.
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Fig. 2.6 Downstream trace: value of the solution at the right boundary for a strong oscillating
initial data

(MS.6) b ∈ C1(�;Rn−p) is such that

det
(
Dub(û)

[
rp+1(û) rp+2(û) · · · rn(û)

]) 
= 0.

(MS.7) The map F : R+ ×�× R
m −→ R

m is such that:

(a) for all u ∈ � and w ∈ R
m, the function t 
→ F(t, u,w) is Lebesgue

measurable;
(b) for all compact subset K of � × R

m, there exists CK > 1 such that, for all
t ∈ R

+ and (u1, w1), (u2, w2) ∈ K ,

‖F(t, u1, w1)− F(t, u2, w2)‖Rm ≤ CK (‖u1 − u2‖Rn + ‖w1 − w2‖Rm) ;

(c) there exists a function C ∈ L1
loc(R

+;R+) such that, for all t > 0, u ∈ � and
w ∈ R

m,

‖F(t, u,w)‖Rm ≤ C(t) (1 + ‖w‖Rm) .

(MS.8) B ∈ C1(R+ × R
m;Rn−p) is locally Lipschitz, i.e., for every compact

subset K of Rm, there exists a constant C̃K > 0 such that, for every t > 0 and
w ∈ K:
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∥∥∥∥
∂

∂t
B(t, w)

∥∥∥∥
Rn−p

+
∥∥∥∥
∂

∂w
B(t, w)

∥∥∥∥
Rn−p

≤ C̃K .

Remark 5 Condition (MS.5) is analogous to the non-characteristic condition (NC)
in the case of moving boundary. This is strictly related to conditions (MS.6)
and (MS.8), describing how boundary conditions are assigned; see also [5–7].

Now we introduce the definition of solution for (2.44).

Definition 4 Let T > 0. A triple (u,w, γ ) with

u ∈ C0 ([0, T ];V) w ∈ W1,1 ([0, T ];Rm) γ ∈ W1,∞ ([0, T ];Rm)

is a solution to (2.44) on [0, T ] with initial datum (u0, w0, x0) such that u0 ∈ V
with u0(x) = û for x < x0, w0 ∈ R

m and x0 ∈ R, if

1. u is an entropy admissible solution to

{
∂tu+ ∂xf (u) = g(u), x > γ∗(t), t > 0,
b (u (t, γ∗(t)+)) = B∗ (t) , t > 0,

on [0, T ] with B∗(t) = B (t, w(t)), γ∗(t) = γ (t), and initial datum u0;
2. w solves

{
ẇ = F∗(t, w), t > 0,
w(0) = w0,

on [0, T ] with F∗(t) = F (t, u (t, γ (t)+) , w) a.e.;

3. γ (t) = x0 +
∫ t

0
�(w(τ)) dτ for a.e. t ∈ [0, T ].

The following result holds; for a proof see [42].

Theorem 19 Let (MS.1)–(MS.8) hold. Assume that b(û) = B(0, ŵ). Then, there
exist positive constants δ, �, L, Tδ , domains D̂t (for t ∈ [0, Tδ]), and maps

P̂ (t, t0) : D̂t0 → D̂t0+t ,

defined for t0, t0 + t ∈ [0, Tδ], such that

1.
(
Vδ × Bδ(ŵ)×

]
x̂ − δ, x̂ + δ[) ⊆ D̂t ⊆ (

V� × B�(ŵ)×
]
x̂ −�, x̂ +�[),

where the notation Br(ŵ) denotes the ball of radius r centered at ŵ;
2. for all t0, t1, t2 with t0 ∈ [0, Tδ[, t1 ∈ [0, Tδ − t0[ and t2 ∈ [0, T − t0 − t1], we

have

P̂ (t2, t0 + t1) ◦ P̂ (t1, t0) = P̂ (t1 + t2, t0) and P̂ (0, t0) = Id;
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3. for t0 ∈ [0, Tδ[, t ∈ [0, Tδ − t0], and (u,w, x), (ū, w̄, x̄) ∈ D̂t0
∥∥P̂ (t, t0)(u,w, x)− P̂ (t, t0)(ū, w̄, x̄)

∥∥
L1×Rm×R

≤ L (‖u− ū‖L1 + ‖w − w̄‖Rm + |x − x̄|) ;

4. for all (u0, w0, x0) ∈ D̂0, the map t 
→ P̂ (t, 0)(u0, w0, x0), defined for t ∈
[0, Tδ], solves (2.44) in the sense of Definition 4.

2.5.1 Examples

We consider here several examples of applications of Theorem 19. In Example 2,
we consider the case of a tube with a piston filled with gas, in Example 3 a sewer
system with a vertical manhole is considered, in Example 4 we present a system
describing a portion of the circulatory system, while in Example 5 the case of a
solid body in a fluid is considered.

Example 2 Consider a tube filled with fluid and closed to the left by a piston. The
gas dynamics can be described by the p-system in the Lagrangian coordinates,
coupled with an ordinary differential equation governing the piston’s evolution.
More precisely

⎧⎪⎪⎨
⎪⎪⎩

∂t τ − ∂xv = 0
∂tv + ∂xp(τ) = 0
V = v(t, 0+)
V̇ = α · (P (t)− p (τ(t, 0+))) ,

(2.45)

where t is time, x the Lagrangian coordinate (i.e., represent the position of gas
particles in the original frame), τ the specific volume, v the Lagrangian speed of
the flow, p the pressure in the fluid, V the speed of the piston, P(t) the pressure
to the left of the piston, and α is the ratio between the section of the tube and the
mass of the piston. The acceleration of the piston is due to the difference between
the pressure of the fluid and that of the outer environment. The problem (2.45) can
be written in the form (2.44) and, under suitable assumptions, Theorem 19 can be
applied.

Example 3 Consider a sewer network composed by a single junction, located at
x = 0, that joins k horizontal pipes to one vertical manhole. The flow in the i-th
tube, for i = 1, · · · , n, can be described by the Saint Venant equations (see [199,
formula (108.1)] and Example 8)
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⎧
⎨
⎩
∂tAi + ∂xQi = 0

∂tQi + ∂x
(
Q2
i

Ai
+ pi(Ai)

)
= 0

ensuring the conservation of mass and momentum. The quantity Ai is the wet cross
sectional area, Qi the flow in the x direction, and pi is a function representing the
hydrostatic pressure. The complete system, which falls within the class (2.44), is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tAi + ∂xQi = 0, i = 1, · · · , n,
∂tQi + ∂x

(
Q2
i

Ai
+ pi(Ai)

)
= 0, i = 1, · · · , n,

ĥ(t) = 1

2g

Qi(t, 0+)2
Ai(t, 0+)2 + hi (Ai(t, 0+)) , i = 1, · · · , n

hM(t) = − 1

2g A2
M

(
k∑
i=1

Qi(t, 0+)
) ∣∣∣∣∣

k∑
i=1

Qi(t, 0+)
∣∣∣∣∣+ ĥ(t),

ḣM(t) = 1

AM

(
Qext(t)−

k∑
i=1

Qi(t, 0+)
)
,

(2.46)
where we require, as boundary condition, the equality of all the hydraulic heads ĥ at
the junction, and the height hM of the water inside the manhole is determined by the
last two equations of (2.46) based on the conservation of the total amount of water.

Example 4 Following [129, formulæ (2.3), (2.12), (2.14)], [133] and [62], we
consider the 1D model for blood flowing through an artery, coupled with a 0D model
describing the averaged mass and flow rate in a given terminal compartment of the
circulatory system (e.g., capillary bed, venous circulation). The complete model is

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ta + ∂xq = 0

∂tq + ∂x
(
α
q2

a
+ 1
ρ
π(a)

)
= −2 α

α−1ν
q
a

a(t, 0+) = a0

(
1 + p−pref

β

)2

Ṗ = − 1
C
Q+ 1

C
q(t, 0)

Q̇ = −R
L
Q+ 1

L
P − 1

L
P (t, l),

(2.47)

where ρ is the blood density, q is the arterial flow rate, a denotes the arterial cross
section, p(a) is the arterial blood pressure, π(a) = ∫ a

a0
ã p′(ã) dã, and P and Q

denote respectively the compartmental mean blood pressure and the compartmental
mean flow rate. The remaining constant are:
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a0 reference cross section, ν viscosity coefficient,
α Coriolis coefficient, β arterial wall elasticity,
R compartmental resistance, C compartmental capacitance,
L compartmental inductance.

System (2.47) is of type (2.44).

Example 5 We consider the following model describing the evolution of a solid
body, locate at position γ (t), inside a compressible fluid, described by the classical
p-system (see Example 7):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + ∂xq = 0, x 
= γ (t), t > 0,

∂tq + ∂x
(
q2

ρ
+ p(ρ)

)
= −g ρ, x 
= γ (t), t > 0,

q (t, γ (t)−)
ρ (t, γ (t)−) =

q (t, γ (t)+)
ρ (t, γ (t)+) = V, t > 0,

V̇ = −g − p (ρ (t, γ (t)+))− p (ρ (t, γ (t)−))
m

, t > 0,

γ̇ (t) = V, t > 0.

(2.48)

The quantities ρ and q are the fluid mass and linear momentum density above and
below the particle, p = p(ρ) is the pressure law, V is the speed of the particle
located at γ (t) and m is its mass, g is gravity. System (2.48) is a particular case
of (2.44).

2.6 Bibliographical Notes

Several papers are concerned with the boundary control of the viscous Burgers equa-

tion ∂tu+ ∂x
(
u2

2

)
= ∂xxu; see [59, 60, 85, 119, 135, 136, 192, 195, 204, 229, 256].

Given a final time T > 0, an initial condition u0 and boundary controls ωa, ωb, the
control system is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂tu+ ∂x
(
u2

2

)
= ∂xxu

u(0, x) = u0(x)

u(t, a) = ωa(t)
u(t, b) = ωb(t).

(2.49)

When the control acts on a single side (i.e., when ωa or ωb is a given preassigned
function), there are several results concerning the non-controllability of the system.
First, Díaz in [119] proved, using a topological argument, that it is not possible
to find a solution u to (2.49), which is arbitrary close to certain open subsets of
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L2(a, b); see also [135]. In such a case, also the property of exact null controllability
does not hold. This means that, for specific initial data u0, the final profile u(T , ·)
cannot be constantly equal to 0. In such direction, Fernández-Cara and Guerrero
in [130] gave sharp estimates of the minimal time, which depends on the L2 norm
of the initial datum, for which the null controllability property is ensured. Moreover
Coron in [86] proved the existence of a time T > 0 sufficiently big such that the
system (2.49) is null controllable when ωa (or ωb) is constantly equal to 0; see
also [69].

In case the control acts on both sides, Fursikov and Imanuvilov in [135] proved
that every steady state solution can be reached, provided the final time is sufficiently
large, whereas Coron in [86] proved that the system can be driven from the null
function to every large constant state; see also [151]. In the presence of an additional
distributed control, Chapouly in [69] proved the global controllability property for
the viscous Burgers’ equation; see also [1, 13, 19, 219, 240].

In the case of smooth solutions for general systems of balance laws, problems of
exact boundary controllability and of asymptotic stabilization have been addressed.
These results were obtained by using explicit formulas for the evolution of the
Riemann invariants along characteristics; see [34, 110, 161, 215, 217, 218].

Lyapunov methods for stabilizing classical solutions of 2× 2 systems with char-
acteristics speeds of constant opposite sign have been introduced in [90, 122, 241].
Similar work on boundary damping techniques with applications to the Saint-Venant
equations has been proposed in [110, 244]. Lyapunov methods for stabilization in
the case of solutions with a finite number of shocks are considered in [40]. In the
case of hybrid dynamics, see [9].

Mixed systems, composed by hyperbolic conservation laws and ordinary dif-
ferential equations interacting at the level of the boundary, have been considered
in [18, 41–44]. Existence of a solution with the vanishing viscosity approach has
been studied in [75].
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Chapter 3
Decentralized Control of Conservation
Laws on Graphs

3.1 Introduction

Conservation and/or balance laws on networks in the recent years have been the
subject of intense study, since a wide range of different applications in real life can
be covered by such a research. Among the possible applications, vehicular traffic is
probably the one more studied; see, for example, [139] and the reference therein.
Other applications range over data networks, irrigation channels, gas pipelines,
supply chains, and blood circulation; see, for example, [26, 62, 77, 106, 108, 156].
Therefore, it is natural to consider control problems for such systems, and in partic-
ular to consider control functions acting at the level of junctions or nodes [144, 160].

This chapter presents various examples of conservation laws with controls acting
at the nodes. More precisely, all the examples are motivated by vehicular traffic and
so the dynamics in each edge of the network is described by the Lighthill–Whitham–
Richards model [224, 249] or by its discrete version.

In Sect. 3.2 we consider a network composed by a single junction and we assume
that the control function modifies the junction Riemann solver; see [144]. A junction
Riemann solver is a function which gives a solution to every Riemann problems
at the node. In this part, we show that, if the Riemann solver and the control
function satisfy a suitable set of theoretical assumptions, then there exists a solution
of the corresponding Cauchy problem. The section is completed by three concrete
examples of Riemann solvers satisfying the required properties.

In Sect. 3.3, we consider a special case of the problem addressed in the previous
ones: the regulation of signalized intersections. More precisely, a traffic light can be
seen as a regulation of traffic distribution coefficients, that is of the Riemann solver
parameters. The controls in this case are piecewise constant and we address the
approximation by continuous ones, providing also precise estimation errors. The
approach is strongly based on Moscowitz functions, or cumulative counts of cars
flowing at a given point, which solve a Hamilton-Jacobi-Bellman equation.
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In Sect. 3.4, we consider a freeway model with on-ramps and offramps and the
controls act at the level of on-ramps mainly through traffic lights; see [248]. In this
part, the highway is described by a finite number of consecutive links, and in each
link a discretized version of the Lighthill–Whitham–Richards model is considered.
Optimal control problems are studied and necessary conditions for optimality are
deduced, by computing a generalized gradient of the cost functional.

In Sect. 3.5, we consider a single road with a spatial non-homogeneity located at
position x = xc; see [79]. More precisely the aim is the description of toll gates
or road works in a limited portion of the road. This is obtained by imposing a
variable flux constraint at position x = xc. After giving the definition of solution,
we state Theorem 25, which ensure existence and well-posedness of the solution
for each admissible control. The section also contains some examples, motivated by
applications, of optimal control problems.

Finally, in Sect. 3.6 we consider optimizing the travel time on a loaded network.
Solving analytically the problem on a complex network is not feasible thus we
resort to optimize some cost function at every junction separately for asymptotic
solutions to Riemann Problems. The local problems are solved analytically and the
network policies tested numerically. Specifically, we solve analytically the problem
for simple junction in Sect. 3.6.1 and simulate the result on two urban networks (in
the Italian cities Rome and Salerno) in Sect. 3.6.2. Finally, the case of creating safe
corridor for emergency vehicles is addressed in Sect. 3.6.3.

3.2 Control Acting at Nodes Through the Riemann Solver

In this section we consider conservation laws on networks with control acting at
the nodes. We refer the reader to Appendix B for notations and basic results of the
theory of conservation laws on networks.

We deal with control problems on a node, or more generally on a network with a
finite number of arcs and nodes, where the control function ω acts at the level of the
node. More precisely, we focus the attention on the following control problem

⎧⎨
⎩
∂t u� + ∂x f (u�) = 0, � ∈ {1, · · · , n+m} ,
u�(0, x) = ū�(x), � ∈ {1, · · · , n+m} , x ∈ I�,
(un+1(t, 0), · · · , un+m(t, 0)) = RSω(t) (u1(t, 0), · · · , un(t, 0)) ,

(3.1)

where ω : [0,+∞[→ � is the control function, which acts through the Riemann
solver RS .



3.2 Control at Nodes 41

3.2.1 The Setting of the Problem

Fix a network composed by a finite number of arcs and nodes. Without loss
of generality we focus the attention on a single node J with n incoming arcs
I1, · · · , In and m outgoing arcs In+1, · · · , In+m; see [142, Theorem 4.3.9] or [139,
Section 4.1]. We model each incoming arc Ii (i ∈ {1, · · · , n}) of the node with
the real interval Ii =] − ∞, 0]. Similarly we model each outgoing arc Ij (j ∈
{n + 1, · · · , n + m}) of the node with the real interval Ij = [0,+∞[. On each arc
I� (� ∈ {1, · · · , n+m}) we consider the partial differential equation

∂t u� + ∂x f (u�) = 0, (3.2)

where u� = u�(t, x) ∈ [0, umax] is the conserved quantity, and f is the flux. For
simplicity, we put umax = 1.

On the flux f we assume the usual hypothesis

(F) f : [0, 1] → R is a Lipschitz continuous and concave function satisfying

(a) f (0) = f (1) = 0;
(b) there exists a unique σ ∈]0, 1[ such that f is strictly increasing in [0, σl[ and

strictly decreasing in ]σ, 1].
Remark 6 A flux f satisfying condition (F) is not an invertible function. However,
if we restrict f on the intervals [0, σ ] and [σ, 1], both restrictions are invertible. It
is convenient to define the restrictions

fL : [0, σ ] −→ R

u 
−→ f (u)
and

fR : [σ, 1] −→ R

u 
−→ f (u).
(3.3)

As said before both fL and fR are invertible.

The concept of solution to (3.2) is the following.

Definition 5 Fix � ∈ {1, · · · , n + m}. A function u� ∈ C0([0,+∞[;L1
loc(I�)) is

an entropy admissible solution to (3.2) in the arc I� if, for every k ∈ [0, 1] and
every ϕ̃ : [0,+∞[×I� → R smooth, positive with compact support contained in
]0,+∞[× (I� \ {0}), it holds:

∫ +∞

0

∫

I�

[|u� − k| ∂t ϕ̃ + sgn(u� − k) (f (u�)− f (k)) ∂x ϕ̃
]
dx dt ≥ 0. (3.4)

Let us introduce the concept of admissible control functions.

Definition 6 We say that ω : [0,+∞[→ � is an admissible control function at the
node J if:

1. � is a subset of a normed space
(
�, ‖·‖�

)
;

2. � is the finite union of connected and pairwise disjoint sets;
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3. ω is a right continuous function with finite total variation;
4. there exists a finite number of jumps between the connected components of �.

The definition of Riemann solver at a node is the following one.

Definition 7 A Riemann solver RS at J is a function

RS : [0, 1]n+m −→ [0, 1]n+m
(u1,0, · · · , un+m,0) 
−→ (ū1, · · · , ūn+m)

satisfying the following properties:

1.
∑n
i=1 fi(ūi) =

∑n+m
j=n+1 fj (ūj );

2. for every i ∈ {1, · · · , n}, the classical Riemann problem

⎧⎨
⎩
∂t u+ ∂x f (u) = 0, x ∈ R, t > 0,

u(0, x) =
{
ui,0, if x < 0,
ūi , if x > 0,

is solved with waves with negative speed;
3. for every j ∈ {n+ 1, · · · , n+m}, the classical Riemann problem

⎧⎨
⎩
∂t u+ ∂x f (u) = 0, x ∈ R, t > 0,

u(0, x) =
{
ūj , if x < 0,
uj,0, if x > 0,

is solved with waves with positive speed;
4. the consistency condition

RS(RS(u1,0, · · · , un+m,0)) = RS(u1,0, · · · , un+m,0)

holds.

Fix a family (RSp)p∈� of Riemann solvers at the node J . The concept of
solution to (3.1) is given by the following definition.

Definition 8 A collection of functions u� ∈ C0([0,+∞[;L1
loc(I�)), provides a

solution at J to (3.1) if

1. for every � ∈ {1, · · · , n + m}, the function u� is an entropy admissible solution
to (3.2) in the arc I�;

2. for every � ∈ {1, · · · , n+m} and for a.e. t > 0, the function x 
→ u�(t, x) has a
version with bounded total variation;

3. for a.e. t > 0, it holds

RSω(t) (u1(t, 0), · · · , un+m(t, 0)) = (u1(t, 0), · · · , un+m(t, 0)) , (3.5)

where u� stands for the version with bounded total variation of 2.
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3.2.2 The Main Result

Here we state the main result, which deals with the existence of a solution to (3.1).
As a preliminary, we need to introduce properties (P1)-(P4) for a family of Riemann
solvers (RSp)p∈�. These properties ensure some bounds on approximate wave-
front tracking solutions, used to prove Theorem 20.

Definition 9 We say that the family of Riemann solvers (RSp)p∈� has the
property (P1) if the following condition holds. Given (u1,0, · · · , un+m,0) and
(u′1,0, · · · , u′n+m,0) two initial data such that u�,0 = u′�,0 whenever either u�,0 or
u′�,0 is a bad datum, then

RSp(u1,0, · · · , un+m,0) = RSp(u′1,0, · · · , u′n+m,0) (3.6)

for every p ∈ �.

Property (P2) asks for bounds in the increase of the flux variation for waves
interacting with J . More precisely the latter should be bounded in terms of the
strength of the interacting wave as well as the variation in the incoming fluxes.

Definition 10 We say that the family of Riemann solvers (RSp)p∈� has the
property (P2) if there exists a constant C ≥ 1 such that the following condition
holds. For every p ∈ �, for every equilibrium (u1,0, · · · , un+m,0) of RSp and for
every wave (u�,0, u�) (� ∈ {1, · · · , n + m}) interacting with J at time t̄ > 0 and
producing waves in the arcs according to the Riemann solver RSp, we have

TVf (t̄+)− TVf (t̄−)
≤ Cmin

{∣∣f (u�,0)− f (u�)
∣∣ , ∣∣�(t̄+)− �(t̄−)∣∣} . (3.7)

The property (P3) states that a wave interacting with J with a flux decrease on a
specific arc should also give rise to a decrease in the incoming fluxes.

Definition 11 We say that the family of Riemann solvers (RSp)p∈� has the
property (P3) if, for every p ∈ �, for every equilibrium (u1,0, · · · , un+m,0) of
RSp and for every wave (u�,0, u�) (� ∈ {1, · · · , n + m}) with f (u�) < f (u�,0),
interacting with J at time t̄ > 0 and producing waves in the arcs according to the
Riemann solver RSp, we have

�(t̄+) ≤ �(t̄−). (3.8)

Finally property (P4) describes the variation of the fluxes due to a variation of the
parameter of the Riemann solver.

Definition 12 We say that the family of Riemann solvers (RSp)p∈� has the
property (P4) if there exists C > 0 such that, for every p1, p2 in the same connected
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component of � and for every equilibrium (u1,0, · · · , un+m,0) for RSp1 we have

n+m∑
�=1

∣∣f (û�)− f (u�,0)
∣∣ ≤ C ‖p1 − p2‖P , (3.9)

where (û1, · · · , ûn+m) = RSp2(u1,0, · · · , un+m,0).
The following result holds.

Theorem 20 Suppose that ω is an admissible control function in the sense of Defi-
nition 6. Assume that, for every � ∈ {1, · · · , n+m}, u� ∈ L1 (I�; [0, 1]) with finite
total variation. Assume moreover that the family of Riemann solvers (RSp)p∈�
satisfies properties (P1)–(P4).

Then there exists a solution (u1, · · · , un+m) to the Cauchy problem (3.1) in the
sense of Definition 8.

The proof is based on the wave-front tracking technique; see [144] or [139].

3.2.3 Example of Family of Riemann Solvers

Aim of this part is to present different examples of family of Riemann solvers
satisfying properties (P1), (P2), (P3), and (P4).

3.2.3.1 The Riemann Solver RS1

This example is based on the Riemann solver introduced for vehicular traffic in [76].
First introduce the set of matrices

A :=

⎧⎪⎨
⎪⎩
A = {aji} i=1,··· ,n

j=n+1,··· ,n+m
:

0 < aji < 1 ∀i, j,
n+m∑
j=n+1

aji = 1 ∀i

⎫⎪⎬
⎪⎭
. (3.10)

Let {e1, · · · , en} be the canonical basis of Rn. For every i = 1, · · · , n, we denote
Hi = {ei}⊥. If A ∈ A, then we write, for every j = n + 1, · · · , n + m, aj =
(aj1, · · · , ajn) ∈ R

n and Hj = {aj }⊥. Introduce now the following notation for
sets of indices:

• let H be the set of indices ς = (ς1, · · · , ςn) such that ςi ∈ N for every i ∈
{1, · · · , n} and 1 ≤ ς1 < · · · < ςn ≤ n+m;

• let K be the set of indices k = (k1, . . . , k�) such that � ∈ {1, · · · , n− 1}, ki ∈ N

for every i ∈ {1, · · · , �} and 1 ≤ k1 < k2 < · · · < k� ≤ n+m.

Writing 1 = (1, · · · , 1) ∈ R
n, for every k ∈ K define
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Hk =
�⋂
h=1

Hkh

and the set

N :=
{
A ∈ A : 1 /∈ H⊥

k for every k ∈ K
}
. (3.11)

Moreover, given 0 < κ1 < κ2 < 1, define

Nκ2
κ1
={A ∈ N :κ1 ≤ aji ≤ κ2,∀i = 1, · · · , n,∀j = n+ 1, · · · , n+m} .

(3.12)
The construction of the Riemann solver RS1 can be summarized as follows.

1. Fix a matrix A ∈ N and consider the closed, convex, and not empty set

� =
⎧⎨
⎩(γ1, · · · , γn) ∈

n∏
i=1

�i : A · (γ1, · · · , γn)T ∈
n+m∏
j=n+1

�j

⎫⎬
⎭ . (3.13)

2. Find the point (γ̄1, · · · , γ̄n) ∈ � which maximizes the function

E(γ1, · · · , γn) = γ1 + · · · + γn, (3.14)

and define (γ̄n+1, · · · , γ̄n+m)T := A · (γ̄1, · · · , γ̄n)T . Since A ∈ N, the point
(γ̄1, · · · , γ̄n) is uniquely defined.

3. For every i ∈ {1, · · · , n}, set ūi either by ui,0 if f (ui,0) = γ̄i , or by the solution
to f (u) = γ̄i such that ūi ≥ σi . For every j ∈ {n+ 1, · · · , n+m}, set ūj either
by uj,0 if f (uj,0) = γ̄j , or by the solution to f (u) = γ̄j such that ūj ≤ σj .
Finally, define RS1,A : [0, 1]n+m → [0, 1]n+m by

RS1,A(u1,0, · · · , un+m,0) = (ū1, · · · , ūn, ūn+1, · · · , ūn+m) . (3.15)

In this way we have defined a family of Riemann solvers RS1,A depending on the
matrix A ∈ N. For a proof that such a family of Riemann solvers satisfies properties
(P1), (P2), (P3), and (P4) see [144] or [139, Chapter 4].

3.2.3.2 The Riemann Solver RS2

This example is based on the Riemann solver introduced for telecommunication
networks in [108]; see also [139, Chapter 4.2.2]. Consider the set

� =
{

θ = (θ1, · · · , θn+m) ∈ R
n+m : θ1 > 0, · · · , θn+m > 0,∑n

i=1 θi =
∑n+m
j=n+1 θj = 1

}
(3.16)
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of vectors θ , whose components are right of way parameters and so describe the
relative importance of the edges of the node. Note that � is a convex subset of
R
n+m; also it is arc-wise connected and so it is a connected subset of Rn+m.
The Riemann solver RS2 can be constructed with the following steps.

1. Fix θ ∈ � and define

�inc =
n∑
i=1

sup�i, �out =
n+m∑
j=n+1

sup�j ,

then the maximal possible through-flow at the crossing is

� = min {�inc, �out } .

2. Introduce the closed, convex, and not empty sets

I =
{
(γ1, · · · , γn) ∈

n∏
i=1

�i :
n∑
i=1

γi = �
}

J =
⎧⎨
⎩(γn+1, · · · , γn+m) ∈

n+m∏
j=n+1

�j :
n+m∑
j=n+1

γj = �
⎫⎬
⎭ .

3. Denote with (γ̄1, · · · , γ̄n) the orthogonal projection on the convex set I of the
point (�θ1, · · · , �θn) and with (γ̄n+1, · · · , γ̄n+m) the orthogonal projection on
the convex set J of the point (�θn+1, · · · , �θn+m).

4. For every i ∈ {1, · · · , n}, define ūi either by ui,0 if f (ui,0) = γ̄i , or by the
solution to f (u) = γ̄i such that ūi ≥ σi . For every j ∈ {n + 1, · · · , n + m},
define ūj either by uj,0 if f (uj,0) = γ̄j , or by the solution to f (u) = γ̄j such
that ūj ≤ σj . Finally, define RS2,θ : [0, 1]n+m → [0, 1]n+m by

RS2,θ (u1,0, · · · , un+m,0) = (ū1, · · · , ūn, ūn+1, · · · , ūn+m) . (3.17)

For a proof that such a family of Riemann solvers satisfies properties (P1), (P2),
(P3), and (P4) see [144] or [139, Chapter 4].

3.2.3.3 The Riemann Solver RS3

This example is based on the Riemann solver introduced for car traffic in [232] for
modeling T-nodes. Consider a node J with n incoming and m = n outgoing arcs
and fix a positive coefficient �J , which represents the maximum capacity of the
node. The construction of the Riemann solver can be done in the following way.



3.3 Modeling Signalized Intersections 47

1. Fix θ ∈ �, where � is defined in (3.16). For every i ∈ {1, · · · , n}, define

�i = min
{
γmaxi , γ maxi+n

}
,

then the maximal possible through-flow at J is

� =
n∑
i=1

�i.

2. Introduce the closed, convex, and not empty set

I =
{
(γ1, · · · , γn) ∈

n∏
i=1

[0, �i] :
n∑
i=1

γi = min {�,�J }
}
.

3. Denote with (γ̄1, · · · , γ̄n) the orthogonal projection on the convex set I
of the point (min{�,�J }θ1, · · · ,min{�,�J }θn) and set (γ̄n+1, · · · , γ̄2n) =
(γ̄1, · · · , γ̄n).

4. For every i ∈ {1, · · · , n}, define ūi either by ui,0 if f (ui,0) = γ̄i , or by the
solution to f (u) = γ̄i such that ūi ≥ σi . For every j ∈ {n + 1, · · · , n + m},
define ūj either by uj,0 if f (uj,0) = γ̄j , or by the solution to f (u) = γ̄j such
that ūj ≤ σj . Finally, define RS3,θ : [0, 1]n+m → [0, 1]n+m by

RS3,θ (u1,0, · · · , un+m,0) = (ū1, · · · , ūn, ūn+1, · · · , ūn+m) . (3.18)

In this way we have defined a family of Riemann solvers RS3,θ depending on the
parameter θ . For a proof that such a family of Riemann solvers satisfies properties
(P1), (P2), (P3), and (P4) see [144] or [139, Chapter 4].

3.3 Modeling Signalized Intersections

This section is devoted to a specific problem of choosing traffic distribution
coefficients: the regulation of signalized intersections. Some technical results will
be stated without proofs, referring the reader to [165, 166].

Notice that a traffic signal can be interpreted as a special case of (3.1) with
the control signal ω taking values in a discrete set, e.g., {green, red}, and being
piecewise constant. The main interest here is to approximate the problem with
a continuous one, where the controls represent the traffic distribution coefficients
corresponding to a given signal schedule.

The main idea for continuous approximation is as follows. Fix a simple junction
with two incoming roads I1 and I2 and one outgoing I3. The main parameter of
the problem is the fraction, say η ∈ (0, 1), of the signal cycle for which I1 has a
green signal, so that 1 − η is the fraction of red signal for I1. Then the continuous
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approximation corresponds to assign a priority to I1 so that the resulting fraction of
the whole traffic flowing to I3, which is coming from I1, is equal to η. For a fixed
time horizon [0, T ], all signal controls will be represented by periodic functions
ωi(·) : [0, T ] → {0, 1} such that ωi(t) equals one if the signal is green and equals
zero otherwise. We denote by �i ∈ R+ the cycle length, i.e., the period of ui ,
assume it starts with green and let ηi denote the green fraction.

We parametrize road Ii with the interval [ai, bi] ⊂ R, denote by fi(u) the
fundamental diagram (i.e., flux function), by uci the critical density, where the flow
is maximal Ci = fi(u

c
i ), and by ujam the maximal or jam density. The density on

road Ii is denoted by ui(t, x), for (t, x) ∈ [0, T ]× [ai, bi]. The demand Di(t) and
supply Si(t) of the road are given by:

Di(t) =
{
Ci if ui(t, bi−) ≥ uci
fi
(
ui(t, bi−)

)
if ui(t, bi−) < uci

(3.19)

Si(t) =
{
Ci if ui(t, ai+) < uci
fi
(
ui(t, ai+)

)
if ui(t, ai+) ≥ uci ;

. (3.20)

The notion of effective supply is of crucial importance to the articulation of signal
models.

Definition 13 (Effective Supply) Given any link Ii , with downstream links {Ij :
j = 1, 2, · · · , mi}, the effective supply for Ii is defined as

Ei (t) .= min

{
Ci, min

j=1, ··· ,mi

{
Sj (t)

αi,j (t)

}}
, (3.21)

where αi,j (t) ∈ R
+, satisfying

∑mi
j=1 αi,j (t) ≡ 1, are the car turning percentages,

Ci is the flow capacity of the link Ii , and Sj is the supply function for Ij .

The time-varying quantity Ei (t) expresses the downstream receiving capacity
available for Ii if no signal controls is present. The superscripts “�” and “0”
represent quantities associated with the on-and-off signal model and the continuum
signal model, respectively. For given signal control ωi and effective supply Ei (t),
the on-and-off model is expressed in terms of its downstream boundary condition:

f�out,i (t) = fi(ui(t, bi)) = min
{
Di(t), ωi(t)Ei (t)

}
(On-and-off),

(3.22)
where f�out,i (t) is the exit flow, while the continuum signal model is given by:

f 0
out,i (t) = fi(ui(t, bi)) = min

{
Di(t), ηiEi (t)

}
(Continuum). (3.23)
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3.3.1 The Hamilton-Jacobi Representation of Signal Models

Denote by N(t, x) the Moskowitz function, i.e., the number of vehicles passed by
location x before time t . The function N(t, x) satisfies the following Hamilton-
Jacobi equation

∂tN(t, x)− f
(− ∂xN(t, x)

) = 0 (t, x) ∈ [0, T ] × [a, b] (3.24)

subject to initial condition and boundary conditions. We use a semi-analytic solution
representation of the Hamilton-Jacobi equation (3.24), namely the generalized Lax-
Hopf formula (see [21, 72]). To isolate a unique solution, we specify the initial
condition Nini(x), the upstream boundary condition Nup(t), and the downstream
boundary condition Ndown(t) and the weak downstream boundary condition

V�(t)
.=
∫ t

0
u(τ) · E(τ ) dτ, V 0(t)

.=
∫ t

0
ηE(τ ) dτ. (3.25)

For the same initial and upstream boundary conditions, the difference in the solution
N(t, x) is bounded by the difference in the weak downstream boundary conditions:

max
t∈[0, τ ], x∈[a, b]

∣∣∣N�(t, x)−N0(t, x)

∣∣∣ ≤ max
t∈[0, τ ]

∣∣∣V�(t)− V 0(t)

∣∣∣ , (3.26)

where N�(t, x) and N0(t, x) represent the Moskowitz function corresponding to
the on-and-off and the continuum models, respectively. Our aim is to compare
the two signal models studying the convergence of the on-and-off model to the
continuum model and determining an error bound on the continuum approximation
error. For simplicity let us focus on the simple merge network depicted in Fig. 3.1,
with incoming roads I1, I2 and outgoing ones I3. Let ω1(t) ∈ {0, 1} and ω2(t) ∈
{0, 1} be the on-and-off signals at the merge junctionA, while ω3 the one at location
B. The presence of the second signal allows to study the effect of the spillback
presented in Sect. 3.3.3. We focus on road I1 being the analysis for I2 similar.

Fig. 3.1 A signalized merge
junction

I2

I3

1I

A B
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3.3.2 When Spillback Is Absent

We first focus on the case of no spillback at the merge junction A. Our analysis is
valid for all fundamental diagrams which satisfy the following condition:

(F) the fundamental diagram f (u) of each link is continuous and concave, and
vanishes at u = 0 and u = ujam.

The lack of spillback atA implies that road I3 remains in free flow state, therefore
the supply function S3(t) of I3 is equal to its flow capacity C3. The convergence
result is given by the following:

Theorem 21 Consider the merge junction of Fig. 3.1, a signal control ω1(·) (for
link I1) with cycle length (period of ω1) indicated by �A, and split parameter (i.e.,
green-red ratio) η1 ∈ (0, 1). Let Nup(t) and Nini(x) be the upstream boundary
condition and initial condition for (3.24) and N�A(t, x) and N0(t, x) be the
solutions with additional weak downstream boundary conditions V�A(t) and V 0(t)

respectively, given in (3.25). If the entrance of link I3 remains in the uncongested
phase, then N�A(t, x)→ N0(t, x) uniformly for all (t, x) ∈ [0, T ] × [a1, b1], as
�A → 0.

For practical purpose it is important to provide explicit formulas to estimate the
error between the solutions produced by continuous and on-and-off signals. We have
the following:

Theorem 22 (Error EstimateWithout Spillback) Consider the merge junction of
Fig. 3.1 and conditionsNini(x) andNup(t) for (3.24) on road I1. LetN�A(t, x) and
N0(t, x) be the solutions with additional downstream boundary conditions V�A(t)
and V 0(t), given in (3.25). If the entrance of link I3 remains in the uncongested
phase, then for all (t, x) ∈ [0, T ] × [a1, b1],

∣∣∣N�A(t, x)−N0(t, x)

∣∣∣ ≤η1(1 − η1)�A min{C1, C3}

≤1

4
�A min{C1, C3}.

(3.27)

3.3.3 When Spillback Is Present and Sustained

We turn now to consider the situation when spillback occurs at merge junctionA and
is sustained (i.e., not absorbed back by the junction for a large number of cycles).
Such situation is called sustained spillback and is very common when the demand
of roads I1 and I2 is at high levels and not me by the supply of I3.

First we show analytically the lack of convergence for the case of a triangular
fundamental diagram:
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x 

g 

a3

b3 r 

t 

t 

-w3

= 3

c = 3

jam

qout,3 =C3
qout,3 = 0

S3 =C3 S3 = 0

g r 

= 3

c = 3

jam

qout,3 =C3
qout,3 = 0

S3 =C3 S3 = 0

Fig. 3.2 Wave dynamics on I3 in congested phase for a triangular fundamental diagram. The
dashed lines represent characteristics traveling backward at speed w3

f (u) =
{
vu if u ∈ [0, uc]
−w(u− ujam) if u ∈ (uc, ujam], (3.28)

where v, respectively w, is the speed of the forward, respectively backward,
propagating waves. Notice that V is also the free flow speed of cars.

Let us first examine the dynamics on road I3. Since I3 is in congested phase,
the characteristic lines with slope −w3 (the backward wave speed on I3) emit from
the right boundary x = b3 and reach the left boundary x = a3 (see Fig. 3.2).
When the light is red, the flow q3 exiting I3 vanishes, producing a jam density value
u
jam

3 , while when the light is green q3 is equal to the flow capacity C3 generating a
density value uc3 (the critical density on I3). As a result, the supply function S3(t) at
the entrance of I3 fluctuates between 0 and C3, leading E1(t) to fluctuate between 0
and min{C1, C3}.

The effective supply E1(t) does not have bounded variation as we send the signal
cycle of ω3(t) to zero. An example is obtained using resonant signals, i.e., ω1 and
ω3 such that S3(t) = C3 · ω1(t). We get:

∫ t

0
E1(τ )ω1(τ ) dτ =

∫ t

0
min{C1, C3} · ω2

1(τ ) dτ

=
∫ t

0
min{C1, C3} · ω1(τ ) dτ =

∫ t

0
E1(τ ) dτ

which does not converge to η1

∫ t

0
E1(τ ) dτ (regardless of the cycle length �A).

The case of strictly concave fundamental diagram is completely different and
we can establish convergence. Assume that f is a piecewise smooth function that
satisfies, in addition to (F),
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3S  (t) 3S  (t)

3S  (t)3S  (t)

t
T0

t
T0

Strictly concave fundamental diagram

Triangular fundamental diagram

t
T0

t
T0

Fig. 3.3 Supply observed at the entrance of I3, First row: the triangular case; second row: the
strictly concave case. First column: larger signal cycle; second column: smaller signal cycle

f ′′(u) ≤ −b for some b > 0 (3.29)

for all u ∈ [0, ujam] such that f is twice differentiable at u. Because of the genuine
nonlinearity of the characteristic field, any waves bearing a flux variation, generated
by signal control at the exit of the link, is reduced while propagating backward. We
are not ready to state our main result, and refer the reader to the papers [165, 166]
for detailed proof:

Lemma 2 Consider the merge junction of Fig. 3.1, assume I3 parameterized by
[0, L] and a strictly concave fundamental diagram f . Then the supply function
S3(t) converges to some constant S∗3 uniformly as the cycle length of signal ω3(t)

tends to zero (Fig. 3.3).

The main result for strictly concave case is as follows:

Theorem 23 Consider a network with a fixed-cycle-and-split signal control at each
node with a strictly concave fundamental diagram. Then the solution of this network
converges to the one corresponding to the continuum signal model, when the traffic
signal cycles tend to zero.

For the error estimation we have the following:

Theorem 24 (Error Estimate with Sustained Spillback) Consider the setting
and notations of Theorem 22, with road I3 subject to sustained spillback. If the
fundamental diagram of I3 is triangular, then
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∣∣∣N�A(t, x)−N0(t, x)

∣∣∣ ≤ η1(1 − η1)�A min{C1, C3}
+ min{C1, C3} η1t,

(3.30)

where C1 and C3 denotes the flow capacity of link I1 and I3 respectively. If the
fundamental diagram of I3 is strictly concave, then

∣∣∣N�A(t, x)−N0(t, x)

∣∣∣ ≤ min

{
C1, f

(
(f ′)−1

( −L
L/w +�B

))}
η1t

+ η1(1 − η1)�A min{C1, C3}
(3.31)

for all (t, x) ∈ [0, T ]×[a1, b1], whereN�A(t, x) andN0(t, x) are the Moskowitz
functions with the on-and-off model and the continuum model, respectively. Here
�B denotes the cycle length of ω3(t).

The next proposition is an immediate consequence of (3.31) and provides useful
information on the accuracy of the continuous approximation:

Proposition 5 Assume a strictly concave fundamental diagram f for I3. When
spillback occurs, the approximation error |N�(t, x) − N0(t, x)| decreases with
larger length L3 of I3, and/or with smaller signal cycle �B . Moreover, the size of
the error is determined only by the congested branch of the fundamental diagram.

3.4 Control for a Freeway Model

This section deals with control problems in case of a freeway model with on-ramps
and offramps. This kind of problem has been studied by several authors; see, for
example, [153, 247, 248] and the references therein.

More precisely, we fix a terminal time T and we consider a finite-horizon control
problem on the time interval [0, T ].

3.4.1 Freeway Model

We consider a freeway road and we model it with a sequence of N piece of roads,
called links and labeled by an index � ∈ {1, . . . , N}. Attached to each link, an
onramp and offramp are present.

A discretized version of the Lighthill–Whitham–Richards model [224, 249]

∂t u� (t, x)+ ∂x f (u� (t, x)) = 0, (3.32)
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Fig. 3.4 The flux function f ,
defined in (3.33)

0 u

f

fmax

w(umax − u)vu

along each link I� is used. We recall that in (3.32) u� (t, x) represents the density of
vehicles on link I� at time t and position x, and f gives the relationship between the
density and the flow of vehicles, a relationship usually called fundamental diagram.
Here we assume that the flux function f : [0, umax] → R has the following
triangular form [100]:

f (u) = min {vu,w(umax − u), fmax} , (3.33)

where v,w, umax, and fmax are characteristics of the freeway; see Fig. 3.4.
The discrete model used here is inspired from those developed in [117, 247]

and it is suitable for ramp metering applications. The discretization of (3.32) is
composed by T time steps, N spatial cells or links, and N on-ramps and offramps.
It is developed through a Godunov-based scheme [154, 206].

The state of cell I� ∈ {1, . . . , N} at the numerical time k ∈ {1, . . . , T ] is denoted
by u [�, k], while the number of vehicles on the adjacent onramp is given by l [�, k].
Moreover, we use the following additional functions:

• δ [�, k]: Maximum flow of vehicles exiting link I�.
• σ [�, k]: Maximum flow of vehicles entering link I�.
• d [�, k]: Maximum flow of vehicles exiting onramp at link I�.
• rmax: Physical capacity of on-ramps.
• f in [�, k]: Actual flow entering link I�.
• f out [�, k]: Actual flow exiting link I�.
• r [�, k]: Actual flow exiting onramp I�.
• β [�, k]: Fraction of total flow from link I� entering link I�+1 as opposed to

offramp of link I�.
• p: Fraction of mainline flow given priority over onramp flow when merging in

congestion.
• D [�, k]: Flow entering onramp of link I�.

Denoting with �x and �t respectively the space and time steps, the discrete
system for (3.32) evolves from time k to k + 1 according to the following rules.

δ [�, k] = min {vu [�, k] , fmax} (3.34)
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σ [�, k] = min
{
w
(
umax − u [�, k]

)
, fmax

}
(3.35)

d [�, k] = min
{
l [�, k] /�t, rmax} (3.36)

f in [�, k] = min {σ [�, k] , d [�− 1, k] + β [�, k] δ [�, k]} (3.37)

f out [�, k] =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

δ [�, k] if
pf in [�+ 1, k]

β [�, k] (1 + p) ≥ δ [�, k]

f in [�+1, k]−d [�+1, k]

β [�, k]
if
f in[�+ 1, k]

1 + p ≥ d [�+ 1, k]

pf in [�+ 1, k]

(1 + p) β [�, k]
otherwise

(3.38)

r [�, k] = f in [�, k] − β [�, k] f out [�, k] (3.39)

u [�, k + 1] = u [�, k] + �t

�x

(
f in [�, k] − f out [�, k]

)
(3.40)

l [�, k + 1] = l [�, k] +�t (D [�, k] − r [�, k]) . (3.41)

Equations (3.34)–(3.41) model the merging of onramp and mainline flows, as well
as the propagation of congestion waves across the freeway network. The freeway-
onramp-offramp junction shown in Fig. 3.5 gives a spatial relation of the state
variables.

We also introduce a discrete control parameter ω [�, k] ∈ [0, 1], which represents
a scaling factor on the demand of onramp related to I� at time step k. To this aim,
we modify Eq. (3.36) in the following way

d [�, k] = ω [�, k] min
{
l [�, k] /�t, rmax} . (3.42)

onramp offramp

I� I�+1

u[�, k] u[� + 1, k]

l[�, k] β[�, k]

ω[�, k]

Fig. 3.5 A freeway-onramp-offramp junction. At time step k, the upstream mainline density
u [�, k] at link I� and onramp queue l [�, k] merge and either exit the offramp with a split-ratio
of (1 − β) or continue onto the downstream mainline at link I�+1. The control ω [�, k] scales the
total demand from onramp d [�, k] by a factor between 0 and 1
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3.4.2 Optimal Control Problem

Using the model of Sect. 3.4.1, we develop a method to compute a control ω [�, k]
for the ramp metering policy, over all the space indices � ∈ {1, . . . , N} and time
k ∈ {1, . . . , T }, which minimizes, or at least reduces, some specified objective.

More precisely, we consider the minimization of a function, which depends
explicitly on the control variables ω and on the state variables u. Note that the state
variables u depend on the control variables ω. It is possible to rewrite all the discrete
Eqs. (3.34)–(3.35) in the compact way as

H (u, ω) = 0. (3.43)

Given some cost functional J (u, ω), the goal is to find an optimal control ω∗ such
that, denoting with u∗ the corresponding optimal state, we have

J
(
u∗, ω∗

) = min
ω
J (u, ω) (3.44)

H
(
u∗, ω∗

) = 0. (3.45)

We compute the gradient of J with respect to the control variables ω, subject
to the H constraints (3.45). Referring to the works [148, 160, 270], the generalized
gradient of J is

∇ωJ
(
u′, ω′

) = ∂J
(
u′, ω′

)

∂u

d u

d ω
+ ∂J

(
u′, ω′

)

∂ω
. (3.46)

By (3.45), the gradient of H with respect to ω is always zero and so

∇ωH = Hudωu+Hω = 0. (3.47)

Adding last equation to (3.46) as a Lagrange-like multiplier:

∇ωJ = Judωu+ Jω + λT (Hudωu+Hω) =
(
Ju + λT Hu

)
dωu+

(
Jω + λT Hω

)
.

Choosing λ such that
(
Ju + λT Hu

) = 0, we deduce that

∇ωJ =
(
Jω + λT Hω

)
such that: HTu λ = −Ju. (3.48)

The system of equations (3.48) is called discrete adjoint system, and we refer to
[248] for a comprehensive description of the computation of the adjoint equations
for ramp metering. Here we focus on an example focused on a specific application.
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Fig. 3.6 (a) Depicts a space-time diagram of vehicle densities on 19.4 mile stretch of I15 Freeway
with no ramp metering. The box objective, and example of congestion-on-demand, is applied in
(b)–(d). The user specifies a “desired” traffic jam between postmile 4.5 and 14, for a duration of
20 minutes between 8:20 and 8:40. For this, the α parameter (introduced in Eq. (3.52)) enables the
proper design of tradeoffs in the objective

3.4.3 Numerical Example

We will now apply the tools of adjoint-based finite-horizon optimal control and
multi-objective optimization from the previous section to the case of coordinated
ramp metering attacks. Congestion-on-demand describes a class of objectives where
an attacker wishes to create congestion patterns of a specific nature. The attacks
use a macroscopic freeway model of a 19.4 mile stretch of the I15 South Freeway
in San Diego California. The model was split into 125 links with 9 on-ramps and
was calibrated using loop-detector measurements available through the PeMS loop-
detector system [182]. Figure 3.6a is a Space-time diagram of the I15 freeway.
There is no ramp metering control applied to the simulation in Fig. 3.6b, i.e., the
ramp meters are always set to green. In order to achieve the congestion-on-demand
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objective, we need to create a class of objective functions able to represent any jam
pattern on the freeway. The method chosen is to maximize the traffic density where
we want to put the congestion, while minimizing it everywhere else.

For every cell density value at position i and time k, we assign a coefficient
aki ∈ R. We can then define the corresponding objective function:

J (u, ρ) =
N∑
i=1

T∑
k=1

aki ρ [i, k] . (3.49)

Then, the box objective creates a box of congestion in the space-time diagram, i.e.,
congestion will be created on a specific segment of the freeway during a user-
specified time interval. As there are two competing goals (maximize congestion
in the box, minimize congestion elsewhere), the following two objective functions
need to be considered:

f1 (u, ρ) = −
∑

(i,k)∈Box

ρ [i, k] , (3.50)

and f2 (u, ρ) =
∑

(i,k) 
∈Box

ρ [i, k] . (3.51)

To solve this multi-objective problem, a single parameter α ∈ [0, 1] is introduced
and the following objective function is minimized:

Jα (u, ρ) = α f1 (u, ρ) + (1 − α) f2 (u, ρ) , (3.52)

where α is a trade-off parameter: α = 1 is complete priority on the congestion inside
the box, while α = 0 is complete priority on limiting density outside the box.

The results of the box objective are presented in Fig. 3.6b–d. The box of the
objective is shown as a black frame with an actual size of 10 miles and 20 minutes.
As the trade-off moves from α = 0.3 to 0.9, there is a clear increase in the
congestion within the box, at the expense of allowing the congestion to spill outside
the desired bounds. In fact, Fig. 3.6d (α = 0.9) activates the bottleneck near the
top-left of the box earlier than Fig. 3.6b (α = 0.3) to congest the middle portion of
the box, which leads to a propagation of a congestion wave outside the bounds of
the bottom-right of the box.

3.5 Optimal Control on Boundary and Flux Constraint

In this part we consider a stretch of road on which the controller can act on the
upstream inflow and at a given point of the road by limiting the flow. We deal with
the control problem
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⎧⎪⎪⎨
⎪⎪⎩

∂t u+ ∂x f (u) = 0 (t, x) ∈ R
+ × R

+
u(0, x) = u0(x) x ∈ R

+
f (u(t, 0)) = ω0(t) t ∈ R

+
f (u(t, xc)) ≤ ωc(t) t ∈ R

+,

(3.53)

where u0 denotes the initial condition, ω0 is the inflow control at x = 0, and ωc is
a time-dependent control imposing a flux constraint at a given position xc > 0. The
flux f is a function satisfying condition (F). Solutions to (3.53) are to be intended
according to the following definition.

Definition 14 A function u ∈ C0
(
R
+;L∞(R+; [0, 1])) is a weak entropy solution

to (3.53) if the following conditions hold.

1. For every test function ϕ ∈ C1
c
(
R

2;R+) and for every k ∈ [0, 1]
∫ +∞

0

∫ +∞

0
(|u− k| ∂t ϕ + sgn(u− k) (f (u)− f (k)) ∂x ϕ) dx dt

+
∫ +∞

0
sgn
(
f−1
L (ω0(t))− k

)
(f (u(t, 0+))− f (k)) ϕ(t, 0) dt

+
∫ +∞

0
|u0 − k|ϕ(0, x) dx + 2

∫ +∞

0

(
1 − ωc(t)

f (σ )

)
f (k)ϕ(t, xc) dt ≥ 0,

where fL is defined in (3.3).
2. For a.e. t ∈ R

+, f (u(t, xc−)) = f (u(t, xc+)) ≤ ωc(t).
The above entropy condition is inherited from the entropy condition for conservation
laws with space-discontinuous fluxes, see, e.g., [187, Definition 1.2]. For alternative
equivalent definitions, see [17].

Remark 7 In Definition 14 we denote by u(t, xc±) the measure theoretic traces of
u, which are implicitly defined by

lim
ε→0+

1

ε

∫ +∞

0

∫ xc+ε

xc

|u(t, x)− u(t, xc+)|ϕ(t, x) dx dt = 0

lim
ε→0+

1

ε

∫ +∞

0

∫ xc

xc−ε
|u(t, x)− u(t, xc−)|ϕ(t, x) dx dt = 0

for every ϕ ∈ C1
c(R

2;R). Note that both traces at xc exist and are finite, by [16,
Theorem 2.2].

Before stating the well-posedness result for (3.53), we need to introduce the domain

D =
{
u ∈ L1 (

R
+; [0, 1]) : sgn(u− σ)(f (σ )− f (u)) ∈ BV(R+;R)

}
.

(3.54)
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Theorem 25 Let (F) holds. Fix u0 ∈ D and ω0, ωc ∈ BV
(
R
+; [0, f (σ )]).

Then there exists a unique solution u = u(t, x; u0, ω0, ωc) to (3.53) in the sense
of Definition 14 and, for every t ∈ R

+, u(t, ·; u0, ω0, ωc) ∈ D.
Moreover, if u0, u

′
0 ∈ D, ω0, ωc, ω

′
0, ω

′
c ∈ BV

(
R
+; [0, f (σ )]), then, for every

t > 0, the following Lipschitz estimate on the corresponding solutions u, u′ holds:

∥∥u(t)− u′(t)∥∥L1(R+;R) ≤
∥∥u0 − u′0

∥∥
L1(R+;R) +

∥∥ω0 − ω′0
∥∥
L1([0,t];R)

+ 2
∥∥ωc − ω′c

∥∥
L1([0,t];R) .

(3.55)

For a proof see [79].

3.5.1 Optimal Control Problems

In this part we deal with optimal control problems related to (3.53). More precisely,
in the next paragraphs, we consider some cost functional, motivated by applications.

Queue Length Assume that at position xc an obstacle reduces the traffic flow
and consequently creates a queue propagating backwards. In this situation, it is
reasonable that ωc(t) ≡ ω̄c, i.e., the flow at xc due to the presence of the obstacle is
constant in time. Introduce, for every u ∈ D, the congestion set

Cu = {x ∈ [0, xc[: sgn(u(ξ+)− σ)(f (σ )− f (u)) = f (σ)− ω̄c a.e. ξ ∈ [x, xc[} .
(3.56)

The set D either is empty or is a real interval and represents the locations before the
obstacle where the traffic flow is at the maximum level allowed by ω̄c. The definition
of the queue length functional JQL is straightforward:

JQL : D −→ R
+

u 
−→
{
xc − inf Cu if Cu 
= ∅
0 if Cu = ∅.

(3.57)

As pointed out in [79, Proposition 2.5], the cost functional JQL is upper semi-
continuous with respect to the L1 topology, but not lower semicontinuous. The
consequence is that there exists a control which maximizes the queue length. From
the application point of view, it is reasonable to look for a control minimizing
JQL. Unfortunately, the regularity properties of JQL are not sufficient to prove the
existence of a minimizing control.

Stop and Go Waves The phenomenon of stop & go waves is well documented in
engineering literature; see, for example, [189, 266]. The minimization of such waves
is an important criterion for management of traffic.

The cost functional JS&G, for T > 0, is defined by
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JS&G : D −→ R
+

u 
−→
∫ T

0

∫ +∞

0
p(x) d |∂x v(u)| dt,

(3.58)

where p(x) ∈ [0, 1] is a given weight function, and
∫ +∞

0 p(x) d |∂x v(u)| dx
measures the total variation of the velocity v. By assumption, v is a Lipschitz
continuous function; this implies that the function x 
→ v(u(t, x)) has finite total
variation.

Proposition 6 The functional JS&G : D → R
+, defined in (3.58), is lower

semicontinuous with respect to the L1 topology. Moreover, given u0 ∈ D and T > 0,
there exist ωopt0 , ω

opt
c ∈ BV(R+; [0, f (σ )]) such that

JS&G(u
opt ) = min

ω0,ωc∈BV(R+;[0,f (σ )])
JS&G(u), (3.59)

where uopt denotes the solution to (3.53) with initial condition u0 and controls
ω
opt

0 , ω
opt
c , while u is the solution to (3.53) with initial condition u0 and controls

ω0, ωc.

For a proof see [80, Lemma 2.1].

Travel Time The travel time represents a key quantity for drivers to be minimized.
Assume that x̄ > xc is the final destination for drivers starting their trip at x = 0.
For simplicity, we also suppose that the initial condition u0 ≡ 0. The total quantity
of vehicles entering the road in the time interval [0, T ] (T > 0) is given by Qin =∫ T

0 ω0(t) dt . Then one can consider the following cost functionals

JT T1(ω0, ωc) = 1

Qin

∫ +∞

0
tf (u(t, x̄)) dt (3.60)

JT T2(ω0, ωc) = 1

Qin

∫ +∞

0
t [f (u(t, x̄))− f (u(t, 0))] dt. (3.61)

The following result holds. For a proof see [79].

Proposition 7 The functionals JT T1 and JT T2 , defined in (3.60) and in (3.61), are
Lipschitz continuous with respect to ω0 and ωc. Moreover, given u0 ≡ 0, T > 0,
and x̄ > xc, there exist ωopt10 , ω

opt1
c , ω

opt2
0 , ω

opt2
c ∈ BV(R+; [0, f (σ )]) such that

JT T1(u
opt1
0 , u

opt1
c ) = min

ω0,ωc∈BV(R+;[0,f (σ )])
JT T1(u) (3.62)

JT T2(u
opt2
0 , u

opt2
c ) = min

ω0,ωc∈BV(R+;[0,f (σ )])
JT T2(u). (3.63)
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3.6 Optimization of Travel Time on Networks via Local
Distribution Coefficients

In this section we show that optimizing the local traffic distribution coefficients, i.e.,
solving an optimization problem for the control system (3.1), allows us to find good
sub-optimal solutions to the minimization of the travel time over large networks.
The results contained in this section are from [64–66, 231].

The analytic treatment of an arbitrary network is beyond reach, due to the hybrid
nature of the problem, having a continuous evolution and discrete set of parameters.
We follow a strategy consisting of the following steps:

Step 1. Compute the optimal parameters for the asymptotic behavior of simple
networks formed by a single junction.

Step 2. For a complex network, use the locally optimal parameters at every
junction with a sample-and-hold technique: the current values of data at junctions
are used and updated whenever they significantly change.

Step 3. Verify the performance of Step 2 comparing, via simulations, with other
control strategies.

The first step is a hard task even for simple junctions; thus we focus on two
special cases: the 2 × 1 case with two entering and one exiting road; and the 1 × 2
case with one entering and two exiting roads. For the first type of junction, one has
only one right of way parameter q and we can solve the problem for different cost
functionals. The second type of junctions has no right of way parameters and only
one traffic distribution coefficient α. This case is even more complicate and so we
address the issue only for a specific cost functional.

3.6.1 Optimization of Simple Networks

Consider a simple network with a single junction with n incoming roads Ii and m
outgoing ones Ij . We start performing a heuristic computation of expected traffic
load.
Denote by cϕψ, with ϕ ∈ {1, . . . , n} and ψ ∈ {n+ 1, . . . , n+m}, the flux from
source Iϕ to destination Iψ . Then, the following traffic load are expected on the

roads: uϕ =
n+m∑
ψ=n+1

cϕψ on road Iϕ and uψ =
n∑
ϕ=1

cϕψ on road Iψ . Our strategy is

as follows: use uϕ and uψ as initial data, solve the corresponding Riemann Problem
at the junction, determining the density values û = (̂u1, . . . , ûn+m) at the junction,
and use them as expected asymptotic values on the roads to optimize the expected
travel times. Consider the following cost functions:
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J1 =
n∑
ϕ=1

n+m∑
ψ=n+1

Vϕψ,

J2 =
n∑
ϕ=1

1

vϕ
+

n+m∑
ψ=n+1

1

vψ
,

J3 =
n∑
ϕ=1

n+m∑
ψ=n+1

cϕψVϕψ,

with Vϕψ = vϕ + vψ, where vϕ = v
(̂
uϕ
)

and vψ = v
(̂
uψ
)

are the velocities
on roads Iϕ and Iψ , respectively. Notice that J1 gives the average speed over the
network, J2 the average travel time, while J3 the averaged travel time weighted by
the flow. We aim at maximizing J1 and J3, and at minimizing J2 with respect to the
traffic distribution parameters.

We start considering the case of n = 2 incoming roads and m = 1 outgoing ones,
representing a merging. Then, the dynamics is determined by fixing a right of way
parameter q ∈ ]0, 1[; see Appendix B. To state our main results we need to introduce
some notation: uc is the critical density where the flux is maximized, γmaxi indicates
the maximal flux on road Ii , q1 = q and q2 = 1 − q. For incoming roads we set:

sϕ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−1 if uϕ < uc and γmax
1 + γmax

2 ≤ γmax
3 ,

or uϕ < σ, γmax
3 < γmax

1 + γmax
2 ; and qϕγ̂3 ≥ γmax

ϕ ;
+1 if uϕ ≥ uc,

or uϕ < σ, γmax
3 < γmax

1 + γmax
2 ; and qϕγ̂3 < γ

max
ϕ ;

and for the outgoing one:

s3 =
⎧⎨
⎩

−1 if u3 ≤ uc,
or u3 > uc, γ

max
1 + γmax

2 < γmax
3 ;

+1 if u3 > uc, γ
max
1 + γmax

2 ≥ γmax
3 .

For the simple case of the merge, the functional J3 does not depend on the choice of
the right of way parameter q, while we can explicitly find the optimal ones for the
functionals J1 and J2, (see [64]):

Theorem 26 Consider a junction J with n = 1 incoming road andm = 2 outgoing

roads and define: k− = f (̂uc)−γmax
1

γmax
1

, k+ = γmax
2

f (̂uc)−γmax
2

. The cost functions J1 and J2

are maximized for the same values of q, given by

1. for s1 = s2 = +1:

(a) q ∈
[
0, 1

1+k+
]
, if k− ≤ 1 ≤ k+, with k−k+ > 1, or 1 ≤ k− ≤ k+;



64 3 Decentralized Control

(b) q ∈
[
0, 1

1+k+
[
∪
]

1
1+k− , 1

]
, if k− ≤ 1 ≤ k+, with k−k+ = 1;

(c) q ∈
[

1
1+k− , 1

]
, if k− ≤ 1 ≤ k+, with k−k+ < 1, or k− ≤ k+ ≤ 1;

2. for s1 = s2 = −1:

(a) q ∈
[
0, 1

1+k+
]
, if k− ≤ 1 ≤ k+, with k−k+ < 1, or k− ≤ k+ ≤ 1;

(b) q ∈
[
0, 1

1+k+
[
∪
]

1
1+k− , 1

]
, if k− ≤ 1 ≤ k+, with k−k+ = 1;

(c) q ∈
[

1
1+k− , 1

]
, if k− ≤ 1 ≤ k+, with k−k+ > 1, or 1 ≤ k− ≤ k+;

3. for s1 = −1 = −s2: q ∈
[

1
1+k− , 1

]
;

4. for s1 = +1 = −s2: q ∈
[
0, 1

1+k+
]
.

Let us now pass to the case of n = 1 incoming road and m = 2 outgoing roads,
representing a bifurcation. Let α denote the fraction of traffic flowing from road I1
to road I2 (while 1 − α is the fraction flowing to road I3). The optimization of the
functionals J1 and J2 are similar to the case of merge, while for J3 we have the
following (see [64]):

Theorem 27 Define:

ᾱ = γmax
b

γmax
b + γmax

c

.

If

γmax
a ≤ min

{
γmax
b

ᾱ
,
γmax
c

1 − ᾱ
}
, (3.64)

then the maximal value for J3 is obtained for all the values of α so that (3.64) holds
true with ᾱ replaced by α. In the opposite case, J3 is maximized only for α = ᾱ.

3.6.2 Simulations of Two Urban Networks

In this section we use the results stated in Section 3.6.1 to optimize traffic on two
urban networks: the first one is a large traffic circle in Rome (Italy), while the
second is a small network located in the urban area of the city of Salerno (Italy).
More precisely, our first network represents the large traffic circle of the Re di
Roma Square. Such network experiences high traffic and congestion every day, also
because of the heavy traffic load in the morning rush hours. The square becomes
completely stuck with large delays for users. The second network is given by a
junction on Via Parmenide, also experiencing high traffic also due to a particularly
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Fig. 3.7 Topology of Re di Roma Square (left) and Via Parmenide crossing in Salerno (right)

long red cycle for an incoming road. The result illustrated in this section were
developed in [65].

Our aim is to show the effectiveness of the approach also by comparison
with other control algorithms, including random ones. Beside the cost functions
introduced in Sect. 3.6.1 we will consider stop and go waves so the functional JS&G
introduced in (3.58). We consider the case p(x) ≡ 1 and the flux f (u) = u(1 − u)
thus we can rewrite:

JS&G =
∫ T

0

∫

∪Ii
|Dv(u)| dt dx,

indeed the variation of u is equivalent to that of v(u) = 1 − u. This cost function
provides also a measure of safety, since velocity differences are responsible for
many accidents.

The Re di Roma Square network consists of junctions with two incoming and one
outgoing roads (2× 1 junctions) and junctions with one incoming and two outgoing
roads (1 × 2 junctions). For the latter we consider distribution coefficient given by
the road maximal capacities, while we optimize over right of way parameters of the
latter. Figure 3.7 (left) illustrate the topology of the network: 2 × 1 junctions (1, 3,
5, 7, 9, 11) are in white, 1 × 2 junctions (2, 4, 6, 8, 10, 12) are in black.

The second network consists of a small area of the Salerno urban network,
see Fig. 3.7 (right). We are particularly interested in the signalized junction, denoted
o, with two incoming roads and one outgoing road. One incoming road, i.e., a − o,
is very short and connects Via Picenza to Via Parmenide. The traffic light cycle
is of two minutes, with green phase of only 15 seconds for incoming road a − o.
Accordingly we set the right of way parameter as follows:

p = 105

120
= 0.875,
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Fig. 3.8 Time evolution of cost J2 for different control policies (left) and zoom (right)

for road b − o, while for road a − o

q = 1 − p = 1 − 0.875 = 0.125.

Simulations are performed over a time interval of T = 30 minutes, with flux
function given by f (u) = u(1 − u). At the initial time, roads are empty, thus
the density is set to zero. For the first network, we consider the inflow values
of 0.3 and 0.75, while for the second network the inflow value is 0.8 for roads
entering junction o and 0.3 for the outgoing ones. We compare three cases: (1)
right of way parameters optimizing the cost functionals J1 and J2 called optimal
case; fixed right of way parameters, called fixed case) choosing p = 0.2 for
first network and p = 0.875 for the second; dynamic random parameters, called
dynamic random case, with parameters randomly sampled with uniform distribution
at every time step. Figure 3.8 illustrates the time evolution of the cost functional
J2 for the first network and the different choices of the right of way parameters.
Such choices reflect different traffic control policies. The fixed control policy is
very poorly performing, while the other two are comparable with the optimal one
slightly preferable as shown in the zoomed area Fig. 3.8 (right). Even if the two
policies, optimal and random, perform similarly, we can capture the difference in
traffic patterns by looking at the functional JS&G, representing the smoothness of
traffic, see Fig. 3.9. The optimal policy significantly outperforms the others. On the
other side, the dynamic random choice may generate high oscillations, which in turn
compromise safety. For the second network, we consider the cost function J1, whose
time evolution is depicted in Fig. 3.10. The optimal control policy outperforms the
others with an advantage of around 20% in terms of J1 values. For the dynamic
random choice J1 converges numerically to the value corresponding to the fixed
parameters p = 0.5 (see [65]). This can be understood as follows. Since the flux is
given by f (ρ) = ρ(1 − ρ) we have:

J1 (p) = χ − 1

2

√
1 − 4cp − 1

2

√
1 − 4c (1 − p),
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Fig. 3.9 Behavior of the
SGW functional in the case
of boundary conditions equal
to 0.75
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Fig. 3.10 Time evolution of cost function J1 for the second network (left) and zoom (right)

where χ and c > 0 are constant, not depending on p. Therefore, dJ1(p)
dp

≥ 0 if and
only if p ∈ [0.5, 1]. In other words, the dynamic random choice approach the worst
choice in terms of J1.

3.6.3 Emergency Management

We now turn to another optimization problem by focusing on emergency situation.
The results in this section were developed in [231].

In heavy loaded network it is important to create safe corridors for emergency
vehicles, see Fig. 3.11 for a pictorial presentation of the problem. More precisely,
we consider a network made of junctions, each with two incoming and two outgoing
roads. Then the dynamics is determined by the traffic distribution coefficients, called
α and β (see Appendix B). Naming incoming roads as I1 and I2 and outgoing ones
I3 and I4, α is the percentage of traffic from road I1 going to road I3 and similarly
β is the percentage of traffic from road I2 going to road I3.
The emergency vehicles are assumed to follow a velocity function given by:

ω (u) = 1 − δ + δv (u) , (3.65)
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Fig. 3.11 Cartoon representation of a car accident on a road network and the creation of a safe
corridor for emergency vehicles via regulation of the traffic distribution coefficients

with 0 < δ < 1, v (u) = u(1 − u) being the velocity of regular traffic. Since
ω (umax) = 1 − δ > 0, the emergency vehicles travel faster than other vehicles.
The general problem we aim to solve is the following. Given a junction with n
incoming roads, say Iϕ , ϕ = 1, . . . , n,, and m outgoing ones, say Iψ , ψ = n +
1, . . . , n+m, and initial data

(
uϕ,0, uψ,0

)
, we aim to maximize the cost:

Wϕ,ψ (t) =
∫

Iϕ

ω
(
uϕ (t, x)

)
dx +

∫

Iψ

ω
(
uψ (t, x)

)
dx.

which gives the traveling time of emergency vehicles on the specific corridor formed
by incoming road Iϕ and outgoing one Iψ . As above, we consider the asymptotic
state of the Riemann Problem to solve the optimization.
Focusing on 2 × 2 junctions, with I1,2 incoming roads and I3,4 outgoing ones, for
sufficiently big time T we get:

Wϕ,ψ (T ) = ω
(̂
uϕ
)+ ω (̂uψ

) = 2 − δ − δ

2

(
sϕ
√

1 − 4γ̂ϕ + sψ
√

1 − 4γ̂ψ
)
,

(3.66)
where sϕ and sψ are defined as:

sϕ =
{
+1, if uϕ,0 ≥ 1

2 , or uϕ,0 < 1
2 and γmax

ϕ > γ̂ϕ,

−1 if uϕ,0 < 1
2 and γmax

ϕ = γ̂ϕ,

sψ =
{
+1, if uψ,0 > 1

2 and γmax
ψ = γ̂ψ ,

−1 if uψ,0 ≤ 1
2 , or uψ,0 > 1

2 and γmax
ψ > γ̂ψ .
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Table 3.1 Initial conditions
for the three simulation cases

ua,0 ub,0 uc,0 ud,0

Case A 0.15 0.6 0.8 0.9

Case B 0.15 0.6 0.9 0.8

Case C 0.25 0.1 0.85 0.95

Fixing, without loss of generality, the safe corridor given by ϕ = 1 and ψ = 3, we
get:

W1,3 (T ) = ω (̂u1)+ω (̂u3) = 2− δ− δ
2

(
s1
√

1 − 4γ̂1 + s3
√

1 − 4γ̂3

)
. (3.67)

We can find optimal values of the traffic distribution coefficients (see [231]):

Theorem 28 Consider a junction with incoming roads, I1 and I2 and outgoing
ones I3 and I4. For T sufficiently big, the cost W1,3 (T ) is maximized by the traffic

distribution coefficients αopt = 1 − γmax
d

γmax
a

and any βopt ∈
[
0, 1 − γmax

d

γmax
a

]
, with the

exception of the following two cases.
If γmax

1 ≤ γmax
4 then there is no optimal value, but the minimum is approximated

by α = ε1 and βopt = ε2, for ε1 and ε2 small, positive and such that ε1 
= ε2.
Similarly, if γmax

1 > γmax
3 +γmax

4 , then there is no optimal value, but the minimum

is approximated by α = γmax
3

γmax
3 +γmax

4
− ε1 and β = γmax

3
γmax

3 +γmax
4

− ε2, with ε1,2 as for

the first case.

To test the effectiveness of the control prescribed by Theorem 28, we compute
the cost function evolution and compare with random coefficients, i.e., parameters
taken randomly when the simulation starts and then kept constant. More precisely,
we consider three scenarios denoted by A, B, and C, with initial data reported
in Table 3.1 and boundary conditions coinciding with initial data. The values
prescribed by Theorem 28 are as follows: for case A, αopt = 0.294118 and
0 ≤ βopt < αopt (we choose βopt equal to 0.2); for case B, αopt = ε1, βopt = ε2;
for case C, αopt = 0.708571 + ε1, βopt = 0.708571 + ε2. Figures 3.12, 3.13, and
3.14 show the time evolution of the cost functionWa,c (t) and the values ofWa,c (T )
as function of the two parameters α and β in cases A, B, and C, respectively, with
δ = 0.5 and T = 30 minutes. The simulations confirm the optimality of the controls
prescribed by Theorem 28. We also notice, especially in Fig. 3.14, that the optimal
control may not achieve the best value for transient times, but do so for sufficiently
large times.

3.7 Bibliographical Notes

The possibility of controlling the solutions to conservation laws on networks, by
acting on the Riemann solvers through control parameters, has been addressed
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first in [144] in 2009. A different approach, based on solutions to boundary value
problems, has been introduced in [10] in 2018. In the context of road traffic, the
setting in [10] fits well with the minimization of travel time or of other meaningful
functionals.

The modeling and the (optimal) control of signalized intersections have been
widely studied in literature, both from the mathematical [70] and engineering [147,
250, 253, 276] point of view. The approach described in Section 3.3 is based on the
papers [165, 166]; see also [139, Chapter 7.1].

In the case of freeways, ramp metering is a widely used strategy for controlling
traffic flow without acting directly on the mainline flow or using toll systems. This
strategy has been used mostly in connection with microscopic traffic models; see,
for example, [37]. The use of feedback controls, in order to obtain a desired flow
in the main line, has been studied in various papers [2, 237, 254]. The predictive
metering strategy instead uses a model, possibly with uncertainties, for predicting
the inflow over a finite time horizon, and consequently it deduces various policies for
controlling the flow; see [121, 155, 194]. Section 3.4, based on the paper [247], uses
the adjoint calculus for finding solutions to optimal control problem; see also [148,
160, 270, 271].

Conservation laws with flux constraints have been introduced in [78, 140] in
2007. In [78] the problem was presented by a control perspective and a well-
posedness result was proved. In [140] the model was proposed for describing the
situation of a bottleneck on a road. Various Riemann solvers have been introduced
together with existence and uniqueness results. Generalizations on (possibly mov-
ing) flux constraints both for scalar equations and for systems were considered in
various papers; see [111–114, 137, 138, 145, 272].

For the optimization of travel time or other significant functional on networks via
the choice of distribution of coefficients, see [64, 66, 231].
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Chapter 4
Distributed Control for Conservation
Laws

4.1 Introduction

This chapter focuses on control of systems of conservation laws with distributed
parameters. Problem with different parameterized fluxes is addressed: in particular,
we deal with cases where the control is the maximal speed and look for continuous
dependence of the solution on parameters. Various examples of conservation laws
with distributed control are presented. The control, in this case, acts on the flux or
on the parameters of the flux, as for example the maximal speed.
In Sect. 4.2, we introduce the classical notions of Riemann Solver Semigroup
solutions [51] and its stability [39].
Subsequently, in Sect. 4.3, we consider the case of variable speed limit computed via
needle-like variation methods. Specifically, an optimal control problem for traffic
flow on a single road using a variable speed limit is studied. The control variable is
the maximal allowed velocity, which is a function of time with finite total variation,
and the aim is to obtain a prescribed outgoing flow. More precisely, the main goal
is to minimize the quadratic difference between the achieved outflow and the given
target outflow. Mathematically, the problem is very hard because of the delays in
the effect of the control variable (speed limit). In Sects. 4.4 and 4.5, following
respectively [153] and [193], the problem of variable speed limit is analyzed by
discrete-optimization methods for first and second order traffic models on networks.
To set up the optimization problem, a cost functional is identified, while the
constraints are given by the discretized LWR or Aw–Rascle–Zhang models.
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4.2 Riemann Solver Semigroup and Stability

This section deals with the notion of Standard Riemann Semigroup (SRS) for a
strictly hyperbolic system of conservation laws in one space dimension and with the
dependence of the solution on the flux.

4.2.1 Classical Riemann Solver Semigroup Solutions

Here we focus the attention on the following Cauchy problem for a strictly
hyperbolic n× n system of conservation laws in one space dimension:

{
∂t u+ ∂x f (u) = 0
u(0, x) = u0(x).

(4.1)

For initial data u0 ∈ L1 (R;Rn) with small total variation, Glimm’s theorem [152]
provides the global existence of weak solutions. The well-posedness of (4.1) is
contained in the following result, due to Bressan [54].

Theorem 29 Let � ⊆ R
n be an open set containing the origin, and let f : � →

R
n be a smooth map. Assume that the system (4.1) is strictly hyperbolic and that

each characteristic field is either linearly degenerate or genuinely nonlinear. Then
there exist a closed domain D ⊂ L1(R;Rn), positive constants η0 and L, and a
continuous semigroup S : [0,+∞[×D → D with the following properties:

(i) Every function u0 ∈ L1 (R;Rn) with TV(u0) ≤ η0 belongs to D.
(ii) For all u0, v0 ∈ D, t, s ≥ 0, one has

‖Stu0 − Ssv0‖L1 ≤ L (|t − s| + ‖u0 − v0‖L1

)
.

(iii) If u0 ∈ D is a piecewise constant function, then for t > 0 sufficiently small
the function u(t, ·) = Stu0 coincides with the solution of (4.1), obtained
by piecing together the standard self-similar solutions of the corresponding
Riemann problems.

The invariant domain D in Theorem 29 can be chosen in the form

D = cl
{
u ∈ L1(R;Rn) : u piecewise constant, V (u)+ C ·Q(u) < δ0

}
,

(4.2)
for suitable positive constants C and δ0. Here V (u) and Q(u) denote the total
strength of waves and the wave interaction potential of u, while “cl” denotes the
closure in L1; see [51]. Following [50], we say that a map S with the properties (i),
(ii), and (iii) of Theorem 29 is a Standard Riemann Semigroup (SRS). We remark
that Theorem 29 is also valid in case of general 2 × 2 systems [53] and of special



4.2 Riemann Solver Semigroup and Stability 75

systems with coinciding shock and rarefaction curves [48, 49]. Moreover, solutions
can be obtained by viscous approximations as shown in the seminal paper [38].

The next result deals with the uniqueness of an SRS; for the proof, see [50].

Theorem 30 For a given domain D of the form (4.2), there is at most one
continuous semigroup S : [0,+∞[×D → D satisfying conditions (i), (ii), and (iii)
in Theorem 29. Moreover, if an SRS does exist, then the following properties hold:

(iv) Each trajectory t 
→ u(t, ·) := Stu0 is a weak entropy admissible solution of
the corresponding Cauchy problem (4.1).

(v) Let (uν)ν≥1 be a sequence of approximate solutions of (4.1), generated by
a wave-front tracking algorithm or by the Glimm scheme with uniformly
distributed sampling. Then, for every t > 0,

lim
ν→+∞‖uν(t)− Stu0‖L1 = 0.

(vi) Let u = u(t, x) be a piecewise Lipschitz continuous entropy admissible
solution of (4.1) defined on [0, T ] × R for some T > 0. Then u(t, ·) = Stu0
for all t ∈ [0, T ].

4.2.2 Stability of the Standard Riemann Semigroup

In this part, we consider the dependence of the solution of Riemann problems with
respect to the flux function f . According to Theorem 29, if f is a smooth function
and the system

∂t u+ ∂x f (u) = 0 (4.3)

is strictly hyperbolic with each characteristic field either linear degenerate of gen-
uinely nonlinear, then there exist a domain Df and an SRS Sf : [0,+∞[×Df →
Df . We define by Hyp(�) the set containing all the fluxes satisfying the previous
assumptions.

We introduce now a concept similar to a metric between fluxes in Hyp(�). To
this aim, for every f ∈ Hyp(�), define the set

Rf =
{(
u−, u+

) ∈ �×� : u− 
= u+, u−χ(−1,0) + u+χ(0,1) ∈ Df
}
,

where χ denotes the characteristic function of a set. Note that, if
(
u−, u+

) ∈ Rf ,
then the Riemann problem
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⎧⎨
⎩
∂t u+ ∂x f (u) = 0

u(0, x) =
{
u− if x < 0
u+ if x > 0

admits an entropy admissible solution. Let f1, f2 ∈ Hyp(�) with Df2 ⊆ Df1 , and
let us define the “distance” between f1 and f2 as

d̂(f1, f2) = sup
(u−,u+)∈Rf2

1∣∣u+ − u−∣∣ ·
∥∥∥Sf1

1

(
ũ(u−,u+)

)
− Sf2

1

(
ũ(u−,u+)

)∥∥∥
L1
,

(4.4)
where ũ(u−,u+) = u−χ(−∞,0) + u+χ(0,+∞).

The next result, whose proof is contained in [39], is the stability estimate with
respect to the flux functions.

Theorem 31 Let f1 ∈ Hyp(�). Then there exists a positive constant Lf1 such that,
for every f2 ∈ Hyp(�) with Df2 ⊆ Df1 , for all u ∈ Df2 , and for all t > 0, it holds

∥∥∥Sf1
t u− Sf2

t u

∥∥∥
L1

≤ Lf1 d̂(f1, f2)

∫ t

0
TV
(
S
f2
t u
)

dt. (4.5)

4.3 Needle-Like Variations for Variable Speed Limit

This section is devoted to the specific problem of controlling traffic via variable
speed limit. The main idea is the use of needle-like variations to compute the control
policy as used in the classical Pontryagin Maximum Principle [55]. We study the
following Initial Boundary Value Problem (IBVP):

⎧⎪⎪⎨
⎪⎪⎩

ut + f (u, v(t))x = 0, (t, x) ∈ R
+ × [0, L],

u(0, x) = u0(x), x ∈ [0, L],
fl(t) = In(t),
fr(t) = u(t, L) v(t),

(4.6)

where u0 is the initial condition, fl (fr) is the left (right) boundary flow, In is the
time-dependent inflow, and v(t) is the maximal speed and the control variable, see
Fig. 4.1a. It takes value on a bounded interval v(t) ∈ [vmin, vmax]. The flux function
f : [0, umax] × [vmin, vmax] → R

+ is given by

f (u, v(t)) =
⎧⎨
⎩
uv(t), if 0 ≤ u ≤ ucr,
v(t)ucr

umax − ucr
(umax − u), if ucr < u ≤ umax,

(4.7)

see Fig. 4.1b.
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Fig. 4.1 Velocity and flow for different speed limits. (a) Velocity function. (b) Newell–Daganzo
fundamental diagram

4.3.1 Variable Speed Limit: Control Problem

In this section, we introduce the mathematical framework for the speed regulation
problem. Given an inflow In(t), we want to track a fixed outflow Out(t) on a time
horizon [0, T ], T > 0, by acting on the time-dependent maximal velocity v(t). A
maximal velocity function v : [0, T ] → [vmin, vmax] is called a control policy.
It is easy to see that a road in free flow can become congested only because of
the outflow regulation with shocks moving backward, see [57, Lemma 2.3]. Since
we assume Neumann boundary conditions at the road exit, the traffic will always
remain in free flow, i.e., u(t, x) ≤ ucr for every (t, x) ∈ [0, T ] × [0, L]. Given
the inflow function In(t), we consider the Initial Boundary Value Problem (4.6)
with assigned flow boundary condition fl � f (u(t, 0+)) on the left in the sense of
Bardos, Le Roux, and Nedelec, see [29], and Neumann boundary condition (flow
fr � f (u(t, 0−))) on the right. Let us make the following assumptions:

Hypothesis 1 There exist 0 < umin
0 ≤ umax

0 ≤ ucr and 0 < fmin ≤ fmax such that
u0 ∈ BV([0, L], [umin

0 , umax
0 ]) and In ∈ BV([0, T ], [fmin, fmax]).

Hypothesis 2 We assume Hypothesis 1 and the following:

umin
0 ≤ fmin

vmax
and umax

0 ≥ fmax

vmin
.

Hypothesis 1 gives directly the following proposition:

Proposition 8 Assume that Hypothesis 1 holds and

v ∈ BV([0, T ], [vmin, vmax]).
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Then, there exists a unique entropy solution u(t, x) to (4.6). Moreover, u(t, x) ≤ ucr
and, setting

Out(t) = u(t, L)v(t), (4.8)

we have that Out(.) ∈ BV([0, T ],R) and the following estimates hold:

min
{
umin

0 ,
fmin

vmax

}
≤ u(t, x) ≤ max

{
umax

0 ,
fmax

vmin

}
, for x ∈ [0, L] (4.9)

min
{
umin

0 vmin, f
min vmin

vmax

}
≤ Out(t) ≤ max

{
umax

0 vmax, f
max vmax

vmin

}
. (4.10)

For the proof, we refer the reader to [116].

Definition 15 A Link Entering Time (LET) function τ = τ(t, v) is defined as the
entering time for a car exiting the road at time t given a control policy v.
For every t0 satisfying

∫ t0
0 v(s)ds = L and for every t ≥ t0, we get

∫ t

τ (t)

v(s)ds = L. (4.11)

Such τ(t) is unique, due to the hypothesis v ≥ vmin > 0.

Remark 8 The function depends on the control policy v, but for simplicity we will
write τ(t) when the policy is clear from the context. Notice that LET is defined only
for time greater than a given t0 > 0, the exit time of the car entering the road at time
t = 0, see Fig. 4.2.

Fig. 4.2 Graphical
representation of the LET
function τ = τ(t, v) defined
in (4.11)

0 L

τ(t)
t0

t
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From the identity

∫ τ(t2)

τ (t1)

v(s)ds =
∫ t2

t1

v(s)ds,

we get the following lemma:

Lemma 3 Given a control policy v, the function τ is a Lipschitz continuous

function, with Lipschitz constant
vmax

vmin
.

Recalling the definition of outflow of the solution given in (4.8), we get the
following proposition:

Proposition 9 The input–output flow map of the Initial Boundary Value Problem
(briefly IBVP) (4.6) is given by

Out(t) = In(τ (t))
v(t)

v(τ (t))
. (4.12)

For the proof, we refer the reader to [116]. Classical techniques of linear control
cannot be used since the map (4.28) is highly nonlinear with respect to the control
v. In fact, the effect of the control v at time t on the outflow depends on the choice
of v on the time interval [τ(t), t] because of the presence of the LET map in formula
(4.12). This clearly shows how delays enter the input–output flow map. We can now
proceed to define formally the problem.

Problem 1 Let Hypothesis 2 hold, and fix f ∗ ∈ BV([0, T ], [fmin, fmax]) andK >
0. Find the control policy v ∈ BV([0, T ], [vmin, vmax]), with TV(v) ≤ K , which
minimizes the functional J : BV([0, T ], [vmin, vmax])→ R defined by

J (v) :=
∫ T

0
(Out(t)− f ∗(t))2dt (4.13)

where Out(t) is given by (4.12).

Remark 9 We point out that even if the problem is addressed in free flow condition,
it is not possible to find explicit solutions to the problem. However, if In, Out, f ∗,
and u0 are constant in time, i.e., do not depend on time, the problem has a trivial

solution which is v = f ∗

u0
that gives J (v) = 0.

4.3.2 Needle-Like Variations

In this section, we estimate the variation of the cost J (v) with respect to the
perturbations of the control policy v. In this way, we can prove continuous
dependence of the solution from the control policy.
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Let us fix the notation for integrals of BV function with respect to Radon
measures.

Definition 16 Let φ be a BV function and μ a Radon measure. We define

∫
φ(x+) dμ(x) :=

∫
φ(x) dμc(x)+

∑
i

miφ(x
+
i ),

where μ = μc +∑i miδxi is the decomposition of μ into its continuous and Dirac
parts.

Remark 10 We recall that any Radon measure on R can be decomposed into
its continuous (AC+Cantor) and Dirac parts, as a consequence of the Lebesgue
decomposition theorem; for more details, see, e.g., [127].

We produce a variation of the value of v(·) on small intervals of the type [t, t +�t]
in the same spirit as the needle variations of Pontryagin Maximum Principle [55]
and compute the variation in the cost. The analytical expression of variations will
allow to compute analytically a gradient and hence to implement a steepest descent
type strategy to find the optimal speed limit.

Definition 17 Consider v ∈ BV([0, T ], [vmin, vmax]), with T sufficiently large so
that t0 < τ(T ), and a time t such that τ−1(0) = t0 ≤ t < τ(T ) and v(t+) < vmax.
Let �v > 0 and �t > 0 be sufficiently small such that t + �t ≤ τ(T ) and
v(t+) + �v ≤ vmax. We define a needle-like variation v′(·) of v, corresponding to
t , �t , and �v by setting v′(s) = v(s) + �v if s ∈ [t, t + �t] and v′(s) = v(s)

otherwise, see Fig. 4.3.

Lemma 4 Consider v ∈ BV([0, T ], [vmin, vmax]), and let v′ be a needle-like
variation of v. Then, it holds

Fig. 4.3 Needle-like
variation of the velocity v

t

v

t t + Δt

v

v′ = v + Δv
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lim
�v→0+

lim
�t→0+

J (v′)− J (v)
�v

=

= 2u2(t, L−)v(t+)− 2u(t, L−)f ∗(t+)+

−
∫

]0,L]
v((t + s(x))+) du2

x(t)+ 2
∫

]0,L]
f ∗((t + s(x))+)) dux(t)+

+ 2
In(t−)
v(t+)

(
f ∗(t+)− v(τ−1(t ′)−)

v(t+)
In(t−)

)
,

(4.14)
where integrals are defined according to (16). For �v < 0, the limit for �v → 0−
satisfies the same formula with right limits replaced by left limits in the two integral
terms in (4.14).

For the proof, the reader is referred to [116].
The results, shown in Lemma 4, allow us to prove the following existence result.

Proposition 10 Problem (1) admits a solution.

Proof The space � = {v ∈ BV([0, T ], [vmin, vmax]) : TV(v) ≤ K} ∩ {v ∈
L∞([0, T ], [vmin, vmax]) : ‖v‖∞ ≤ C} is compact in L1, see, e.g., [8], and J is
Lipschitz continuous on �, and thus there exists a minimizer of (1). ��

4.3.3 Three Different Control Policies

In this section, we define three control policies for the time-dependent maximal
speed v. The first, called the instantaneous policy (IP), is defined by minimizing
the instantaneous contribution for the cost J (v) at each time. Then, we introduce
a second control policy, called random exploration (RE) policy. Such policy uses a
random path along a binary tree, which corresponds to the upper and lower bounds
for v, i.e., v = vmax and v = vmin.
Finally, a third control policy is searched using a gradient descent method (GDM).
Compared with classical GDM methods, in this section, a different approach is used
and the gradient is replaced with cost variations computed with respect to needle-
like variations in the control policy. The key ingredient to define the third policy is
the explicit computation of the gradient that was computed in [116], while the other
two policies are chosen such that they will provide a fair comparison with respect
to the state of the art.

4.3.3.1 Instantaneous Policy

Definition 18 Consider (1). Define the instantaneous policy as follows:
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v(t) := P[vmin,vmax]
(
f ∗(t−) · v(τ(t)

−)
In(τ (t)−)

)
, (4.15)

where the projection P[vmin,vmax] : R → R is the function

P[a,b](x) :=
⎧
⎨
⎩
a for x < a,
x for x ∈ [a, b],
b for x > b.

(4.16)

4.3.3.2 Random Exploration Policy

The random exploration policy is defined as follows:

Definition 19 Given the extreme values for the maximal speed, vmax and vmin, and
a time step �t , the random exploration policy draws sequences of velocities from
the set {vmax, vmin} corresponding to control policy values for each �t .

4.3.3.3 Gradient Method

We use needle-like variations and the analytical expression in (4.14) to numerically
compute one-sided variations of the cost. We consider such variations as estimates
of the gradient of the cost in L1. More precisely, we give the following definition.

Definition 20 The gradient policy is the result of a first order optimization
algorithm to find a local minimum to (1) using the Gradient Descent Method and
the expression in (4.14), stopping at a fixed precision tolerance.

4.3.4 Numerical Results

In this section, we show the numerical results obtained by implementing the three
different policies. The numerical algorithm for all the approaches is composed of
two steps:

1. Numerical scheme for the conservation law. The density values are computed
using the classical Godunov scheme, introduced in [154].

2. Numerical solution for the optimal control problem, i.e., computation of the
maximal speed using the instantaneous control, random exploration policy, and
gradient descent.

Let �x and �t be the fixed space and time steps, and set x
j+ 1

2
= j�x, the cell

interfaces such that the computational cell is given by Cj = [x
j− 1

2
, x
j+ 2

2
]. The
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center of the cell is denoted by xj = (j − 1

2
)�x for j ∈ Z at each time step

tn = n�t for n ∈ N. We fix J the number of space points and T the finite time
horizon. We now describe in detail the two steps.

4.3.4.1 Godunov Scheme for Hyperbolic PDEs

The Godunov scheme can be expressed in conservative form as

un+1
j = unj −

�t

�x

(
F(unj , u

n
j+1, v

n)− F(unj−1, u
n
j , v

n)
)
, (4.17)

where vn is the maximal speed at time tn. Additionally, F(unj , u
n
j+1, v

n) is the
Godunov numerical flux that in general has the following expression:

F(unj , u
n
j+1, v

n) =
{

minz∈[unj ,unj+1] f (z, v
n) if unj ≤ unj+1,

maxz∈unj+1,u
n
j
f (z, vn) if unj+1 ≤ unj .

(4.18)

For clarity, the maximal velocity was included as an argument for the Godunov
scheme so that the dependence of the scheme on the optimal control could be
explicit.

4.3.4.2 Velocity Policies

The next step in the algorithm consists of computing a control policy v that can be
used in the Godunov scheme with the different policies.

• Instantaneous policy
At each time step, the velocity vn+1 is computed using the following formula:

vn+1 = v(tn+1) = P[vmin,vmax]
(f ∗(tn)
unJ

)
. (4.19)

• Random exploration policy
To compute for each time step the value of the velocity, a randomized path
on a binary tree, see Fig. 4.4, is used. With such technique, we obtain several
sequences of possible velocities. For each sequence, the velocities are used to
compute the fluxes for the numerical simulations. We then choose the sequence
that minimizes the cost.

Remark 11 Notice that the control policy RE may have a very large total
variation, and thus it might not respect the bounds on TV given in (1). Therefore,
the found control policies may not be allowed as a solution of this problem.
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Fig. 4.4 The first branches of the binary tree used for sampling the velocity

However, this technique was implemented for comparison with the results and
performances obtained by the GDM.

• Gradient descent method First, numerically one-sided variations of the cost are
computed using (4.14). Then, the classical gradient descent method [4] is used to
find the optimal control strategy and to compute the optimal velocity that fits the
given outflow profile.

4.3.4.3 Simulations

The following parameters: L = 1, J = 100, T = 15.0, ucr = 0.5, umax =
1, vmin = 0.5, and vmax = 1.0 are chosen. Moreover, the input flux at the boundary
of the domain is given by In = min (0.3 + 0.3 sin(2πtn), 0.5). Two different target
fluxes f ∗ = 0.3 and f ∗ = |(0.4 sin(tπ − 0.3))| are used. The initial condition is
a constant density u(0, x) = 0.4, and oscillating inflows to represent variations in
typical inflow of urban or highway networks at the 24 h time scale are given.

Test I: Constant Outflow

In Fig. 4.5, the time-varying speed obtained by using the three policies is shown.
In each case, we notice that due to the oscillating input signal the control policy is
also oscillating. From a practical point of view, a solution where the speed changes
at each time step might be unfeasible, but these policies could be seen as periodic
change of maximal speed for different time frames during the day when the time
horizon is scaled to the day length. In Table 4.1, one can see the different results
obtained for the cost functional computed at the final time for the different policies.
The instantaneous policy is outperformed by the random exploration policy and by
the gradient method. In Fig. 4.6, one can see the distribution of the different values
of the cost functional over 1000 simulations. Moreover, in Fig. 4.7, one can see the
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Fig. 4.5 Speed obtained by using the instantaneous policy (left), random exploration policy
(center), and the gradient descent method (right) for a target flux f ∗ = 0.3

Table 4.1 Value of the cost functional and the average velocity for the different policies

Method Cost functional Average speed

Fixed speed v = vmax = 1.0 873.0786 1.0

Fixed speed v = vmin = 0.5 785.2736 0.5

Instantaneous policy 850.3704 0.7867

Minimum of random exploration policy 723.6733 0.7597

Gradient method 735.0565 0.5241

differences between the actual outflow obtained and the target one for all methods.
The CPU time for the different simulations approaches (see Table 4.2) is compared,
and as expected, the random exploration policy is the least performing, while the
instantaneous policy is the fastest one. In addition, one can look at the TV(v) for
each one of the policies obtaining the following results:

• IP: TV(v) = 12.6904
• RE: TV(v) = 753.5
• GDM: TV(v) = 70.81333

Notice that the simple case of a fixed speed has TV(v) = 0, making this option the
most performing from this point of view.

Test II: Sinusoidal Outflow

In Fig. 4.8, it is shown the optimal velocity obtained by using the instantaneous
policy, the random exploration, and the gradient descent method with a sinusoidal
outflow. One can see that the different policies give different profiles of optimal
speed. In each case, we can see that an a posteriori treatment of the speeds before
implementation in real traffic might be needed. Figure 4.9 shows the histogram of
the cost functional obtained for the random exploration policy, and in Fig. 4.10, the
real outgoing flux with the target one is compared. In Table 4.3, different results
obtained for the cost functional computed at final time for the different policies are
shown. Also, in this case, the instantaneous policy is outperformed by the other two.
The CPU times give results similar to the previous test.
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Fig. 4.6 Histogram of the distribution of the value of the cost functional for the random
exploration policy. We run 1000 different simulations

Fig. 4.7 Difference between the real outgoing flux and the target constant flux, computed with the
instantaneous policy (left), the gradient method (right) and the random exploration policy (center)

Table 4.2 CPU time for the
simulations performed with
the different approaches

Method CPU time (s)

Instantaneous policy 32.756

Random exploration policy 7577.390

Gradient method 1034.567
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Fig. 4.8 Speed obtained by using the instantaneous policy (left), the gradient descent method
(right), and the random exploration policy (center) for a sinusoidal target flux
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Fig. 4.9 Histogram of the distribution of the value of the cost functional for the random
exploration policy. We run 1000 different simulations

Fig. 4.10 Difference between the real outgoing flux and the target sinusoidal flux, computed with
the instantaneous policy (top left), the gradient method (top right), and the random exploration
policy (bottom)
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Table 4.3 Value of the cost functional for the different policies

Method Cost functional Average speed

Fixed speed v = vmax = 1.0 1.3979e + 03 1.0

Fixed speed v = vmin = 0.5 843.3395 0.5

Instantaneous policy 458.8874 0.7917

Minimum of random exploration policy 303.8327 0.7512

Gradient method 307.6889 0.6001

4.4 Discrete-Optimization Methods for First Order Models

In this section, we consider variable speed limit (VSL) control problem coupled to
ramp metering for first order equations, i.e., the LWR model. In particular, merging
these two problems means that on one side we have a conservation law with time-
dependent discontinuous coefficients due to the fact that the maximal velocity for
the VSL problem must be evaluated at discrete points in time. On the other hand,
the on-ramp metering problem corresponds to controlling the boundary conditions
at junctions [143, 144]. The resulting optimal control problem is then a combination
of two controls directly influencing each other.

We apply continuous optimization techniques, where the first order optimality
system is derived and solved by a descent type method [188, 257]. More precisely,
we work on the approximate dynamics, thus resulting in the so-called discretize-
then-optimize approach leading to a finite-dimensional optimality system [160].

4.4.1 Traffic Flow Network Modeling

As detailed in Appendix B, a traffic flow network can be modeled as a directed
graph G = (I,J ), where the edges I = {I�}� correspond to roads and the vertices
J = {Jj }j to junctions or intersections. Each edge I� ∈ I is represented by an
interval [0, L�] and u�(x, t) denotes the density of cars on road I�.

Given initial conditions u�(x, 0), the dynamics on the network is described by
the LWR equation

∂tu�(t, x)+ ∂xf�(u�(t, x), t) = 0 ∀�, x ∈ ]0, L�[, t ∈ [0, T ] (4.20)

with Greenshields flux

f�(t, u) = u v�max(t)

(
1 − u

u�max

)
,

where v�max(t) is the (piecewise constant) maximal speed limit and u�max is the
maximal car density corresponding to the jammed situation, see, for instance,
Fig. 4.11. The maximal flux fmax

� (t) is attained at u = u�cr = u�max/2, see Fig. 4.11.
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Fig. 4.11 Velocity and flow rate for different values of v�max(t)

γ̂1 γ̂2

(a)

γ̂1

γ̂3

γ̂2

(b)

γ̂1

γ̂2

γ̂3

(c)

Fig. 4.12 Different types of junctions. (a) One-to-one. (b) Diverging. (c) Merging

4.4.1.1 Coupling Conditions at Junctions

The dynamics at junction nodes Jj ∈ J must guarantee mass conservation and is
defined using the demand and supply functions corresponding to f�(t, u):

D�(u, t) =
{
f�(u, t) if u ≤ u�cr ,

fmax
� (t) if u ≥ u�cr ,

and Se(u, t) =
{
fmax
� (t) if u ≤ u�cr ,

f�(u, t) if u ≥ u�cr .

In the rest of this section, only the cases of one-to-one, merging, and diverging
junctions are considered, i.e., Fig. 4.12.

The coupling conditions are computed as follows:

• One-to-one junction: the fluxes at the junction are obtained by

γ̂1 = γ̂2 = min {D1(u1, t), S2(u2, t)} . (4.21)

• Diverging junction: the distribution of cars on outgoing roads is described by the
parameters α2,1 ≥ 0 and α3,1 ≥ 0 such that α2,1 + α3,1 = 1, and the fluxes at the
junction are given by the following (non-FIFO) conditions [176, 205]:

γ̂2 = min
{
α2,1D1(u1, t), S2(u2, t)

}
, (4.22a)

γ̂3 = min
{
α3,1D1(u1, t), S3(u3, t)

}
, (4.22b)

γ̂1 = γ̂2 + γ̂3 . (4.22c)
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• Merging junction: we introduce a priority parameter P ∈ (0, 1), and the fluxes
are given by

γ̂1 = min {D1(u1, t),max {PS3(u3, t), S3(u3, t)− D2(u2, t)}} , (4.23a)

γ̂2 = min {D2(u2, t),max {(1 − P)S3(u3, t), S3(u3, t)− D1(u1, t)}} ,
(4.23b)

γ̂3 = γ̂1 + γ̂2 . (4.23c)

4.4.1.2 Boundary Conditions

If an arc I� that is connected to the network only downstream while the desired
inflow rate upstream is f in

� (t), the actual inflow to the road I� is given by

γ in
� = min

{
f in
� (t), S�(u�, t)

}
. (4.24)

Assuming instead that there is a queue at the upstream node of arc I� with length
l�(t), then, the inflow to the road is given by

γ in
� = min {D�(l�, t), S�(u�, t)} , (4.25)

where the demand function depends on the length l�(t) of the queue at time t ,

D�(l�, t) =
{
f̃max
� if l� > 0 ,

min
{
f in
� (t), f

max
�

}
if l� = 0 .

(4.26)

Above, f̃max
� denotes the maximum flux that can enter the road from the queue. The

evolution of the queue length l�(t) is given the ODE

dl�(t)

dt
= f in

� (t)− γ in
� (4.27)

for an initial state l�(0).
Conversely, on arcs connected only upstream to the network, absorbing boundary

conditions are prescribed up to a given maximum flow rate f out
� (t) as

γ out
� = min

{
f out
� (t),D�(u�, t)

}
, (4.28)

thus ensuring that cars exit the network if their flow is lower than the maximum flow
rate.
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4.4.2 Optimization Problem for VSL and Ramp Metering

In this section, we describe the optimization problem, consisting of minimizing the
total travel time [267] and/or maximizing the outflow of the system, controlling
traffic flow through a network by adjusting maximal speed limits and on-ramp
fluxes:

min J (�l, �u, �γ out):=
∑
�

β�

T∫

0

⎛
⎝l�(t)+

L�∫

0

u�(x, t) dx

⎞
⎠ dt −

∑
�

ε�

T∫

0

γ out
� (t) dt,

(4.29)

where we set �l = (l�)�, �u = (u�)� and �γ out = (γ out
� )�. Alternatively, one can choose

to minimize a congestion measure as in [247], i.e.,

min J (�l, �u) :=
∑
�

β�

T∫

0

⎛
⎝l�(t)+ max

⎧
⎨
⎩0,

L�∫

0

(
u�(x, t)− f�(u�(x, t), t)

v�,ref

)
dx

⎫
⎬
⎭

⎞
⎠ dt .

(4.30)

Above, β� and ε� denote non-negative weights and v�,ref a reference velocity.

4.4.2.1 Variable Speed Limits

We assume that the time-dependent maximal velocities v�max(t) have uniform lower
and upper bounds

v�low ≤ v�max(t) ≤ v�high ∀t ∈ [0, T ] .

To get a finite number of speed changes, we introduce control points νk ∈ [0, T ],
k ∈ {0, . . . ,Nu}, and the corresponding control variables V k� for each road. The
maximal speed v�max(t) is assumed to be piecewise constant on the control grid:

v�max(t) = V k+1
� ∀t ∈ ]νk, νk+1] . (4.31)

4.4.2.2 Ramp Metering

On-ramp dynamics can be described in the framework of merging junctions, where
we set the index � = 2 for the on-ramp, which will be described as a queue (4.26).
Here, the aim is to control the main lane access from the on-ramp through a
controlled demand function that is defined as
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Dc�(l�, t) = ω�(t)D�(l�, t), (4.32)

where D�(l�, t) is given by (4.26). Then, plugging (4.32) in (4.23), we obtain

γ̂1 = min
{
D1(u1, t),max

{
PS3(u3, t), S3(u3, t)−Dc2(l2, t)

}}
, (4.33a)

γ̂2 = min
{
Dc2(l2, t),max {(1 − P)S3(u3, t), S3(u3, t)− D1(u1, t)}

}
, (4.33b)

γ̂3 = γ̂1 + γ̂2 . (4.33c)

Correspondingly, the evolution of the on-ramp buffer changes to

dl2(t)

dt
= f in

2 (t)− γ̂2 , (4.34)

where f in
2 (t) is the external boundary inflow at the on-ramp.

For ramp metering, we consider a piecewise constant control function:

ω�(t) = ωk+1
� ∀t ∈ (νk, νk+1] . (4.35)

Finally, the joint speed limit and ramp metering control problem for traffic flow
on networks is given by

min
�z, �ω
J (�l, �u, �γ out)

s.t. (4.20)–(4.28), (4.31), (4.32)–(4.35)
(4.36)

with �z = (z�)−� and �ω = (ω�)�.

4.4.3 Numerical Simulations

Consider a time mesh tn = n�t with�t = T
Nt and divide each road � into Nx� cells

of size �x� = L�
Nx�

.
The discretized objective functions corresponding to (4.29) and (4.30) are

min
∑
�

β�

Nt∑
n=1

⎛
⎝ln� +

Nx�∑
j=1

un�,j−0.5�x�

⎞
⎠ �t −

∑
�

ε�

Nt∑
n=1

f (un�,Nx� , t
n)�t ,

(4.37)
and
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min
∑
�

β�

Nt∑
n=1

⎛
⎝ln� + max

⎧⎨
⎩0,

Nx�∑
j=1

(
un�,j−0.5 −

f�(u
n
�,j−0.5, t

n)

v�,ref

)
�x�

⎫⎬
⎭

⎞
⎠ �t ,

(4.38)
where v�,ref = 1

2v
high
� . The conservation law (4.20) is discretized using a staggered

Lax–Friedrichs scheme [216]

un+1
0.5 = 1

4

(
3un0.5 + un1.5

)− λ
2

[
f (un1.5, t

n)+ f (un0.5, tn)− 2f (un0, t
n)
]
,

(4.39a)

un+1
j−0.5 = 1

4 (u
n
j−1.5 + 2unj−0.5 + unj+0.5)− λ

2 [f (unj+0.5, t
n)− f (unj−1.5, t

n)] ,
(4.39b)

un+1
Nx−0.5 = 1

4 (u
n
Nx−1.5 + 3unNx−0.5)

− λ
2 [2f (unNx, t

n)− f (unNx−0.5, t
n)− f (unNx−1.5, t

n)] ,
(4.39c)

where λ = �t/�x (skipping the index �) and

un�,j−0.5 ≈ 1

�x�

j�x�∫

(j−1)�x�

u�(x, t
n) dx for j ∈ {1, . . . ,Nx�}, n ∈ {0, . . . ,Nt} .

4.4.3.1 Optimization Approach

The discrete (finite-dimensional) optimization problem (4.37) is solved with an SQP
solver (DONLP2) [258, 259], requiring gradient computation. This is achieved using
the adjoint approach, which is recalled below.

Given an objective function J (W, Y ) (here (4.37)), whereW denotes the control
variables of the discretized model equations (the speed limits zk� and the ramp
controls ωke ) and Y the state variables (densities un� , flow rates f (un�), queue lengths
ln� ). The discretized model equations are denoted E(W, Y ) = 0. Assuming that the
model equations E(W, Y ) = 0 have a unique solution Y = Y (W) for any fixed W ,
we denote by J (W) = J (W, Y (W)) the reduced problem. Let ξ be the solution of
the adjoint equation

(
∂

∂Y
E(W, Y (W))

)T
ξ = −

(
∂

∂Y
J (W, Y (W))

)T
, (4.40)

and the cost gradient can be efficiently computed as

d

du
J (W, Y (W)) = ∂

∂W
J(W, Y (W))+ ξT ∂

∂W
E(W, Y (W)) . (4.41)
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4.4.3.2 Numerical Results

This section collects the numerical results corresponding to an example of variable
speed limit control and a combined optimization of variable speed limits (VSLs)
and ramp metering.

Variable Speed Limit (VSL) Control

The topology of the considered road network (including distribution rates α and
priority parameters P ) is shown in Fig. 4.13. Further road properties as well as the
initial conditions are given in Table 4.4. Additionally, Fig. 4.14 shows the inflow
profiles within the considered time horizon of 1000 seconds.

For the described setting, we fix the discretization parameters and an increasing
number of control points Nu. We separately minimize the total travel time (with
β� = 10−3) and maximize the accumulated outflow at the nodes outA and outB
(with ε� = 10−1). The results are collected in Table 4.5 and Fig. 4.15, showing that
lower travel times/larger outflows are obtained for an increasing number of control
points. In particular, compared to the uncontrolled case, where all speed limits are
taken at the upper bound, there is an improvement of 1.28%/0.03%.

inA outA

inB outB

A1
α = 0.7 = P

A2 A3

P = 0.7
B1 B2

α = 0.7
B3

α = 0.3
AB
1−P = 0.3

1−P = 0.3
BA
α = 0.3

Fig. 4.13 Road network with two main roads

Table 4.4 Properties of the
roads in Fig. 4.13

Road Length umax vlow vhigh Initial density

A1 1000 2 20 30 0.3

A2 1000 2 20 30 0.3

A3 1000 2 20 30 0.3

B1 1000 2 20 30 0.3

B2 1000 2 20 30 1.2

B3 1000 2 20 30 1.2

AB 200 0.5 10 20 0.1

BA 200 0.5 10 20 0.1
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Fig. 4.14 Inflow profiles for the network in Fig. 4.13

Table 4.5 Optimal travel
times/outflows for different
numbers of control points

Nu �x / �t Min. travel time Max. outflow

– 50 / 0.5 2336.698921 1844.762416

5 50 / 0.5 2307.370375 1845.023309

20 50 / 0.5 2306.863796 1845.289234

80 50 / 0.5 2306.694086 1845.353672

We then compare the results with a fixed discretization but an additional penalty
term with weight δ� ≥ 0 in (4.37):

∑
e

δe

Nt∑
n=1

�t

(
vmax
e (tn)− vmax

e (tn−1)

v
high
e �t

)2

,

which penalizes variations in the control. The resulting optimal controls are
provided in Fig. 4.16. Obviously, the additional penalty term leads to smoother
optimal solutions.

VSL and Coordinated Ramp Metering

In this section, we combine the optimization of variable speed limits and ramp
metering. The considered network is shown in Fig. 4.17, and the corresponding
parameters are given in Table 4.6. The priority parameter at the on-ramp is P = 0.5
and we take f̃max = 1.5. Figure 4.18 shows the inflow profiles and the maximum
outflow. We take Nu = 36 control points and the cost functional (4.38), with the
following constraints: a maximum queue size of 50 cars at the entrance of the main
road (node “in”) and a maximum queue size of 600 cars at the on-ramp are allowed.

In the uncontrolled case (Fig. 4.19), the inflow to the main road from the on-
ramp varies from full inflow at the beginning of the simulation (f in = 0.75) to
P · f out = 0.5 due to the congestion at road 2 (outflow at the node “out” is 1.0 and
priority parameter P = 0.5). The flow on the on-ramp then increases again up to the



96 4 Distributed Control

vmax on road AB (min. travel time) vmax on road BA (min. travel time)
vmax on road AB (max. outflow) vmax on road BA (max. outflow)
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Fig. 4.15 Optimal control of vmax for an increasing number of control points

maximum flow level (f̃max = 1.5) when the maximum possible outflow at the node
“out” increases. Finally, the inflow to the main road from the on-ramp decreases to
the inflow at this node again (f in = 0.75) when the queue at the on-ramp is empty.

Figures 4.20, 4.21, and 4.22 show the computed optimal controls, the queue
lengths at the inflow of the main road and at the on-ramp in the uncontrolled and the
optimized cases, and the density at the beginning of road 2, respectively. The speed
control is activated during large inflow periods, while the on-ramp control acts on
the queue length. Moreover, in the optimal solution, the queue at the entrance of the
main road is kept empty, while the queue at the on-ramp displays a large peak when
traffic gets congested after about 2 hours due to the reduced density on the main
road.
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vmax on road AB vmax on road BA
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Fig. 4.16 Optimal control of vmax with and without penalty term (min. travel time)

in on-ramp out
1a 1b 2

Fig. 4.17 Road network with an on-ramp at the node “on-ramp”

Table 4.6 Properties of the
roads in Fig. 4.17

Road Length umax vlow vhigh Initial density

1a 2000 2 30 30 0.1

1b 2000 2 10 30 0.1

2 4000 2 30 30 0.1
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Fig. 4.18 Inflow/max. outflow profiles for the network in Fig. 4.17

Fig. 4.19 Inflow on the main
road at the on-ramp without
optimization

inflow on the main road at the on-ramp
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Fig. 4.20 Optimal control of vmax(t) on road 1b and ω(t) at the on-ramp

4.5 Discrete-Optimization Methods for Second Order Models

In this section, we focus on coupling conditions of road networks at on-ramps,
where capacity drops usually occur for high density traffic, see, e.g., [169, 183, 211,
239, 260]. By capacity drop we indicate that the measured outflow of the system is
smaller than what it could be in optimal conditions, with differences up to 10% or
more [183, 260]. This is due to inefficient driving reaction at the exit of a congested



4.5 Discrete-Optimization Methods for Second Order Models 99

q(t) at “in” with no control q(t) at “on-ramp” with no control
q(t) at “in” with opt. control q(t) at “on-ramp” with opt. control

0 1 2 3
0

50

100

t [hours]

qu
eu

e
[c

ar
s]

0 1 2 3
0

200

400

600

t [hours]

qu
eu

e
[c

ar
s]

Fig. 4.21 Queue at the node “in” and the on-ramp
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Fig. 4.22 Density at the beginning of road 2 with and without optimization

zone (upstream the on-ramp), which reduces the downstream flow compared to free
flow conditions [267].

While this cannot be captured by first order models like LWR, the challenge for
second order models is to find appropriate conditions which capture the capacity
drop phenomenon, while ensuring the conservation of mass and momentum flow.
Once these coupling conditions are defined, they can be integrated in a finite-volume
type numerical scheme to compute the evolution of traffic conditions on the network.
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4.5.1 The Aw–Rascle Model on Networks

Let us introduce the modeling equations given by the Aw–Rascle (AR) model [23]
including a relaxation term as originally proposed in [157]. The model consists
of a 2 × 2 system of conservation laws for the density and a sort of generalized
momentum derived from the (anticipate) acceleration equation. We explain below
how it can be extended to the context of networks.

Traffic states are described by the density ui(x, t) and the mean speed of vehicles
vi(x, t) on each road i at position x and time t .

Given some initial state
(
ui(x, 0), vi(x, 0)

)
on each road i, the dynamics for

x ∈ ]0, Li[ and t ∈ ]0, T [ are described by [23, 157]

{
∂tui + ∂x(uivi) = 0,
∂t (ui(vi + pi(ui)))+ ∂x(uivi(vi + pi(ui))) = −ui vi−Vi(ui )δ

,
(4.42)

or, setting yi = ui(vi + pi(ui)),

∂t

(
ui

yi

)
+ ∂x

(
yi − uipi(ui)(
yi − uipi(ui)

) yi
ui

)
=
(

0
− (yi−uipi (ui ))−uiVi (ui )

δ

)

︸ ︷︷ ︸
=gi (ui ,yi )

, (4.43)

where pi(u) is a given pressure function satisfying p′i (u) > 0 and up′′i (u) +
2p′i (u) > 0 for all u. The latter condition ensures that, for any constant c > 0,
the curve {v + pi(u) = c} is strictly concave and passes through the origin of the
(u, uv)-plane. Moreover, there exists a unique point σi(c) maximizing the flux uv
along the curve {v + pi(u) = c}. The relaxation term in the momentum equation
expresses the tendency of drivers to adjust their velocity to a desired speed Vi(u),
with a relaxation time δ > 0.

Aiming at traffic control applications, in the following, we consider the time-
dependent preferential velocity:

Vi(u, t) = vimax(t)

(
1 − u

uimax

)
(4.44)

and the pressure function (as in [169, 239])

pi(u, t) = vref
i (t)

γi

(
u

uimax

)γi
(4.45)

equipped with maximal density uimax > 0, maximal velocity vimax(t) > 0, reference
velocity vref

i (t) > 0, and γi > 0. Therefore, also, the source term in (4.43) becomes
time-dependent: gi(u, y) = gi(u, y, t).
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As for first order traffic models, we can define the demand and supply functions
for each road i as follows: for a given constant c (corresponding to a fixed value of
v + pi(u)), we have

Di (u, c, t) =
{(
c − pi(u, t)

)
u if u ≤ σi(c, t),(

c − pi(σi(c, t), t)
)
σi(c, t) if u ≥ σi(c, t),

(4.46)

Si (u, c, t) =
{(
c − pi(σi(c, t), t)

)
σi(c, t) if u ≤ σi(c, t),(

c − pi(u, t)
)
u if u ≥ σi(c, t),

(4.47)

where

σi(c, t) = umax
i

(
c γi

vref
i (t) (1 + γi)

) 1
γi

(4.48)

is the sonic point on the curve {v + pi(u, t)=c} in the (u, uv)-plane. Figure 4.23
provides an illustration of the considered demand and supply functions.

4.5.1.1 Coupling and Boundary Conditions

We describe here the different type of junctions used later and the corresponding
coupling conditions. The considered coupling and boundary conditions can be
expressed in terms of mass flow q = uv and “momentum flow” q(v + pi(ρ)).
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Fig. 4.23 Demand and supply functions corresponding to umax = 1, vref = 2, γ = 2, and the
given values for c
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One-to-One Junction

In the case of one-to-one junction, the flow maximization over all admissible states
leads to

q1 = q2 = q̃ = min
{
D1
(
u1, v1 + p1(u1, t), t

)
, S2

(
ũ2, v1 + p1(u1, t), t

)}
,

(4.49)
where ũ2 is either obtained by the intersection of the curves

{v2(U, t) = v2(U2, t)} and {v2 + p2(U, t) = v1 + p1(u1, t)} (4.50)

or ũ2 = 0.

On-Ramp at a One-to-One Junction

Let us consider a one-to-one junction with an on-ramp, and the demand D2(l, t) at
the on-ramp is computed by

D2(l, t) = ω2(t)

{
fmax

2 if l > 0,

min{f in
2 (t), f

max
2 } if l = 0,

(4.51)

where l is the length of the queue, ω2(t) ∈ [0, 1] is the (time-dependent) metering
rate, f in

2 (t) is the “inflow” of cars arriving at the on-ramp, and fmax
2 is the maximum

flow onto the main road. To get a unique solution, we assign the priority parameter
P to road 1 and set

q1 = min
{
D1
(
u1,W1(t), t

)
, max

{
P S3

(
ũ3,W1(t), t

)
, S3

(
ũ3,W1(t), t

)− D2
(
l2, t
)}}
,

(4.52)

q2 = min
{
D2
(
l2, t
)
, max

{
(1 − P)S3

(
ũ3,W1(t), t

)
, S3

(
ũ3,W1(t), t

)− D1
(
u1,W1(t), t

)}}
,

(4.53)

q3 = q1 + q2, (4.54)

where we have set W1(t) = v1 + p1(u1, t) and ũ3 is either obtained by the
intersection of the curves

{v3(U, t) = v3(U3, t)} and {w3(U, t) = v1 + p1(u1, t)} (4.55)

or ũ3 = 0. The evolution of the queue length at the on-ramp is governed by

d l2(t)

�t
= f in

2 (t)− q2, (4.56)

where we may assume l2(0) = 0.
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On-Ramp at Origin

To better keep track of vehicles entering the network, we consider an on-ramp at
vertexes with only one outgoing road:

D1(l, t) = ω1(t)

{
fmax

1 if l > 0,

min{f in
1 (t), f

max
1 } if l = 0

(4.57)

for the demand at the on-ramp, where l is the length of the queue, ω1(t) ∈ [0, 1]
is the (time-dependent) metering rate, f in

1 (t) is the inflow of cars arriving at the
on-ramp, and fmax

1 is the maximum flow onto the road.
Since in this case there is no value for c to evaluate the supply function of the

road as in (4.49), we consider an auxiliary left stateU1 mimicking the desired inflow
of the on-ramp. We assume that the velocity of the auxiliary state equals the desired
velocity of the road, i.e.,

U1 = (u, uW̃2(u, t)
)

such that uV2(u, t) = D1(l, t), (4.58)

where W̃ (u, t) = V2(u, t)+ p2(u, t), which is solved by

u± = u2
max

2
±
√
(u2

max)
2

4
− u2

maxD1(l, t)

v2
max(t)

. (4.59)

The choice of u− fulfills D2(u−, w̃, t) = D1(l, t).
Finally, we get

q1 = q2 = q̃ = min
{

D1(l1, t), S2
(
ũ2, W̃2(u−, t), t

)}
(4.60)

with W̃2(u−, t) = V2(u−, t) + p2(u−, t), and ũ2 is either obtained by the
intersection of the curves

{v2(U, t) = v2(U2, t)} and {w2(U, t) = W̃2(u−, t)} (4.61)

or ũ2 = 0.
The evolution of the queue at the on-ramp is given by

d l1(t)

�t
= f in

1 (t)− q1. (4.62)
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Outflow Conditions

At nodes with only one ongoing road, we consider absorbing boundary conditions
up to a given maximum flow rate f out

1 (t):

q1 = min
{
D1
(
u1, v1 + p1(u1, t), t

)
, f out

1 (t)
}
. (4.63)

The momentum flow is given by q1(v1 + p1(u1, t)).

4.5.2 Numerical Simulations for Aw–Rascle on Network with
Control

For the numerical solution of the described model, we consider a finite number of
time points tn = n�t , where�t = T/Nt. Moreover, each road i is divided into Nxi
uniform cells of size �xi = Li/Nxi . We also set �t vimax ≤ �xi in all numerical
simulations.

4.5.2.1 Numerical Method

System (4.43) is discretized via a fractional step method composed by a first order
Godunov scheme for the flux term and an implicit Euler method for the relaxation
term.

On each road i, the initial conditions (for j ∈ {1, . . . ,Nxi}) are given by the cell
averages

U0
i,j−0.5 = 1

�xi

j�xi∫

(j−1)�xi

Ui(x, 0)�x for j ∈ {1, . . . ,Nxi} . (4.64)

Then, at each time iteration n ∈ {0, . . . ,Nt − 1}, we compute

Ũn+1
i,j−0.5 = Uni,j−0.5 −

�t

�xi

(
Fni,j − Fni,j−1

)
, (transport) (4.65)

Un+1
i,j−0.5 = Ũn+1

i,j−0.5 +�t g(Un+1
i,j−0.5). (relaxation) (4.66)

The boundary fluxes Fni,0 and Fni,Nxi
are given via coupling/boundary conditions,

while

Fni,j =
(

qni,j
(vni,j−0.5 + pi(uni,j−0.5, t

n)) qni,j

)
for j ∈ {1, . . . ,Nxi} , (4.67)
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with

qni,j = min
{

Di (u
n
i,j−0.5, w

n
i,j−0.5, t

n), Si (ũ
n
i,j , w

n
i,j−0.5, t

n)
}
, (4.68)

where ũni,j is either obtained by the intersection of the curves

{vi(U, tn) = vni,j+0.5} and {vti + pi(U, tn) = wni,j−0.5} (4.69)

or ũni,j = 0, and wni,j−0.5 = vni,j−0.5 + pi(uni,j−0.5, t
n).

4.5.2.2 Numerical Results

We study two different scenarios:

1. The capacity drop for a one-to-one junction with on-ramp
2. Speed control and coordinated ramp metering for a simple network

4.5.2.3 Capacity Drop

We first focus the attention on the capacity drop effect, cf. [169]. We will show how,
increasing the inflow into the network, the outflow will decrease.

We consider the network depicted in Fig. 4.24 consisting of two roads of 1 km
length with an on-ramp in between. On both roads, we set umax = 180 cars

km , vmax =
vref = 100 km

h , γ = 2, δ = 0.005 h, and an initial density of 50 cars
km . At the origin

“in,” we assume a constant (desired) inflow f in
1 = 3500 cars

h . At the on-ramp, we
consider time-dependent inflows, starting from f in

2 = 500 cars
h up to 2500 cars

h and
down to 500 cars

h again. The priority parameter at the on-ramp is P = 0.5.
Table 4.7 and Fig. 4.25 show the simulation results for the AR and the LWR

model (with �x = 100 meters and �t = 1.8 seconds), i.e., the resulting stationary
states. The first two columns report the desired and the actual inflow at the on-
ramp. The following three values are the resulting density, velocity, and the value
of v + p(u) just upstream the on-ramp (end of the first road). The last two columns
show the total outflow at the end of the second road.

We observe that up to 1000 cars
h of inflow at the on-ramp, the total inflow

(of 4500 cars
h ) is within the capacity of the second road. For higher values, the

resulting total flux cannot be received at some point. Then the value of v + p(u)

Fig. 4.24 One-to-one
junction with on-ramp

in on-ramp out
road 1 road 2
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Table 4.7 Capacity drop effect

Inflow at on-ramp [ cars
h ] u1 v1 v1 + p(u1) Outflow AR Outflow LWR

Desired Actual [ cars
km ] [ km

h ] [ km
h ] [ cars

h ] [ cars
h ]

500 500 47.6 73.6 77.1 4000 4000

1000 1000 47.6 73.6 77.1 4500 4500

1500 1500 156.4 13.1 50.9 3554 4500

2000 1764 160.2 11.0 50.6 3527 4500

2500 1764 160.2 11.0 50.6 3527 4500

1000 1000 148.0 17.8 51.6 3629 4500

500 500 137.2 23.8 52.8 3762 4000

500 1,000 1,500 2,000 2,500

3,500

4,000

4,500

desired inflow at on-ramp [cars/h]

ac
tu

al
ou

tfl
ow

[c
ar

s/
h]

AR LWR

Fig. 4.25 Actual outflow depending on the desired inflow at the on-ramp for the AR and the LWR
model

at the end of the first road impacts the total flux entering the second road. As
a consequence, the outflow at the end of the second road for the cases f in

2 ∈
{1500 cars

h , 2000 cars
h , 2500 cars

h } is lower than the outflow for the cases f in
2 ∈

{500 cars
h , 1000 cars

h }. Due to the choice of the priority parameter P = 0.5, the
effect of a decreasing outflow while the desired inflow increases stagnates as soon
as the fluxes from the first road and the on-ramp are equal, which is the case for
f in

2 ∈ {2000 cars
h , 2500 cars

h }.
We point out that, even when the inflow at the on-ramp is lowered again, the

original state for the same values of f in
1 and f in

2 is not reached. This is due to the fact
that the outflow in the congested situation is below the accumulated desired inflows.
Therefore, the queue at the origin keeps increasing even though the capacity of the
road could handle the desired inflows in the free flow situation.

Considering the same scenario with the LWR model (Sect. 4.4 for details), we
see that the outflow increases with the accumulated desired inflows until it reaches
the maximum capacity of 4500 cars

h = umax
2 · vmax

2 (see again Table 4.7 and Fig. 4.25).
According to the chosen priority P = 0.5, the actual inflows at the origin and at the
on-ramp are 2250 cars

h at this stage. Further increasing the inflow at the on-ramp does
not affect the situation on the roads. Moreover, unlike the AR model, decreasing the
desired inflow f in

2 below 1000 cars
h leads back to the original situation (as soon as

the queues have emptied).
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in on-ramp out
road 1 road 2 road 3 road 4

Fig. 4.26 Road network with an on-ramp

Table 4.8 Parameters of the roads in Fig. 4.26

Road Length [km] umax [ cars
km ] vlow [ km

h ] vhigh [ km
h ] Initial density [ cars

km ]
1 2 180 100 100 50

2 1 180 50 100 50

3 1 180 50 100 50

4 2 180 100 100 50

4.5.2.4 Coordinated Speed Control and Ramp Metering

In this section, we aim at controlling maximal speed limits and on-ramp inflows to
minimize the total travel time. The ramp metering rateωi(t) in Eqs. (4.51) and (4.57)
is used to control the demand at the on-ramp. As in Sect. 4.4, we assume vimax =
vimax(t) ∈ [vlow

i , v
high
i ] is another (piecewise constant) control variable. Regarding

the pressure term, we will consider two variants:

1. vref
i (t) = vimax(t), i.e., the pressure term directly depends on the (controllable)

speed limit and therefore pi(u) = pi(u, t).
2. vref

i (t) = vhigh
i , i.e., the pressure term is independent of the current speed limit.

We consider the road network represented in Fig. 4.26 (adapted from [174]) with
the road parameters given in Table 4.8. The exponents in the pressure function are
γi = γ = 2 for all roads and δ = 0.005 h for the relaxation parameter. The priority
parameter at the on-ramp is P = 0.5 and fmax = 2000 cars

h . At the origin “in,” we
consider fmax = 4000 cars

h .
We fix a time horizon of T = 3.0 hours and the boundary conditions depicted in

Fig. 4.27. We aim at minimizing the total travel time

4∑
i=1

T∫

0

Li∫

0

ui(x, t)�x �t +
2∑
j=1

T∫

0

lj (t)�t , (4.70)

given an upper bound of 100 vehicles in the queue of the on-ramp. To solve this
optimization task, we apply a first-discretize-then-optimize approach and adjoint
calculus.

Table 4.9 shows the total travel time for the AR and LWR models with and
without optimal control. The resulting queues for the AR model with scaling of
the pressure function ( ∂pi

∂vimax

= 0) are shown in Fig. 4.28. Without control, there is
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inflow at “in” inflow at on-ramp
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Fig. 4.27 Inflow profiles for the network in Fig. 4.26

Table 4.9 Optimization results for the network in Fig. 4.26

AR, ∂pi
∂vimax


= 0 AR, ∂pi
∂vimax

= 0 LWR

No control 1871.7 1871.7 834.9

Ramp metering only 1325.3 1325.3 834.9

Speed control only 1122.8 872.6 834.9

Both control types 814.5 818.4 834.9

no control ramp metering only
speed control only both control types
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Fig. 4.28 Queue at the origin “in” and the on-ramp with and without optimal control

no queue at the on-ramp, while more than 300 cars accumulate in the queue at the
origin. With ramp metering alone, the queue at the origin is reduced to zero, and
up to 100 cars accumulate in the queue at the on-ramp. When ramp metering and
speed control are both implemented, the upper bound of 100 cars is never reached.
In the case of speed control alone, we have no queue at the on-ramp, while some
cars accumulate at the origin.
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Fig. 4.29 Optimal control of vimax(t) on road 2 (left) and road 3 (center) and ω(t) at the on-ramp
(right)

For the LWR model, both queues stay empty during the whole time horizon even
without controls, so the optimization produces the same result. This is due to the
inability of the LWR model to capture the capacity drop effect.

Figure 4.29 shows the applied optimal controls.

4.6 Bibliographical Notes

The problem of distributed control for partial differential equations with application
to traffic has been addressed in several papers in the literature.
An overview of the variable speed limit approaches can be found in [191]. The first
papers dealing with variable speed limit using a discretized system of hyperbolic
partial differential equations date back to the end of the nineties [3, 214]. In
particular, the work [214] used the speed as control to stabilize the nonlinear
hyperbolic PDE even with disturbances in the initial data. In the engineering
literature, several papers deal with variable speed limit by controlling a discretized
hyperbolic PDE [32, 63, 173, 227, 238]. The control is the speed limit that is used
to detect and dissipate shock waves generated by macroscopic traffic models. In
[173], the problem is analyzed following a Model Predictive Control approach,
where the optimization is obtained using sequential quadratic programming (SPQ),
while in [63, 96] the problem is analyzed by using closed loop/feedback approaches.
For an overview of the approaches on the continuous hyperbolic partial differential
equation, in addition to the papers used in this chapter [116, 153, 193] recently, the
work [186] looked at the 1D scalar partial differential equation

∂tu+ ∂x(v(t, x)u(t, x)) = 0, (4.71)

with VSL applied continuously in time and space along a freeway.
In the last few years, variable speed limit approaches have been used also in the
case of moving actuators. In particular, autonomous vehicles can be used to control
traffic by adopting specific speed policies, see for example [31, 167].
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Chapter 5
Lagrangian Control of Conservation
Laws and Mixed Models

5.1 Introduction

A vehicle with different (eventually controlled) dynamics from general traffic along
a street may reduce the road capacity, thus generating a moving bottleneck, and can
be used to act on the traffic flow. The interaction between the controlled vehicle
and the surrounding traffic, and the consequent flow reduction at the bottleneck
position, can be described either by a conservation law with space dependent flux
function [200], or by a strongly coupled PDE-ODE system proposed in [112, 208].

Many researchers addressed the problem of detecting a single vehicle among
traffic. Most of these are PDE-ODE models where the main traffic is described by a
scalar conservation law and the single vehicle’s trajectory satisfies an ODE. In these
early works, see [81, 82], the car did not influence the surrounding traffic, making
the system not fully coupled. More complicated situations involve cases in which
the car influences in turn the bulk traffic. These cases give rise to more interesting
control problems, where it is possible to control the main traffic stream by acting
on the dynamics of single (possibly many) vehicles among the fleet. The main idea
is to create moving bottlenecks that produce a non-negligible capacity drop in the
main traffic flow.

The problem of fixed and moving bottlenecks was first introduced in the
engineering literature [101, 102, 203, 208–210]. In the mathematical literature the
first models involving fixed bottlenecks were proposed in [78] and [140]. The model
in [78] considers the case of a tollgate that is modeled as a pointwise constraint
on the maximal flux. This model can be used for control purposes as showed
in Sect. 3.5. The second paper uses one-to-one junctions to account for different
capacities. Later on the problem of moving bottlenecks was addressed in [112, 200].
Ad-hoc numerical schemes were introduced to solve these models numerically, see
[67, 111, 146]. Moreover, extension to second order models or vehicle platooning
were developed in [137, 243] respectively. These models have been used in the latest
years to address control problems for traffic by using ad-hoc capacity drops, variable
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speed limits and autonomous vehicles (AVs). In fact, it is possible to describe the
dynamics of a controller involving variable speed limits and/or pointwise capacity
drops as a moving bottlenecks, see [167, 181, 228, 246].

5.2 PDE-ODE Models for Moving Bottlenecks

As usual, the flux function f is given by f (u) = uv(u), where v = v(u) is the
average speed of cars, with v(0) = vmax and v(umax) = 0. We assume that the flux
satisfies the condition

(F) f : C2 ([0, umax]; [0,+∞)), f (0) = f (umax) = 0,
f strictly concave: −B ≤ f ′′(u) ≤ −β < 0 for all u ∈ [0, umax], for some
β,B > 0.

We note that (F) implies that v′(ρ) < 0 for every ρ ∈ ]0, R[, see [128, Lemma 1].

5.2.1 A Macroscopic Model with Space Dependent Flux

In [146, 200], the authors introduce a macroscopic model based on the LWR traffic
flow model [224, 249], in which the capacity drops due to the controlled vehicle
is modeled by a smooth cut-off function multiplying the flux. More precisely, the
model reads as follows:

∂t u+ ∂x fϕ(x, y(t), u) = 0, t > 0, x ∈ R, (5.1a)

ẏ(t) = ω v(u(t, y(t))), t > 0, (5.1b)

u(0, x) = u0(x), x ∈ R, (5.1c)

y(0) = y0, (5.1d)

where u = u(t, x) ∈ [0, umax] is the density of cars, y = y(t) is the position of the
controlled vehicle, ω ∈ ]0, κ[ is its maximal speed for some κ ∈ ]0, 1], and the flux
function fϕ is given by

fϕ(x, y, u) = f (u) · ϕ(x − y). (5.2)

In (5.2), ϕ(ξ) is a function representing the capacity dropping of car flows, due to
the presence of the slower vehicle. We assume further the cut–off function ϕ(ξ) to
be smooth and that there exist 0 < κ < 1 and δ > 0 such that

(ϕ.1) κ ≤ ϕ(ξ) ≤ 1, for every ξ ∈ R;
(ϕ.2) ϕ(ξ) = 1 for every ξ 
∈ [−δ, δ];
(ϕ.3) ϕ(0) = κ;
(ϕ.4) ϕ is strictly decreasing in ] − δ, 0[ and strictly increasing in ]0, δ[;
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Fig. 5.1 (a) An example of the cut-off function ϕ(ξ) with δ = 0.5 and κ = 0.7. (b) Moving
bottleneck speed ω v(u) and mean traffic speed at ξ = x − y(t)

see Fig. 5.1a. Observe that the assumption ω < κ ensures that the other vehicles can
overtake the moving bottleneck caused by the controlled one.

The solutions to (5.1) are intended in the usual weak sense.

Definition 21 A vector (u, y) is a solution to (5.1) if u(t, ·) is a function in BV(R)
for a.e. t > 0 which solves (5.1a) in the sense of distributions, that is

∫ +∞

0

∫

R

{u ∂t φ(t, x)+ f (x, y(t), u) ∂x φ(t, x)}dxdt +
∫

R

u0(x)φ(0, x)dx = 0,

for any φ ∈ C1
c(R

2;R+).
Moreover, the position of the slower moving vehicle y(t) solves equation (5.1b)

in [0, T ] in the sense of Filippov (see [132]), namely y(t) is an absolutely
continuous function such that y(0) = y0 and

ẏ(t) ∈ co{ω v(u) : u ∈ I[u(t, y(t)−), u(t, y(t)+)]}

for a.e. t > 0, where the set I[a, b] is defined as the smallest interval containing a
and b.

Existence of such solutions is proven in [200] for any u0 ∈ BV(R). The proof
relies on the construction of approximate solutions by a fractional step method. A
wave-front tracking approach can be found in [56]. Multiple bottlenecks can be
handled as in [56, Section 6] or [146].
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5.2.2 PDE-ODE Models with Flux Constraint

Following the model proposed in [112, 138, 208], we consider the following coupled
PDE-ODE system

∂t u+ ∂x f (u) = 0, t > 0, x ∈ R, (5.3a)

ẏ(t) = min {ω(t), v(u(t, y(t)+))} , t > 0, (5.3b)

f (u(t, y(t)))− ẏ(t)u(t, y(t)) ≤ Fα (ẏ(t)) , t > 0, (5.3c)

u(0, x) = u0(x), x ∈ R, (5.3d)

y(0) = y0, (5.3e)

where u0 and y0 are the initial traffic density and the controlled vehicle position,
and ω(t) ∈ [0, vmax] is the desired speed of the controlled vehicle at time t > 0.

Remark 12 Unlike the previous model (5.1b), in (5.3b) the controlled vehicle
travels at its own speed ω(t) if downstream traffic conditions allow it, i.e., if
v(u(t, y(t)+)) ≥ ω(t), that is u(t, y(t)+) ≤ v−1(ω(t)) =: u∗(t), see Fig. 5.2.

The function Fα in (5.3c) is defined as

Fα (ẏ(t)) := max
u∈[0,umax]

(αf (u/α)− uẏ(t)) , α ∈ ]0, 1[, (5.4)

and represents the road capacity reduction due to the presence of the vehicle, acting
as a moving bottleneck which imposes a unilateral flux constraint at its position.
The coefficient α is the capacity reduction rate given by the ratio of the number of
lanes non occupied by the vehicle over the total number of lanes.

Fig. 5.2 The speed of the
moving bottleneck: u∗(t) is
defined by the equality
v(u∗(t)) = ω(t)

uumaxu∗(t)

ẏ(t)

ω(t)

v(u)

bottleneck speed

traffic speed
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To determine the function Fα , we consider reduced flux function

fα : [0, αumax] −→ R
+

u 
−→ uv(u/α) = αf (u/α),

which is a strictly concave function satisfying fα(0) = fα(αumax) = 0. For every
ω ∈ [0, vmax], define the point ũω as the unique solution to the equation f ′

α(u) = u.
Introduce also, for every ω ∈ [0, vmax], the function

ϕω : [0, umax] −→ R
+

u 
−→ fα(ũω)+ ω (u− ũω) .

Hence, if ẏ(t) = ω, the function Fα in (5.3c) is defined by

Fα : [0, vmax] −→ R
+

ω 
−→ ϕω(0) = fα(ũω)− ωũω. (5.5)

If ẏ(t) = v(u(t, y(t)+)), the inequality (5.3c) is trivially satisfied since the left-
hand side is zero. Finally, the points 0 ≤ ǔω ≤ ũω ≤ ûω ≤ uω ≤ umax are uniquely
defined by

ǔω = min Iω, ûω = max Iω, Iω = {u ∈ [0, umax] : f (u) = ϕω(u)} ,

and implicitly by

v(uω) = ω,

see [112, 138] and Fig. 5.3. It is straightforward to see that ǔvmax = ũvmax = ûvmax =
uvmax = 0.

Solutions of the Cauchy problem (5.3) are intended in the following weak sense.

Definition 22 A couple (u, y) ∈ C0
(
R
+;L1

loc(R; [0, umax])
)×W1,1

loc (R
+;R), with

TV(u(t, ·)) < +∞ for all t ∈ R
+, is a solution to (5.3) if

Fig. 5.3 The definition of
ũω , ǔω, ûω and uω

0

Fα(ω)

uωũω ûωǔω u

f

fα

umax

ϕω

ωu
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1. For every κ ∈ R and for all ϕ ∈ C1
c(R

2;R+) it holds

∫

R+

∫

R

(|u− κ| ∂tϕ + sgn(u− κ) (f (u)− f (κ)) ∂xϕ) dx dt

+
∫

R

|u0 − κ|ϕ(0, x) dx (5.6a)

+ 2
∫

R+
(f (κ)− ẏ(t)κ − min{f (κ)− ẏ(t)κ, Fα(ẏ(t))}) ϕ(t, y(t)) dt ≥ 0 ;

2. y is a Carathéodory solution of (5.3b), (5.3e), i.e., for a.e. t ∈ R
+

y(t) = y0 +
∫ t

0
min {ω(t), v(u(s, y(s)+))} ds ; (5.6b)

3. the constraint (5.3c) is satisfied, in the sense that for a.e. t ∈ R
+

lim
x→y(t)± (f (u)− umin {ω(t), v(u)}) (t, x) ≤ Fα(ẏ(t)), (5.6c)

with Fα defined in (5.4).

Well-posedness results for (5.3) are based on wave-front tracking approxima-
tions. Therefore, we focus here on the solution to the Riemann problem, i.e.,
problem (5.3) with initial data

y0 = 0 and u0(x) =
{
uL if x < 0,

uR if x > 0.
(5.7)

Denote by R the standard (i.e., without the constraint (5.3c)) Riemann solver for
(5.3a)–(5.7), i.e., the (right continuous) map (t, x) 
→ R(uL, uR)(x/t) given by the
standard weak entropy solution, see Sect. A.6.1. Following [112, Definition 3.1],
the constrained Riemann solver is defined below.

Definition 23 For any ω ∈ [0, vmax], the constrained Riemann solver Rω :
[0, umax]2 → L1

loc(R; [0, umax]) is defined as follows.

1. If f (R(uL, uR)(ω)) > Fα(ω)+ ωR(uL, uR)(ω), then

Rω(uL, uR)(x/t) =
{
R(uL, ûω)(x/t) if x < ωt,
R(ǔω, uR)(x/t) if x ≥ ωt, and y(t) = ωt.

2. If f (R(uL, uR)(ω)) ≤ Fα(ω)+ ωR(uL, uR)(ω), then

Rω(uL, uR) = R(uL, uR) and y(t) = min {ω, v(u(t, y(t)+))} t.
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0 uωûωǔω u

f

umax

uR
uL

ϕu

ω

uL uR

ûω ǔω

x

t

0

Fig. 5.4 The constrained Riemann problem (5.3)–(5.7), case 1. In this case y(t) = y(0) + ωt ,
while the solution u is composed by two classical shocks separated by an undercompressive shock
between ûω and ǔω

0 uωûωǔωu

f

umax

uR

uL

ϕω

ω
uL

uRuR

x

t

0

v(uR)

Fig. 5.5 The constrained Riemann problem (5.3)–(5.7), case 2. In this case y(t) = y(0)+v(uR)t ,
while the solution for u is composed by the classical shock connecting uL to uR

Figures 5.4 and 5.5 illustrate two possible configurations corresponding to points
1. and 2. in Definition 23, respectively. In particular, we remark that when the
constraint is enforced (point 1.) the jump discontinuity from ûω to ǔω is an
undercompressive shock, which satisfies Rankine–Hugoniot conditions but violates
Lax entropy conditions, which motivates the last term in (5.6a).

We finally have the following general existence result [138], holding for initial
data and controls with bounded total variation.

Theorem 32 Let the initial conditions u0 ∈ BV (R; [0, umax]), y0 ∈ R, and the
open-loop control ω ∈ BV

(
R
+; [0, vmax]

)
. Then there exists a solution (u, y)

to (5.3) in the sense of Definition 22.

For partial stability results, see [114, 223].
The construction presented above can be extended to second order models,

consisting in 2 × 2 systems of conservation laws accounting for mass conservation
and an acceleration balance equation. In [272], the Aw–Rascle–Zhang (ARZ)
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model [23, 277] is coupled with a moving bottleneck (with constant maximal speed)
as follows:

{
∂tu+ ∂x(uv) = 0,

∂t (u(v + p(u)))+ ∂x(uv(v + p(u))) = 0,
x ∈ R, t > 0, (5.8a)

ẏ(t) = min {ω, v(t, y(t)+)} , (5.8b)

lim
x→y(t)± (u(v − min{ω, v})) (t, x) ≤ Fα(ẏ(t)), (5.8c)

with initial conditions

u(0, x) = u0(x), (5.9a)

v(0, x) = v0(x), (5.9b)

y(0) = y0. (5.9c)

Above, u = u(t, x) and v = v(t, x) denote respectively the density and the mean
velocity of traffic. Note that the quantity v+p(u), usually referred to as Lagrangian
marker, is transported at velocity v and depends on the density through a pressure
law p ∈ C2([0,+∞[; [0,+∞[) satisfying the following hypotheses:

p(0) = 0, (5.10a)

p′(u) > 0 for every u > 0, (5.10b)

u 
→ up(u) is strictly convex. (5.10c)

The maximal speed ω of the controlled vehicle satisfies 0 < ω < vmax. Hence, the
phase space for (5.8a) is defined by the domain

D = {(u, v) ∈ R
+ × R

+ : 0 ≤ v ≤ vmax, 0 ≤ v + p(u) ≤ p(umax)}

away from the controlled vehicle position, and

Dα = {(u, v) ∈ R
+ × R

+ : 0 ≤ v ≤ vmax, 0 ≤ v + p(u) ≤ p(αumax)}

at x = y(t).
When the controlled vehicle acts on the flow, namely when v > ω at x = y(t),
the left and right initial states of the Riemann problem associated with (5.8) will be
joined by simple waves associated with the two characteristic fields, but the phase
space Dα must be preserved, namely that 0 ≤ v ≤ vmax and v + p(u) ≤ p(αumax)

at the controlled vehicle position. The first constraint is already satisfied when the
vehicle is not present. The second inequality is equivalent to

u(v − ω) ≤ u (p(αumax)− p(u)− ω) .



5.2 PDE-ODE Models for Moving Bottlenecks 119

Under this form, it is clear that the constraint reads as a constraint on the relative flux
at the bus position. Let us determine under which condition the quantity v + p(u)
equals a constant K such that K ≤ p(αumax), or equivalently

u(v − ω) = u(K − p(u))− uω,

withK such thatK ≤ p(αumax). The function u→ φ(u;K) := u(K−p(u))−uω
is strictly concave in u by assumption (5.10c) and non-decreasing inK since u ≥ 0.
Moreover, we have φ(0;K) = 0 for all K . Therefore, the maximal possible value
Fα of the relative flux corresponds to K = p(αumax) and

Fα(ω) = max
u∈[0,umax]

u (p(αumax)− p(u)− ω) , (5.11)

which is attained at uα such that

p(αumax)− uαp′(uα)− p(uα)− ω = 0. (5.12)

Note that we have to assume ω < p(αumax) to have uα > 0. From (5.11) and (5.12),
we find that the largest admissible flux is given by Fα(ω) = u2

αp
′(uα). Therefore,

the classical solution will remain admissible provided that the relative flux does not
exceed the upper bound Fα(ω), see Fig. 5.6, where we have notedwα := p(αR) and
wmax := p(R). This criterion is the key ingredient to determine the two possible
Riemann solutions described in [272].

Let UL = (uL, vL) and UR = (uR, vR) be two points in the domain D. We
consider the Riemann problem for (5.8) corresponding to the initial data

uα αumax u

ωu

Fα(ω) + ωu

uv

v + p(u) = wα

v + p(u) = wmax

Fα(ω)

umax
(a)

Fα(ω)

u(v − ω)

v + p(u) = wmax

v + p(u) = wα

u

−ωu

umaxαumaxuα

(b)

Fig. 5.6 Representation of the phase plane in the fixed and in the bus reference frames. (a) Flux
representation in the phase plane. (b) Flux representation in the bus reference frame
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u(0, x) =
{
uL if x < 0,

uR if x > 0,
(5.13a)

v(0, x) =
{
vL if x < 0,

vR if x > 0,
(5.13b)

y(0) = 0. (5.13c)

and to the constant bottleneck speed ẏ(t) = ω for all t > 0. Let I be the set

I = {u ∈ [0, umax] : u (vL + p(uL)− p(u)) = Fα(ω)+ uω}.

Since the map u 
→ u (vL + p(uL)− ω − p(u)) is strictly concave due to (5.10c),
the set I contains at most two elements. If I 
= ∅, let (û, v̂) and (ǔ1, v̌1) be the
points defined by

û = max I, v̂ = Fα(ω)

û
+ ω, ǔ1 = min I and v̌1 = Fα(ω)

ǔ1
+ ω.

These are respectively the points with maximal and minimal density of the Lax
curve of the first family passing through (uL, vL) which satisfy the condition (5.8c)
on the flux. Moreover, if vR > ω, we define the point (ǔ2, v̌2) as

ǔ2 = Fα(ω)

vR − ω and v̌2 = vR.

This is the point of maximal density of the Lax curve of the second family passing
through (uR, vR) for which (5.8c) is satisfied. All these points are depicted in
Fig. 5.7.

Fig. 5.7 Notations used in
the definition of the
constrained Riemann solvers
Rω
ARZ1 and Rω

ARZ2

u

Fα(ω) + ωu

uv

Fα(ω)

(uR, vR)

(ǔ2, v̌2)
(ǔ1, v̌1)

(û, v̂)

(uL, vL)
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Let RARZ be the standard Riemann solver for (5.8a), (5.13a), (5.13b), see [23],
and let

ū(UL,UR)(·) and v̄(UL,UR)(·)

be respectively the u and v components of RARZ(UL,UR)(·), and let

f1(RARZ(UL,UR)(·)) := ū(UL,UR)(·) v̄(UL,UR)(·)

be the first component of the flux function of the ARZ system.
We propose now two possible definitions of Riemann solver for the constrained

ARZ system (5.8).

Definition 24 The Riemann solver

RωARZ1 : D ×D → L1(R,R+ × R
+)

is defined as follows.

1. If f1(RARZ(UL,UR)(ω)) > Fα(ω)+ ω ū(UL,UR)(ω), then

RωARZ1(UL,UR)(x/t) =
{
RARZ((uL, vL), (û, v̂))(x/t) if x < y(t),

RARZ((ǔ1, v̌1), (uR, vR))(x/t) if x > y(t),

and y(t) = ω t.

2. If f1(RARZ(UL,UR)(ω)) ≤ Fα(ω)+ ω ū(UL,UR)(ω) then

RωARZ1(UL,UR)(x/t) = RARZ(UL,UR)(x/t)

and y(t) = min {ω, v̄(UL,UR)(ω)} t.
Remark that the solution RωARZ1 is conservative for both density and momentum
of the vehicles. Moreover, in case 1., the solution given by RωARZ1 does not satisfy
the Lax entropy condition at the jump discontinuity between the left state (û, v̂) and
the right state (ǔ1, v̌1), because ǔ1 < û. Therefore, as in the scalar case, (û, v̂) and
(ǔ1, v̌1) are connected by a non-classical shock (we refer the reader to [213] for an
extensive survey on entropy-violating jump discontinuities).

Definition 25 The Riemann solver

RωARZ2 : D ×D → L1(R,R+ × R
+)

is defined as follows.
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1. If f1(RARZ(UL,UR)(ω)) > Fα(ω)+ ω ū(UL,UR)(ω), then

RωARZ2(UL,UR)(x/t) =
{
RARZ((uL, vL), (û, v̂))(x/t) if x < y(t),

RARZ((ǔ1, v̌2), (uR, vR))(x/t) if x > y(t),

and y(t) = ω t.

2. If f1(RARZ(UL,UR)(ω)) ≤ Fα(ω)+ ω ū(UL,UR)(ω) then

RωARZ2(UL,UR)(x/t) = RARZ(UL,UR)(x/t)

and y(t) = min {ω, v̄(UL,UR)(ω)} t.
The Riemann solver RωARZ2 conserves only the number of the vehicles. Indeed,
along the line x = y(t) the Rankine–Hugoniot condition holds for the first flux
component, because both (û, v̂) and (ǔ2, v̌2) belong to the line uv = Fα(ω) + ωu,
but not for the second component.

Figure 5.8 presents a comparison of the solutions given by the Riemann solvers
RωARZ1 and RωARZ2. We observe that the solver RωARZ1 gives a constant low density
region just downstream the bus position, while applying RωARZ2 results in turn in
a region in which the density is higher and non-constant. In particular, in the latter
case the bus impacts the downstream traffic on a wider region.

5.2.3 A PDE-ODE Model for Vehicle Platooning

The first order LWR model can be adapted to describe the dynamics of the bulk
traffic interacting with a platoon of vehicles. We denote by zD = zD(t) and zU =
zU (t) respectively the downstream and upstream endpoints of the platoon. At the
platoon location, the road capacity is reduced proportionally to the number of lanes
occupied by the platoon, and the platoon acts as a flux constraint on the interval
[zU (t), zD(t)]. The resulting coupled PDE-ODE model reads

∂tu+ ∂xF (t, x, u) = 0, (t, x) ∈ R
+ × R, (5.14a)

u(0, x) = u0(x), x ∈ R, (5.14b)

żU (t) = vU (t, u(t, zU (t)+)), t ∈ R
+, (5.14c)

zU (0) = z0
U , (5.14d)

żD(t) = vD(t, u(t, zD(t)+)), t ∈ R
+, (5.14e)

zD(0) = z0
D. (5.14f)

Above, the space-time discontinuous flux function F is defined as
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Fig. 5.8 Spatio-temporal evolution of traffic density and moving bottleneck trajectory given by
Rω
ARZ1 (top) and Rω

ARZ2 (bottom) corresponding to the data (uL, vL) = (9, 1) for x < 0,
(uR, vR) = (2, 8) for x > 0, ω = 4, α = 0.5, umax = 15 and y0 = −0.1

F(t, x, u) :=
{
f (u) if x 
∈ [zU (t), zD(t)],
fα(u) := αf (u/α) if x ∈ [zU (t), zD(t)].

(5.15)

To comply with the varying road capacity, we have to consider initial data u0 such
that

u0(x) ∈ [0, αumax] if x ∈ [z0
U , z

0
D],

u0(x) ∈ [0, umax] otherwise.
(5.16)

The dynamics of the platoon ending points is governed by (5.14c)–(5.14e), where

vU (t, u) := max {ωU(t),−fα(u)/(umax − u)} , (5.17)
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vD(t, u) := min {ωD(t), v(u)} , (5.18)

where ωU(t) ∈ [−vmax, vmax] and ωD(t) ∈ [0, vmax] are the controllable maximal
speeds of the upstream and downstream endpoints respectively. Equation (5.18)
accounts for the fact that the platoon cannot move quicker than the downstream
traffic velocity. Moreover, the speed ωD is constrained to be positive, since vehicles
cannot move backwards. On the other hand, if vehicles are allowed to join (and
leave) the platoon, ωU may take negative values. In the case of negative speed,
condition (5.17) ensures that the problem is well-posed.

Following [243], weak entropy solutions of (5.14) are intended in the following
sense:

Definition 26 A weak entropy solution to (5.14)–(5.15)–(5.16) is a triple

(u, zU , zD) ∈ C0
(
R
+;L1

loc(R; [0, umax])
)× (W1,∞(R+;R))2 such that

(i) u ∈ L∞ (
R
+;BV(R; [0, umax])

)
;

(ii) u(t, x) ∈ [0, αumax] for a.e. x ∈ [zU (t), zD(t)] and t > 0;
(iii) for all κ ∈ R and all test functions ϕ ∈ C1

c(R
2;R+) it holds

∫

R+

∫

R

(|u− κ| ∂tϕ + sgn(u− κ) (F (t, x, u)− F(t, x, κ)) ∂xϕ) dx dt

+
∫

R

|u0 − κ|ϕ(0, x) dx

+
∫

R+
|F(t, zU (t)+, κ)− F(t, zU (t)−, κ)|ϕ(t, zU (t)) dt

+
∫

R+
|F(t, zD(t)+, κ)− F(t, zD(t)−, κ)|ϕ(t, zD(t)) dt ≥ 0;

(iv) zU and zD are Carathéodory solutions of (5.14c)–(5.14d), respectively (5.14e)–
(5.14f), i.e., for a.e. t ∈ R

+ it holds

zU (t) = z0
U +

∫ t

0
vU (s, u(s, zU (s)+)) ds,

zD(t) = z0
D +

∫ t

0
vD(s, u(s, zD(s)+)) ds.

The construction of the corresponding Riemann solvers is detailed in [243,
Section 3]. Figure 5.9 provides an illustration of the entropy weak solution for
f (u) = u(1 − u) and α = 0.5 corresponding to the following initial data:
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Fig. 5.9 Space-time evolution of the solution to (5.14) corresponding to the initial datum (5.19):
plot (a) displays the absolute density values u(t, x) everywhere, plot (b) accounts for the relative
density u(t, x)/αumax at the platoon location, accounting for the reduced road capacity

u0(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0.3 if x < 0.2,

0.4 if 0.2 ≤ x < 0.5,

0.5 if 0.5 ≤ x < 0.8,

0.9 if x ≥ 0.8,

z0
U = 0.2, z0

D = 0.5, (5.19)

and control values ωD = 0.3 and ωU = 0.1. At the back-end of the platoon
a congestion appears. For the downstream endpoint of the platoon, we have a
rarefaction wave followed by a shock. When the platoon reaches the downstream
congestion, the front-end point of the platoon slows down adapting its speed to the
downstream traffic. Since the speeds of the initial and final points of the platoon are
different, the length of the platoon changes during the simulation. In particular, the
speed of the upstream endpoint is not affected by the surrounding traffic conditions.

5.3 Numerical Methods for Moving Bottlenecks

In this section we provide numerical schemes for the moving bottleneck models
introduced in Sect. 5.2. Simulations are performed using algorithms based on the
Godunov scheme [154]. All the methods for the numerical approximation of the
moving bottleneck models presented in this section are divided into two steps:

1. Numerical solution of the conservation law: using an ad-hoc finite volume
method, for example, the Godunov scheme.

2. Numerical solution of the ODE: typically solved by an Euler-type method
based on the approximate PDE solution computed at the previous step.
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To discretize the conservation law, we introduce a numerical grid with the following
notation:

• �x is the space grid size;
• �t is the time grid size;

• (tn, xj ) =
(
n�t,

(
j + 1

2

)
�x
)

are the grid points for n ∈ N and j ∈ Z,

respectively the number of time and space nodes of the grid, while x
j− 1

2
= j�x

are the cell interfaces.

In order to approximate the conservation law (5.3a), we place ourselves in the
general framework of conservative finite volume schemes and first approximate
the initial datum by a piecewise constant function given by its average on the

discretization cells Cj =
[
x
j− 1

2
, x
j+ 1

2

[
, namely

u0
j =

1

�x

∫ x
j+ 1

2

x
j− 1

2

u0(x) dx, j ∈ Z.

To compute the approximation unj of the average value of the exact solution u at
time tn on the cell Cj for j ∈ Z and n ≥ 1, we then integrate the conservation law.
Using Green’s formula, we naturally end up with an iterative procedure of the form

un+1
j = unj −

�t

�x

(
Fn
j+ 1

2
− Fn

j− 1
2

)
, (5.20)

where the numerical fluxes Fn
j+ 1

2
represent an approximate value of the exact flux

that passes through the interface x
j+ 1

2
in the time interval [tn, tn+1[.

5.3.1 A Coupled Godunov-ODE Scheme for Model (5.1)

We first describe the Godunov numerical scheme for the space dependent flux
function (5.1a). We consider a cell-centered discretization of the flux function [24]
and we proceed as follows. For each point x ∈ R, we define the corresponding
demand and supply functions as

Dϕ(x, y, u) =
{
fϕ(x, y, u) if u < ucr,

fϕ(x, y, ucr) if u ≥ ucr,

Sϕ(x, y, u) =
{
fϕ(x, y, ucr) if u < ucr,

fϕ(x, y, u) if u ≥ ucr,
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tn

tn+1

xm xm+ 1
2

xm+1 xm+ 3
2

yn

Δtin

yn+1

ω v(un+1
m )

ω v(un+1
m+1)

Fig. 5.10 Construction of the approximate bottleneck trajectory yn

where ucr ∈ [0, umax] is the point of maximum of f (u). Then the Godunov
numerical flux at the cell interface j + 1

2 and time tn can be computed as

Fn
j+ 1

2
= min

{
Dϕ(xj , y

n, unj ), Sϕ(xj+1, y
n, unj+1)

}
,

where yn denotes the approximated bottleneck position at time tn. The density can
then be updated using (5.20), under the strong CFL condition �t ≤ 0.5�x/vmax.

To update the bottleneck position, let m ∈ Z be such that yn ∈ Cm. Using the
updated density value un+1

m , we move the bottleneck position at speed ω v(un+1
m )

until it reaches the cell interface m+ 1
2 at tn +�tin given by

�tin =
x
m+ 1

2
− yn

ω v(un+1
m )

,

after which it continues at speed ω v(un+1
m+1), see Fig. 5.10. Therefore we set

yn+1 = yn + min{�t,�tin}ω v(un+1
m )+ max{�t −�tin, 0}ω v(un+1

m+1).

Figure 5.11 shows a controlled vehicle interacting with a shock and a rarefaction
wave.

5.3.2 A Conservative Scheme for Non-Classical Solutions to
the PDE-ODE Models with Flux Constraint

The PDE-ODE models (5.3), (5.8) and (5.14) can be numerically solved using the
following approach, here detailed for the scalar case.
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Fig. 5.11 Model (5.1): x − t plots for the interaction of the controlled vehicle with a shock (left)
and a rarefaction (right), with v(u) = 1 − u, κ = 0.6 and δ = 0.25

Numerical Scheme for the PDE (5.3a) We use the classical Godunov
scheme [154] away from the non-classical shocks, i.e. away from the bottleneck
position. In the vicinity of the controlled vehicle position, where non-classical
shock waves may arise, we refer to the approach introduced in [45], which consists
in adding details in the piecewise constant representation (on each cell Cj ) of the
approximate solution. The discontinuities are reconstructed in the relevant cells
Cj and used to define the numerical fluxes Fn

j+ 1
2

instead of simply using the

constant values unj and unj+1. This allows to exactly capture isolated non-classical
discontinuities.

Assume that at time tn, the bottlenck position yn is located in the cell Cm
for some m ∈ Z. According to the Riemann solver provided in Sect. 5.2.2,
Definition 23, a non-classical shock could appear locally around the bus whenever
the condition

f (unm) > Fα(ω(t
n))+ ω(tn)unm, (5.21)

is satisfied. The idea is to consider unm not only as an approximation of the average
value of the solution at time tn on the cell Cj , but also as resulting from information
on the structure of the exact Riemann solution Rω(tn)(unm−1, u

n
m+1) associated with

the states unm−1 and unm+1. Therefore, if also

f (R(unm−1, u
n
m+1)(ω(t

n))) > Fα(ω(t
n))+ ω(tn)R(unm−1, u

n
m+1)(ω(t

n)),

(5.22)
holds, in the cell Cm we replace unm by the left and right states unm,l = ûω(tn) and
unm,r = ǔω(tn) corresponding to the non-classical shock appearing in the constrained
Riemann solver associated with unm−1 and unm+1. To guarantee mass conservation,
the reconstructed discontinuity must be located inside Cm at the position

x̄m = x
m− 1

2
+ dnm�x, (5.23)
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Fig. 5.12 Reconstruction of
a non-classical shock

xn
m−1 xn

m+1xn
myn

un
m−1

un
m+1

ǔα

ûα

where dm ∈ [0, 1] is defined by

dnmu
n
m,l + (1 − dnm)unm,r = unm, (5.24)

see Fig. 5.12.
We need now to define the numerical flux at the cell interfaces x

m± 1
2
. Let us first

recall that Godunov’s flux function (or any monotone and consistent numerical flux)
is used to define Fnj+1/2, j 
= m, under the classical CFL condition

�t max
j∈Z

∣∣∣f ′(unj )
∣∣∣ ≤ 1

2
�x, (5.25)

and we keep the same definition for Fnm+1/2 whenever the conditions (5.21) and
(5.22) are not both satisfied simultaneously. Let us denote by

�t
m+ 1

2
= 1 − dnm

Vb
�x

the time needed by the reconstructed discontinuity to reach the interface. The
numerical flux at x

m+ 1
2

is then given by

�t Fn
m+ 1

2
= min (�t

m+ 1
2
,�t)f (unm,r )+ max (�t −�t

m+ 1
2
, 0)f (unm,l). (5.26)

Besides, we set Fn
m− 1

2
= f (unm,l).

To overcome problems induced by numerical diffusion around classical shocks,
the reconstruction technique can also be applied to classical shocks. Given a cell Cj
for some j ∈ Z, j 
= m, such that unj−1 < unj+1, we introduce the left and right
traces unj,l = unj−1 and unj,r = unj+1 of a reconstructed discontinuity and we define
dnj by
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dnj = unj,r − unj
unj,r − unj,l

. (5.27)

Let us denote by λ(unj,l, u
n
j,r ) the speed of the discontinuity given by the Rankine–

Hugoniot condition, i.e.,

λ(unj,l, u
n
j,r ) :=

f (unj,l)− f (unj,r )
unj,l − unj,r

.

Then, if it is actually possible to reconstruct such a discontinuity within the cell Cj ,
that is to say if dnj ∈ [0, 1], the numerical fluxes at x

j± 1
2

are defined by

• if λ(unj,l, u
n
j,r ) ≥ 0,

�t Fn
j+ 1

2
= min (�t

j+ 1
2
,�t)f (unj,r )+max (�t −�t

j+ 1
2
, 0)f (unj,l), (5.28)

with �t
j+ 1

2
= 1 − dnj
λ(unj,l, u

n
j,r )
�x.

• if λ(unj,l, u
n
j,r ) ≤ 0,

�t Fn
j− 1

2
= min (�t

j− 1
2
,�t)f (unj,l)+max (�t −�t

j− 1
2
, 0)f (unj,r ), (5.29)

with �t
j− 1

2
= dnj

−λ(unj,l, unj,r )
�x,

where, with some abuse of notation, we mean that if λ(unj,l, u
n
j,r ) = 0 then Fn

j+ 1
2
=

f (unj,r ) and Fn
j− 1

2
= f (unj,l).

Numerical Scheme for the ODE (5.1b) To precisely track the controlled vehicle
at each time step, we update its position yn by studying interactions between
the vehicle’s trajectory and the density waves within the corresponding cell. We
distinguish two cases:

1. Inequality (5.21) is satisfied. Then the vehicle moves at velocity ω(tn) and we
update its position as yn+1 = ω(tn)�tn + yn.

2. Condition (5.21) is not satisfied. In this case the PDE solution is classical. We
have to distinguish two situations: either yn ∈ [x

m− 1
2
, xnm[ or yn ∈ [xnm, xm+ 1

2
[.

If no interaction occurs between the wave originating at the corresponding cell
interface and the controlled vehicle in �tn, the ODE is solved by

yn+1 = yn + min{ω(tn), v(unm)}�t.
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Otherwise, we check if the wave is a shock or a rarefaction:

• If the wave is a shock, we compute the incremental interaction time t̄ and the
vehicle’s trajectory is given by

yn+1 = yn + min{ω(tn), v(unm)}t̄ + min{ω(tn), v(unm±1)}(�t − t̄ ).

• If the wave is a rarefaction, first of all, we observe that if this wave originated
at x

m− 1
2

and an interaction occurs, the controlled vehicle must travel at its

maximal velocity ω(tn), and it will keep this velocity, as in Case 1. Therefore,
we focus on the case of a rarefaction originating at x

m+ 1
2
. If the vehicle is

initially traveling at speed ω(tn), it will keep this velocity after the interaction,
see Case 1. When the vehicle does not travel at the constant speed ω(tn),
we compute its first and last interaction points with the rarefaction wave,
respectively (t̄ , x̄) and ( ¯̄t, ¯̄x), to evaluate the exact trajectory. Then:

– If ¯̄t ≥ �t , the new position is given by yn+1 = ỹ(�t) with ỹ(�t) given by
setting t = �t in

ỹ(t) = x
m+ 1

2
+ (t − tn)−√

t − tn
⎛
⎝
t̄ − tn + x

m+ 1
2
− x̄

√
t̄ − tn

⎞
⎠ .

– If ¯̄t < �t , then yn+1 = ỹ( ¯̄t)+ (�t − ¯̄t)min{ω(tn), v(unm+1)}.
The cell index m is then updated according to the new position of the bottleneck. In
Fig. 5.13, we can see the interaction of the bus with a shock and with a rarefaction.

Fig. 5.13 Model (5.3): x − t plots for the interaction of the controlled vehicle with a shock (left)
and a rarefaction (right), with v(u) = 1 − u and α = 0.6
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5.4 Traffic Management by Controlled Vehicles

5.4.1 Field Experiments

Stop and go waves are instabilities of traffic that travel backwards along the
road [190, 268]. Often called phantom jams, this phenomenon emerges from the
collective dynamics of the drivers on the road. In [262], a seminal field experiment
proved that is possible to use an automated and controlled vehicle to dissipate
them. A series of experiments were conducted in a ring road setting to show that a
Cognitive and Automated Test (CAT) vehicle (see Fig. 5.14), properly controlled is
able to dampen stop and go waves. The experiment setup follows the work done by
[263]: 22 vehicles are placed in a ring road formation on single-lane circular track
of 260 meters, see Fig. 5.15. Each vehicle is equipped with OBD-II data loggers
that collect GPS locations and fuel consumption for each one of the vehicles. In
the center of the track, a 360 degree camera records each experiment. After post-
processing, the videos will be used to generate vehicle trajectories. One of the
vehicles is the University of Arizona self-driving capable CAT vehicle.
At the beginning of each experiment, the drivers are told to drive as they normally
would. The goal of the experiments is to create stop and go waves and then dissipate
them via control of the CAT vehicle. At the beginning of the experiment, the vehicles
are equidistant and at rest. In Fig. 5.16, one can see the trajectories of the vehicles
during an experiment. After the first minute, we observe the creation of the stop and
go wave which becomes more evident if one observes the corresponding velocity
oscillations in Fig. 5.17. In particular, after the wave starts, the velocity oscillates
between 0 and 11 m/s. At that point, the CAT vehicle controller is activated and the
wave dissipates. After 350 seconds, the control is disabled and the wave reappears
again until the end of the experiment. From Figs. 5.16 and 5.17, we can see how
a single CAT vehicle can dissipate stop and go waves, and reduce the oscillations
of the velocities. Given that each single vehicle is equipped with a OBD-II scanner,
we were also able to compute the fuel consumption for each single vehicle. We
observe a reduction of fuel consumption of 43% for the total fleet, with a reduction
of braking events equal to 98%.

5.4.2 Numerical Experiments

As demonstrated by the field experiments described in the previous section,
see [262], a controlled vehicle can act as moving Variable Speed Limit (VSL)
to optimize the traffic flow on the overall section of the highway taken into
consideration, by reducing stop and go waves, congestion and pollution. Referring
to (5.3), here the control variable is the maximal speed ω of the moving bottleneck
in (5.1b).
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Fig. 5.14 Arizona CAT
vehicle Media credit: John de
Dios, Alan Davis

Fig. 5.15 Car alignment on a single-lane ring road track Media credit: John de Dios, Alan Davis

Fig. 5.16 Trajectories of each single vehicle on the ring road, the CAT vehicle is in blue, while
the human driven vehicles trajectories are in gray
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Fig. 5.17 Speed profiles for each single vehicle on the ring road, the CAT vehicle profile is in
blue, while the human driven vehicles are in gray

As an example, let us consider a stretch of road corresponding to the space
interval [a, b] and a time horizon Tf . To evaluate the impact of the control policy,
we focus on the following traffic performance indexes:

• Total Fuel Consumption (TFC). We rely on a model that expresses the fuel
consumption as a function of the speed [246] and we define

T FC(ω) :=
∫ Tf

0

∫ b

a

u(t, x)K(v(u(t, x))) dx dt, (5.30)

where the fuel consumption depends on the traffic mean velocity according to
the following polynomial expression

K(v) = 5.7 · 10−12 · v6 − 3.6 · 10−9 · v5 + 7.6 · 10−7 · v4

− 6.1 · 10−5 · v3 + 1.9 · 10−3 · v2 + 1.6 · 10−2 · v + 0.99,

see Fig. 5.18.
• Average Travel Time (ATT). This is computed as

AT T (ω) :=
∫ Tf

0

∫ b

a

1

v(u(t, x))
dx dt, (5.31)

see, for example, [97].
• Queue length. This is expressed by

 (ω) = 1

Tf

∫ Tf

0

∫ b

a

φ(u(t, x)) dx dt, (5.32)

where
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Fig. 5.18 Plots of the fuel consumption rate functions. (a) Fuel consumption rate K(v). (b) Total
FC rate uK(v(u)))

φ(r) =

⎧⎪⎪⎨
⎪⎪⎩

0 r < uout − δ,
1
δ
(r − uout + δ) uout − δ ≤ r ≤ uout ,

1 uout < r ≤ umax,

(5.33)

for some δ > 0 small (see [83]). This functional measures the length of
the traffic jam arising upward a fixed bottleneck located at x = b, which is
expressed by the boundary constraint f (u(t, b−)) ≤ Fout , for some given Fout ≤
fmax := maxu∈[0,umax] f (u). (For the definition and treatment of the constrained
Initial-Boundary value problem see [78].) In (5.33), the uout corresponds to the
congestion traffic density, which satisfies f (uout ) = Fout , uout ≥ ucr .
To evaluate the dependence of the above cost functionals on the control variable

ω, we consider a section of highway of lengthL = 50 kmwith three lanes (therefore
α = 2/3), where we set v(u) = vmax(1 − u/umax) with vmax = 140 km/hr and
umax = 400 vehicles/km. The initial traffic conditions are set to u0 = 0.3umax,
and the controlled vehicle is placed at y0 = 2 km from the beginning of the road
section. Boundary conditions are prescribed in terms of boundary fluxes fin and
fout , setting

fin(t) =
{
fmax if t ≤ 0.5 Tf ,

0 if t > 0.5 Tf ,

and fout (t) = 0.5 fmax for t ∈ [0, Tf ], where the time horizon Tf = 1 hr.
Figure 5.19 shows the dependence of the functionals (5.30)–(5.32) on the

controlled vehicle maximal speed ω ∈ [0, 140].
In order to get benefits in terms of some prescribed cost function, in this case the

total fuel consumption (5.30), we design a Model Predictive Control (MPC) strategy,
which is quite common in traffic management (see, among others, [31, 47, 131]).
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Fig. 5.19 Plots of the cost functionals (5.30)–(5.32). (a) Total fuel consumption (5.30). (b)
Average travel time (5.31). (c) Queue length (5.32)

To this end, system (5.3) is discretized using the conservative scheme presented in
Sect. 5.3.2. The optimization algorithm is run on a prediction horizon�T = 15 min
and the optimal control value is applied for the time interval�τ = 5 min before the
state is updated and the optimal control re-evaluated. See [242] for further details.
Figure 5.20 shows the comparison of traffic evolutions in the case of fixed vehicle
speed ω(t) = 80 km/hr for all t ∈ [0, Tf ] (left) and in the optimal controlled case
in which the vehicle speed is computed by MPC (right). In particular, we can notice
that the congested region is reduced by the implementation of the control strategy.
Indeed, we observe that the enforcement of the optimal control allows not only to
improve the optimized functional (in this case the TFC), but also to improve the
other metrics considered, see Table 5.1.
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Fig. 5.20 Top: density evolution as function of time and space in the uncontrolled (left) and
controlled (right) cases. Bottom: applied maximum vehicle speed resulting from the MPC
procedure

Table 5.1 Comparison between cost functionals in the controlled and uncontrolled case

ATT  TFC TFC reduction

[hr] [km] [liters] %

Uncontrolled 0.9107 10.18 2.7413 ·104 0

Controlled 0.8579 7.66 2.6852 ·104 2.05

5.5 Bibliographical Notes

Conservation laws with point flux constraint at a fixed space location were first
introduced in [78], where a well-posedness result for scalar solutions corresponding
to BV initial data and flux constraint was based on the wave-front tracking method
and the doubling of variables technique. This result was then extended to an
L∞ framework in [17], were adapted finite volume schemes are proposed. The
scalar setting was then further extended in [15, 68] for applications to pedestrian
flow modeling, see also [14, 104] for applications to other settings. Regarding
systems, [16, 105, 124, 137, 145], among others, deal with the ARZ system and
its extensions.
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The problem of tracking vehicles in the bulk traffic flow was studied analytically
in [82] and numerically in [58]. An application to traffic states reconstruction can
be found in [115].

Moving bottlenecks models were first introduced and studied in the engineering
literature, see, for example, [101, 102, 203, 208–210]. The first mathematical
settings were proposed in [112, 200] for the scalar case, and in [42, 272] for the
ARZ model. Well-posedness results for strongly coupled PDE-ODE models are
currently available only in the scalar case, see [112, 114, 138, 222, 223], while
numerical treatments are proposed in [67, 111, 272]. Numerical approximations of
the model proposed in [200] can be found in [56, 146]. The case of multiple moving
bottlenecks has been addressed in [56, 113, 146], while the dynamics of moving
bottlenecks at road junctions is analyzed by [125].
A similar PDE-ODE model is proposed in [201, 202] to model bounded acceleration
in traffic flow.

Traffic flow management and control via connected and autonomous vehicles
is currently a hot topic in transport engineering research. A number of results are
available via stability analysis or simulation, such as [109, 163, 264, 274]. Some
control approaches are based on implementing variable speed limit strategies, such
as [31, 168, 273], or via jam absorption [172, 235]. Finally, experiments showed the
effectiveness of the approach, see [261, 262, 275].
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Chapter 6
Control Problems for Hamilton-Jacobi
Equations Co-authored by Alexander
Keimer

6.1 Introduction

In this chapter, we introduce Hamilton-Jacobi PDEs. These PDEs are related to
conservation laws and their solutions are the anti-derivative (in space) of the Entropy
solutions of the corresponding conservation law, given that some assumptions are
satisfied.

Roughly, a Hamilton-Jacobi PDE reads for the Cauchy problem on R for a given
flux function f : R → R as

∂t q(t, x)+ f
(
∂x q(t, x)

) = 0 (t, x) ∈ (0, T )× R

q(0, x) = q0(x) x ∈ R.

Assuming that the solutions are significantly smooth, we can differentiate the PDE
with respect to the spatial variable and obtain

∂t ∂x q(t, x)+ ∂x f
(
∂x q(t, x)

) = 0 (t, x) ∈ (0, T )× R

∂x q(0, x) = q ′0(x) x ∈ R.

Setting ∂x q ≡ u for a given function u : (0, T )× R → R one ends up with

∂t u(t, x)+ ∂x f (u(t, x)) = 0 (t, x) ∈ (0, T )× R

u(0, x) = q ′0(x) x ∈ R,

the conservation law in u with flux function f and initial datum q ′0(x), x ∈ R.
Having a closer look into the theory of Hamilton-Jacobi PDEs, one major advantage
is that the solutions to these equations remain Lipschitz continuous in case the initial
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datum is Lipschitz continuous (and in the case one is in the bounded domain case,
also the boundary datum).

Even more, there is an explicit solution formula taking advantage of the Legendre
Fenchel dual to write down the solution at every given time-space point as an convex
optimization problem. This is of great importance as it not only allows to evaluate
solutions without a predetermined numerical grid, the specific solution structure
enables it also to study details and behavior of solutions.

These loosely described approaches will be made rigorous in the next section
where we introduce the concept of strong and generalized solutions.

6.2 Strong Solutions

We start with the problem setup and some assumptions on the flux function which
contain convexity. The same results also hold for concave functions under minor
modifications.

Definition 27 (The Hamilton-Jacobi PDE with Initial Datum) Given a flux
function f : R → R and initial datum q0 : R → R we call the following initial
value problem

∂t q(t, x)+ f
(
∂x q(t, x)

) = 0 (t, x) ∈ (0, T )× R

q(0, x) = q0(x) x ∈ R.

a Hamilton-Jacobi PDE, and q : (0, T )× R → R its solution.

To guarantee the existence and uniqueness of solutions, we require some
assumptions on initial datum and flux function. This is detailed in the following

Assumption 1 (Flux Function and Initial Datum) We assume that

1. q0 ∈ W 1,∞
loc (R) : q ′0 ∈ L∞(R) 2. f ∈ W 1,∞

loc (R) strictly convex satisfy-

ing limx→±∞ f (x)
|x| = ∞.

For the explicit solution formula for every fixed space-time point we require the
convex conjugate of the function which we define as follows.

Definition 28 (Convex Conjugate or the Legendre Fenchel Transform) Sup-
pose that f satisfies item 2 in assumption 1, i.e., is in particular strictly convex
and let I ⊆ R be a closed interval. Then, we define the Legendre Fenchel transform
f ∗ of f on I as

f ∗(x) := sup
u∈I

{ux − f (u)} , x ∈ Dom(f ∗), (6.1)
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where the domain for the Legendre transform f ∗ on I is defined as

Dom(f ∗) :=
{
x∗ ∈ R : sup

x∈I
{
xx∗ − f (x)} <∞

}
. (6.2)

Remark 13 (Convex Conjugate) Note that due to item 2, Dom(f ∗) is an interval in
R or entire R. Furthermore, f ∗ is also a convex function.

Given these definitions and assumptions we can state the main Theorem 33:

Theorem 33 (Existence/Uniqueness of Strong Solutions and the Lax-Hopf For-
mula) Let Assumption 1 hold. Then, the initial value problem in Definition 27
admits a unique strong solution q ∈ W 1,∞

loc ((0, T ) × R), ∂2q ∈ L∞((0, T ) × R)

and the solution at time-space point (t, x) ∈ (0, T )× R can be posed as

q(t, x) = min
y∈R q0(y)+ t · f ∗( x−y

t

)
(6.3)

with f ∗ as in Definition 28. The latter identity is called Lax-Hopf formula.

Proof The proof can be found in [126, Chapter 3.3]. ��
Remark 14 (Interpretations of the Solution Formula and More) As pointed out this
solution formula for q requires it to solve a minimization problem at every given
point in space-time. However, as f ∗ is strictly convex and q0 grows at most linearly
due to the assumption on q ′0 ∈ L∞(R), this minimization problem always possesses
one and only one minimal point for every given (t, x) ∈ (0, T )× R.

The following theorem makes the connection between the solution of the Hamilton-
Jacobi equation and the Entropy solution of the corresponding conservation law. It
thus details what had been described in Sect. 6.1. For the general theory of scalar
conservation laws and types of solutions, particularly Entropy solutions, we refer
the reader to [51].

Theorem 34 (Relation to the Corresponding Conservation Law) Given
Assumption 1, the spatial derivative of the solution stated in Eq. (6.3) in Theorem 33
is the unique Entropy solution of the conservation law

∂t u(t, x)+ ∂x f (u(t, x)) = 0 (t, x) ∈ (0, T )× R

u(0, x) = q ′0(x) x ∈ R.

Proof The proof can be found in many text books, we again refer to [126, Chapter
3.4, Chapter 11]. ��
This result is the key why instead of solving a conservation law, one might solve the
corresponding Hamilton-Jacobi equation. One advantage of the solution is that it is
Lipschitz continuous. Due to the gain in regularity one can apply methods on control
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and optimization which one could not so easily apply on the level of conservation
laws.

In the following, we will also look into the case where boundary datum is
prescribed, i.e., when we are on a bounded or semi-bounded domain.

Before addressing the named question we look in detail into the bounded domain
case:

6.2.1 The Bounded Domain Case

It is worth mentioning some results for the bounded domain cases:

Theorem 35 (Lax-Hopf Formula on R>0) Let T ∈ R>0 and f satisfy Assump-
tion 1. Let the initial value u0 ∈ L∞(R>0) be given and assume that ub ∈
L∞((0, T )). Then, there exists a unique strong Lipschitz continuous solution to
the following Hamilton-Jacobi equation q : (0, T ) × R≥0 → R with Neumann
boundary datum

∂t q(t, x)+ f
(
∂x q(t, x)) = 0 (t, x) ∈ (0, T )× R>0

q(0, x) = q0(x) :=
∫ x

0
u0(y)dy x ∈ R>0

∂x q(t, x)
∣∣
x=0 = ūb(t) t ∈ (0, T ).

The solution q can be represented by means of a three dimensional restricted
minimization problem, for (t, x) ∈ R≥0 × [0, T ]

q(t, x) = min

{
min
y∈R≥0

{
tf ∗( x−y

t

)+ q0(y)
}
,

min
0≤t2≤t1≤t
a∈R≥0

{
q0(a)+ f ∗(−a

t2

)
t2 +

(
t − t1

)
f ∗( x

t−t1
)
−
∫ t1

t2

f (ub(θ))dθ

}}
.

Furthermore, the spatial derivative of q, i.e.,

u(t, x) := ∂x q(t, x), (t, x) ∈ (0, T )× R>0 a.e.

is the entropy solution of the conservation law

∂t u(t, x)+ ∂x f (u(t, x)) = 0 (t, x) ∈ (0, T )× R>0

u(0, x) = u0(x) = q ′0(x) x ∈ R>0

satisfying the boundary condition in the sense of [29]
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u(0, t) = ūb(t), t ∈ (0, T ) almost everywhere

with

ūb(t) := max
{
ub(t), θf

}
, t ∈ (0, T ) a.e., θf := arg-minx∈R f (x)

the possibly attained boundary datum.

Proof The proof can be found in [184]. ��
Remark 15 (Some Remarks to the Boundary Datum and the Solution Formula)
The Neumann boundary datum on the level of Hamilton-Jacobi equations can be
interpreted as a Dirichlet boundary datum for the corresponding conservation law.
This is also why the boundary datum can only hold in the sense of [29] and also
needs to be projected into what the flux function f can “handle.”

Finally, from the solution formula in Theorem 35 one can see that the solution

is computed in two parts. The first part, i.e., miny∈R≥0

{
tf ∗( x−y

t

) + q0(y)
}

is the

solution which directly propagates the initial datum (compare Eq. (6.3)). The second
part of the minimization is responsible for the interaction of boundary datum and
initial datum.

A further result is available for two sided boundary datum, however, in this case the
solution formula is much more involved as the two boundaries can influence each
other over time. We refer to [185].

6.3 Generalized Solutions

In this section we will introduce more general solutions, the so-called Barron-
Jensen/Frankowska solutions [30, 134] for Hamilton-Jacobi equations. Then, the
spatial derivative might not even exist in a strong sense so that an interpretation on
the level of conservation laws as in the previous section is not possible anymore.
However, from an applied point of view the generalized solutions for the Hamilton-
Jacobi equations have other desirable features. For example, they enable the
reconciliation of data points incompatible with conservation laws, as often measured
in experimental data [74]. In addition, the interpretation of these solutions goes back
to the 1968 seminal article of Karl Moskowitz [234], which gives a practitioner
interpretation to these solutions in terms of vehicle counts (which can be directly
measured with loop detectors). The basic idea follows [21, 72–74] and related work.
As this work is mainly concerned with traffic flow applications, the flux functions
chosen here are concave. In addition, for the conservation law in q : (0, T )×X→ R

for t ∈ [0, T ] and x ∈ X ⊂ R a bounded interval
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∂t u(t, x)+ ∂x f
(
u(t, x)

) = 0

u(0, x) = u0(x)

+ boundary conditions

(6.4)

we redefine the corresponding Hamilton-Jacobi equation as

∂t q(t, x)− f (−∂x q(t, x)) = 0 (6.5)

so that for smooth solutions we obtain

u(t, x) = −∂x q(t, x). (6.6)

We make this precise requiring the following

Assumption 2 (Assumption on the Flux Function) Given a maximal density
umax ∈ R>0 we assume that the flux function f considered is concave, and Lipschitz,
i.e., f ∈ W 1,∞((0, umax)). As it will be important for the following Legendre
Fenchel transform in Definition 29 to have f defined on R we extend it by the
following procedure. Define

ν! := sup
(x,y)∈[0,umax]2

f (x)−f (y)
x−y , ν" := − inf

(x,y)∈[0,umax]2
f (x)−f (y)
x−y (6.7)

we extend f by f̃ : R → R as follows

f̃ (x) =

⎧⎪⎪⎨
⎪⎪⎩

f (x) x ∈ [0, umax]
f (umax)− ν"(x − umax) x ∈ (umax,∞)
f (0)+ ν!x x ∈ (−∞, 0)

x ∈ R (6.8)

and have that also f̃ ∈ W 1,∞
loc (R) is concave. The extension is also illustrated in

Fig. 6.1. We also define

fmax := max
x∈[0,umax]

f (x). (6.9)

The reformulation of Hamilton-Jacobi equations as in Eq. (6.5) also necessitates the
redefinition of the Legendre transform as

Definition 29 (Legendre Fenchel Transform in Traffic Flow Modeling) For a
given umax ∈ R>0 let a concave flux function f ∈ W 1,∞([0, umax]) be given and
recall its extension f̃ as in Assumption 2, the Legendre Fenchel transform reads
for u ∈ Dom(f ∗) as
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Fig. 6.1 A flux (here Greenshields [159]) and its extension on R with umax = 100

Fig. 6.2 Triangular flux
function with uc = 20% and
umax = 1
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f ∗(u) := sup
p∈R

{
p · u+ f̃ (p)

}
, Dom(f ∗) :=

{
u ∈ R : sup

p∈R

{
p · u+ f̃ (p)

}
<∞

}
.

For specific flux functions, as, for instance, for triangular flux functions, one can
compute the dual function explicitly. We first define a triangular flux function as
follows and then compute its dual.

Definition 30 (Triangular Flux Function) We call f ∈ W 1,∞([0, umax]) for a
given umax ∈ R>0 a triangular flux function if it satisfies

f :

⎧
⎪⎪⎨
⎪⎪⎩

[0, umax] → R

u 
→
{
vu u ≤ uc

w(u− umax) else,

(6.10)

where the model parameters are the free flow speed v ∈ R>0, the critical density
uc ∈ [0, umax), the congestion speed w ∈ R<0 and the maximal density umax,
satisfying vuc = w(uc − umax). The flux function is illustrated in Fig. 6.2.

To illustrate the complexity of the computations we give in the following an
explicit expression for the Legendre Fenchel transform of f :

Remark 16 (Computation of the Dual Function of the Triangular Flux) Let the flux
as in Eq. (6.10) be given, and recall the transform in Definition 29 we compute its
dual as
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f ∗(u) = sup
p∈R

{
p · u+

{
vp p ≤ uc

w(p − umax) p ≥ uc

}

= sup
p∈R

{
p(u+ v) p ≤ uc

p(u+ w)− wumax p ≥ uc

= sup

{
sup

p∈(−∞,uc]
p(u+ v), sup

p∈[uc,∞)
p(u+ w)− wumax

}

=

⎧
⎪⎪⎨
⎪⎪⎩

∞ u < −v
uc(u+ v) −v ≤ u ≤ −w
∞ u > −w

,

where we have used vuc = w(uc − umax) so that we obtain as effective domain
Dom(f ∗) = [−v,−w].
Assumption 3 (Notation for the Bounded Domain Case) The spatial interval
on which we will consider the previously introduced Eq. (6.4) will be the interval
(A,B) ⊂ R withA,B ∈ R, A < B. For notational convenience, we will sometimes
write

X := (A,B).

We then start with a basic definition of value conditions, one key ingredient for the
generalized solution:

Definition 31 (Value Condition) For T ∈ R>0 a value condition c : Dom(c) ⊆
[0, T ] ×X→ R is a lower semicontinuous function. We extend c by c̃ : [0, T ] ×X
on the entire space-time horizon by defining

c̃(t, x) :=
{
c(t, x) for (t, x) ∈ Dom(c)

∞ else.
(6.11)

For reasons of convenience we replace in the following c̃ again by c which is now
defined on [0, T ] ×X but admits as effective domain on the original Dom(c).

With this definition we can present the main theorem of this section, the generalized
Lax-Hopf formula based on viability theory [22]. This viability epi solution to the
Hamilton-Jacobi equation is obtained in epigraphical form from the computation
of a viability kernel under an auxiliary dynamics (related to characteristics). The
corresponding result is given in the form of a epigraphical set; the lower envelope
of this set is defined as the solution. Once established, the results of this procedure
can be fully characterized as follows (details outside of the scope of this book, see,
for example, [36]).
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Theorem 36 (Generalized Lax-Hopf Formula) The viability episolutionmc for c
as in Definition 31 can be expressed as:

mc(t, x) = inf
(u,s)∈Dom(f ∗)×R≥0

(
c(t − s, x + su)+ sf ∗(u)

)
. (6.12)

Proof See [74]. ��
The following Proposition 11 enables it to compute solutions for different input
datum (boundary datum, initial datum, datum on trajectories) separately, and then
stick all of them together to one solution.

Proposition 11 (Inf-morphism Property) For i ∈ I where I is a finite set, let
ci : Dom ⊂ (0, T )× R → R be as in Definition 31. Then, defining

c(t, x) := min
i∈I ci (t, x), (t, x) ∈ (0, T )×X

a property known as inf-morphism property holds:

∀(t, x) ∈ [0, T ] ×X, mc(t, x) = min
i∈I mci (t, x) (6.13)

with mci being the solution for the value condition ci as in Theorem 36.

Proof The proof can be found in [74]. ��

6.3.1 Piecewise Affine Initial and Boundary Datum

In this section, we will investigate the generalized Lax-Hopf formula for specific
initial and boundary datum, namely for piecewise affine datum. The restriction to
this type of initial and boundary datum offers to compute the solution efficiently as
a convex optimization problem, or—even more—state the solution explicitly.

On the level of conservation laws this means that we approximate initial and
boundary datum piecewise constant. As piecewise constant functions are dense in
L1(R), L1(X) respectively, we can approximate every initial and boundary flux
datum as precise as we want.

6.3.2 Piecewise Affine Initial Datum

Defining piecewise affine initial datum, we recall Eq. (6.6) so that we know that
mx(0, x) = −u0(x) and as u0(x) ∈ [0, umax] ∀x ∈ X a.e., we define as follows
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Definition 32 (Affine Initial Conditions) We consider for T ∈ R>0 the following
affine initial condition m0 : Dom(m0) ⊂ [0, T ] ×X→ R:

m0(t, x) =
{
ax + b if x ∈ [α, α] ∧ t = 0

+∞ otherwise,

where α, α ∈ X with α ≤ α and a ∈ [−umax, 0], b ∈ R. The effective domain of
m0 is

Dom(m0) = {0} × [α, α].

Lemma 5 (Lax-Hopf Formula Affine Initial Conditions in Definition 32) The
generalized solution to the Hamilton-Jacobi equation with initial datum as in
Definition 32 can be expressed for (t, x) ∈ (0, T )×X as

mm0(t, x) =

⎧
⎪⎪⎨
⎪⎪⎩

inf
u∈Dom(f ∗)
∩
[
α−x
t
, α−x
t

]
a(x + tu)+ b + tf ∗(u) Dom(f ∗) ∩

[
α−x
t
, α−x

t

]

= ∅

∞ else.

The solution can actually be stated explicitly for triangular flux functions:

Lemma 6 (Explicit Solution Formula for Definition 32 and Triangular Flux)
For triangular flux function as in Definition 30 the solution formula in Lemma 5 can
be stated as

mm0 (t, x)

=

⎧
⎪⎨
⎪⎩

{
aα + b + uc(tv − x) a + uc ≥ 0

aα + b + uc(tv − x) a + uc < 0
x ∈ [max{A, α + wt},min{B, α + wt}]

∞ else

Proof According to Definition 32 and Dom(f ∗) = [−v,−w] we have for (t, x) ∈
(0, T )×X so that [−A−x

ν!
,+∞) ∩

[
t − γ , t − γ

]

= ∅ (recall that a ≤ 0)

inf
u∈
[
α−x
t
, α−x
t

]
∩

[−v,−w]

a · (x + tu)+ b + tf ∗(u)

= ax + b + tucv + t · inf
u∈
[
α−x
t
, α−x
t

](a + uc)u

= ax + b + tucv + t ·
{
(a + uc)α−xt a + uc ≥ 0
(a + uc)α−xt a + uc < 0
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=
{
aα + b + uc(tv − x) a + uc ≥ 0
aα + b + uc(tv − x) a + uc < 0

so that we obtain indeed

mm0(t, x) =

⎧⎪⎪⎨
⎪⎪⎩

{
aα + b + uc(tv − x) a + uc ≥ 0

aα + b + uc(tv − x) a + uc < 0

[
α−x
t
, α−x

t

]
∩ [−v,−w] 
= ∅

∞ else,

which can be reformulated to holds exactly the proposed solution formula. ��

6.3.3 Piecewise Affine Left Hand Side Boundary Datum

As the boundary datum for the Hamilton-Jacobi equation is time-integrated flow
datum, we define as follows:

Definition 33 (Affine Left Hand Side Boundary Datum) We consider the follow-
ing upstream boundary datum γ : [0, T ] ×X:

γ (t, x) =
{
ct + d if t ∈ [γ , γ ] ∧ x = A
+∞ otherwise,

where c ∈ [0, fmax], d ∈ R and γ , γ ∈ [0, T ] with γ −γ ≥ 0. The effective domain
of γ is

Dom(γ ) = [γ , γ ] × {A}.

Lemma 7 (Lax-Hopf Formula for Affine Left Hand Side b.c.) The generalized
solution to the Hamilton-Jacobi equation with left hand side boundary datum as in
Definition 34 can be expressed for (t, x) ∈ [0, T ] ×X \ {A} as

mγ (t, x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

inf
s∈[− A−x

ν!
,+∞)

∩
[
t−γ ,t−γ

]
c(t − s)+ d + sf ∗ (A−x

s

) [−A−x
ν!
,+∞) ∩

[
t − γ , t − γ

]

= ∅

∞ else.

In case of a triangular flux function, we present the explicit solution formula in the
following Lemma 8.
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Lemma 8 (Explicit Solution Formula for Lemma 7 and Triangular Flux) For
triangular flux function as in Definition 30 the solution formula in Lemma 7 can be
stated for t ∈ [γ , T ] as

mγ (t, x) =

⎧
⎪⎨
⎪⎩

{
uc(a + vt − x)− γ (ucv − c)+ d x ≤ A+ v(t − γ )
c
v
(A− x)+ ct + d x ≥ A+ v(t − γ ) x ≤ A+ v(t − γ )

∞ else.

Proof According to Definition 32, we have for (t, x) ∈ (0, T )×X, [−A−x
ν!
,+∞)∩[

t − γ , t − γ
]

= ∅ (recall that c ∈ [0, fmax])

inf
s∈[−A−x

ν!
,+∞)

∩
[
t−γ ,t−γ

]
c(t − s)+ d + sf ∗ (A−x

s

)

recall that ν! = v

= inf
s∈[−A−x

v
,+∞)

∩
[
t−γ ,t−γ

]
c(t − s)+ d + suc

(
A−x
s

+ v)

= ct + d + uc(A− x)+ min
s∈[−A−x

v
,+∞)

∩
[
t−γ ,t−γ

]
s(ucv − c)

and also c ≤ fmax = f (uc) = ucv

= ct + d + uc(A− x)+ max
{−A−x

v
, t − γ } (ucv − c)

=
{
uc(a + vt − x)− γ (ucv − c)+ d x ≤ A+ v(t − γ )
c
v
(A− x)+ ct + d x ≥ A+ v(t − γ ),

from which the conclusion follows. ��
Definition 34 (Affine Right Hand Side Boundary Datum) We consider the
following right hand side boundary datum β : [0, T ] ×X:

β(t, x) =
{
et + f if t ∈ [β, β] ∧ x = B
+∞ otherwise,

(6.14)
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where e ∈ [0, fmax], f ∈ R are given as well as β, β ∈ [0, T ] with β − β ≥ 0. The
effective domain of β is therefore

Dom(β) = [β, β] × {B}.

Lemma 9 (Lax-Hopf Formula for Affine Right Hand Side b.c.) The generalized
solution to the Hamilton-Jacobi equation with right hand side boundary datum as
in Definition 34 can be expressed for (t, x) ∈ (0, T )×X \ {B} as

mβ(t, x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

inf
s∈[B−x

ν"
,+∞)

∩
[
t−β,t−β

]
e(t − s)+ f + sf ∗ (B−x

s

) [
B−x
ν"
,+∞

)
∩
[
t − β, t − β

]

= ∅

∞ else.

As in Lemma 8, we will give the solution explicitly for triangular flux function and
left hand side boundary datum:

Lemma 10 (Explicit Solution Formula for Lemma 9 and Triangular Flux) For
triangular flux function as in Definition 30 the solution formula in Lemma 9 can be
stated for t ∈ [β, T ] as

mβ(t, x)

=

⎧
⎪⎨
⎪⎩

{
umax(B − x)+ x−B

w
e + et + f x ≤ B + w(t − β)

uc(B + vt − x)+ β(e − ucv)+ f x ≥ B + w(t − β) x ≥ B + w(t − β)

∞ else.

Proof According to Definition 32, we have for (t, x) ∈ (0, T )×X, [B−x
ν"
,+∞)

∩
[
t − β, t − β

]

= ∅ (recall that e ∈ [0, fmax])

inf
s∈[ x−B

ν"
,+∞)

∩
[
t−β,t−β

]
e(t − s)+ f + sf ∗ (B−x

s

)

recall that ν" = −w

= inf
s∈[ x−B

w
,+∞)

∩
[
t−β,t−β

]
e(t − s)+ f + suc

(
B−x
s

+ v)
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= et + f + uc(B − x)+ min
s∈[ x−B

w
,+∞)

∩
[
t−β,t−β

]
s(ucv − e)

and also c ≤ fmax = f (uc) = ucv

= et + f + uc(B − x)+ max
{
x−B
w
, t − β} (ucv − e)

=
{
umax(B − x)+ x−B

w
e + et + f x ≤ B + w(t − β)

uc(B + vt − x)+ β(e − ucv)+ f x ≥ B + w(t − β),

from which the conclusion follows. ��
Having stated the solution for any piecewise affine initial datum and boundary

datum, we can now move to present a solution formula for unification of such
piecewise affine initial and boundary datum.

Definition 35 (The Piecewise Affine Data) Let the sets I, J,K ⊂ N≥1 be the
index sets for the piecewise affine initial, left, and right hand side data. We assume
that |I |, |J |, |K| <∞. Then, we consider for (i, j, k) ∈ I × J ×K the initial, left,
and right hand side boundary datum

m0,i (t, x) =
{
aix + bi if x ∈ [αi, αi] ∧ t = 0

+∞ otherwise

γj (t, x) =
{
cj t + dj if t ∈ [γ

j
, γ j ] ∧ x = A

+∞ otherwise,

βk(t, x) =
{
ekt + fk if t ∈ [β, β] ∧ x = B
+∞ otherwise,

with corresponding effective domain and a ∈ [−umax, 0]|I |, b ∈ R
|I |,α,α ∈ X|I |

with α ≤ α, c ∈ [0, fmax]|J |, d ∈ R
|J |, γ , γ ∈ [0, T ]|J | with γ ≤ γ , e ∈

[0, fmax]|K|,f ∈ R
|K|,β,β ∈ [0, T ]|K| with β ≤ β the corresponding vectors

collecting in their entries the different components of the set of piecewise affine
linear initial and boundary data.

By the foregoing Theorems we have for every (i, j, k) ∈ I × J × K the existence
of a generalized solution to the corresponding Hamilton-Jacobi equation, just
incorporating the specific initial, upstream, downstream, internal data. Each solution
is denoted by

mm0,i , mγj , mβk . (6.15)
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This brings us to the following Theorem, which incorporates all these conditions
into one single solution.

Theorem 37 (Solution to the Hamilton-Jacobi Equation for Piecewise Affine
Data) There exists a solution of the Hamilton-Jacobi Equation, incorporating the
finite sequences of initial, boundary, and internal data, which we call c : [0, T ] ×
X→ R. Then, the solution can be determined for (t, x) ∈ [0, T ]×X by the formula

m(t, x) = min
{

min
i∈I mm0,i (t, x), min

j∈J mγj (t, x), min
k∈K mβk (t, x)

}
, (6.16)

where the involved functions are introduced in Definition 6.15.

Proof The proof is a direct consequence of the inf-morphism property as stated in
Proposition 11 in Eq. (6.13) and Definition 35. ��
Theorem 38 (Convexity of the Solutions When Changing the Parameters of
Initial and Boundary Datum in Definition 35) For any (t, x) ∈ [0, T ] × X the
solution m(t, x) as defined in Eq. (6.16) is convex with regard to the input variables
of initial and boundary datum, i.e., a, b, c, d, e,f in the corresponding dimension.

Proof We only sketch the proof. Due to the specific construction of the solution
being the minimum of the minimum of different functions the solution is convex if
each of the contributing solutions in Eq. (6.16) is convex. We start with two initial
conditions defined on the same domain, so take according to Definition 32 for given
α, α ∈ X : α ≤ α as initial datum m0(t, x) = ax + b, m̃0(t, x) = ãx + b̃

satisfying the constraints in Definition 32 and in particular (a, ã) ∈ [−umax, 0]2.
Then, the corresponding solutions are given in Lemma 6 and applying the definition
of convexity, we obtain for λ ∈ (0, 1) and t ∈ [0, T ], x ∈ [max{A, α +
wt},min{B, α + wt}]

mλ·m0+(1−λ)·m̃0(t, x)

=
{
(λa + (1 − λ)ã)α + λb + (1 − λ)b̃ + uc(tv − x), λa + (1 − λ)ã + uc ≥ 0

(λa + (1 − λ)ã)α + λb + (1 − λ)b̃ + uc(tv − x), λa + (1 − λ)ã + uc < 0

= uc(tv − x)+ λ
{
aα + b, λa + (1 − λ)ã + uc ≥ 0

aα + b, λa + (1 − λ)ã + uc < 0

+ (1 − λ)
{
ãα + b̃, λa + (1 − λ)ã + uc ≥ 0

ãα + b̃, λa + (1 − λ)ã + uc < 0

≤ uc(tv − x)+ λ
{
aα + b, λa + uc ≥ 0

aα + b, λa + uc < 0
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+ (1 − λ)
{
ãα + b̃, (1 − λ)ã + uc ≥ 0

ãα + b̃, (1 − λ)ã + uc < 0

= λmm0(t, x)+ (1 − λ)mm̃0(t, x),

where the inequality in the previous calculations follows from the fact that

•
(
aα ≥ aα) ∧ (

ãα ≥ ãα) as a, ã ≤ 0
• {a ∈ [−umax, 0] : λa + (1 − λ)ã ≥ −uc} ⊆ {a ∈ [−umax, 0] : λa ≥ −uc}
• {ã ∈ [−umax, 0] : λa+ (1−λ)ã ≥ −uc} ⊆ {ã ∈ [−umax, 0] : (1−λ)ã ≥ −uc}
for every λ ∈ [0, 1]. Similar calculations for the boundary datum using the solution
formulae in Lemma 8, Lemma 10 give the convexity with regard to the input
parameters of the boundary datum. ��
Remark 17 (Greenshields Flux Function) A similar explicit solution formula can
be computed for other flux functions like the quadratic Greenshields [159] flux
function f (x) = vx(umax − x), x ∈ [0, umax]. In this case the Legendre Fenchel
dual f ∗ will be quadratic as well so that one obtains a quadratic scalar optimization
problem with constraints.

As previously stated Theorem 37 gives us a solution formula for any initial
and boundary datum where one can also decouple the computation of each part of
initial datum and boundary datum. However, for physical relevant solutions (i.e., that
there exists the spatial derivative of the solution almost everywhere) one needs to
prescribe additional constraints, the so-called compatibility constraints assuring that
initial datum and boundary datum fit to each other. For instance, at the space point
(0, 0) where initial and boundary datum meet, the datum needs to be continuous
over this corner. In addition, assume that we have two parts of piecewise affine
linear initial datum as parametrized in Definition 35 so that α1 = α2. Then, the
corresponding datum does not need to satisfy a continuity assumptions, which
would be a1α1 + b1 = a2α1 + b2. Same does not necessarily hold true for
the remaining initial and boundary conditions and is the reason why one needs
additional compatibility conditions.

6.3.4 Compatibility Conditions

To make sure that compatibility is satisfied so that we indeed obtain solutions of the
underlying LWR PDE, we state the following

Theorem 39 (Compatibility Condition) For the sequence of initial and boundary
data as in Definition 35 the data is compatible iff

∀c, c̃ ∈ {m0,i : i ∈ I } ∪ {γj : j ∈ J
} ∪ {βk : k ∈ K}
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it holds

mc(t, x) ≥ c̃(t, x) ∀(t, x) ∈ [0, T ] ×X, (6.17)

wheremc is the solution operator for an initial or boundary condition c as discussed
in Sect. 6.3.2.

Proof See [74]. ��
The compatibility condition might not look very applicable as it states compatibility
by just computing the solution and checking then. However, in the case where we
can compute the solution explicitly as we have shown in the previous Sect. 6.3.2
for piece-wise affine linear datum, these inequalities can be checked directly. Even
more, as the datum is piecewise affine linear Eq. (6.17) does not need to be checked
for all (t, x) ∈ T × X but only at the boundaries of the domain of each datum and
at possible intersections of the corresponding solutions.

6.4 Optimization with Hamilton-Jacobi Equations

In this section, we show for an easy example how the introduced theory and
framework in Sect. 6.3 can be used to formulate optimal control problems in a very
efficient way as convex (or even linear) optimization problems.

Problem 2 (Problem Considered) Assume we have at a specific time T ∈ R>0
measured the road density as uT ∈ L∞(X; [0, umax]) and the downstream flow fB ∈
L∞((0, T ); [0, fmax]). Can we infer the initial state u0 ∈ L∞(R) and upstream flow
f (u(·, A)) ∈ L∞((0, T ))?

We will address this problem by means of an optimal control problem. As we will
take advantage of the previously developed Hamilton-Jacobi theory and generalized
solutions (Sect. 6.3), we need to reformulate fB and uT as boundary values and end
values for the Hamilton-Jacobi equations. Using the relation in Eqs. (6.6) and (6.5)
we obtain for the Hamilton-Jacobi equation the following:

Remark 18 (Reformulation in Terms of Hamilton-Jacobi Equations) The down-
stream datum and end datum in Problem 2 read for the Hamilton-Jacobi equations
for (t, x) ∈ [0, T ] × (A,B) as

hB(t) := −
∫ T

t

fB(s) ds, hT (x) :=
∫ B

x

uT (x) dx. (6.18)

Note that the choice of integral bounds makes the end term compatible with the
boundary term in the way that hT (B) = 0 = hB(T ). This is necessary as the
datum we would like to track should be Lipschitz continuous. Although, hT and
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hB are Lipschitz on their corresponding space/ time domain, they will not satisfy
compatibility at the space-time point (T , B).

Now, we are able to formulate the corresponding optimal control problem in terms
of Hamilton-Jacobi equations as in Definition 36:

Definition 36 The Optimal Control Problem Considered For (ν, σ ) ∈ R
2
>0 we

consider the following constrained minimization problem

inf
m0∈W 1,∞((X))
hBW

1,∞((0,T ))

ν‖hB −m(·, B)‖2
L2((0,T )) + σ‖m(T , ·)− hT ‖2

L2(X)
,

where m is the solution of the Hamilton-Jacobi equation m for initial datum m0
and left hand side (upstream) boundary datum hA as stated in Theorem 36 and
Proposition 11 for the corresponding value functions.

We will not go into details whether a minimum exists in the chosen functional setup
but directly approach the problem in a simplified version: Restricting the flux to a
triangular flux as in Definition 30 and the initial and boundary datum to a piecewise
affine datum, we can simplify the problem as follows:

Definition 37 (A Finite-Dimensional Optimization Problem for Triangular
Flux Function and Piecewise Affine Linear Initial and Left Hand Side
Boundary Datum) Chose for the left hand side boundary datum and initial
datum as in Eq. (6.15) the finite set I and J with corresponding α,α ∈ X|I |
so that ∪i∈I [αi, αi] = X and γ , γ ∈ [0, T ]|J | so that ∪j∈J [γ j , γ j ] = [0, T ] a

finite-dimensional approximation to Definition 36 reads as

inf
a∈[−umax,0]|I |

b∈R|I |
c∈[0,fmax]|J |

d∈R|J |

ν‖hB −m(·, B)‖2
L2((0,T )) + σ‖m(T , ·)− hT ‖2

L2(X)

m(t, x) = min
{

min
i∈I mm0,i (t, x), min

j∈J mγj (t, x)
}

mm0,i as in Lemma 6 i ∈ I
mγj as in Lemma 8 j ∈ J.

As this minimization problem will have results which are not of interest as the
corresponding initial and boundary values are not attained we can add a penalization
for b, d and compatibility constraints. We then obtain

Theorem 40 (A Convex Optimization Problem) Adding to the optimization
problem in Definition 37 the corresponding compatibility constraints Theorem 39,
we still obtain a convex optimization problem in the optimization variables

a, b, c, d.
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Proof This is a direct consequence of the structure of the compatibility constraints
in Theorem 39, and the convexity of the solution in Theorem 38. ��
Of course, the previously outlined optimization problem could easily be generalized
to more complex situations and the underlying convexity structure could still be
applied. In addition, as an explicit solution formula is available, the computation of
the minimization problems is fast. Under specific circumstances and more manip-
ulations one can even obtain linear or quadratic and/or mixed-integer programs
[61, 74, 221].

6.5 Bibliographical Notes

For general theory and viscosity solutions of Hamilton-Jacobi equation we refer
the reader to [94, 95] where the authors consider time-dependent and independent
Hamilton-Jacobi equations with a Hamiltonian which can also be explicitly space
and time-dependent with Dirichlet boundary conditions and as Cauchy problem.
They introduced a notation of solutions, i.e., viscosity solutions for which existence
and uniqueness of solutions and stability properties can be obtained (compare
also [28]). For a rather comprehensive presentation on optimal control, the related
Hamilton-Jacobi-Bellman equations (as optimality conditions) and the named
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viscosity solutions. For viability theory we refer to [22, 36] and for Hamilton-Jacobi
equations with inequality constraints to [21].

Applications of Hamilton-Jacobi equations and related theory for transportation
can be found in [72–74] which are one of the main sources for the latter chapter.
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Appendix A
Conservation and Balance Laws and
Boundary Value Problems

This appendix is intended to give some background for the reader about the
mathematical theory of conservation and balance laws, possibly coupled with
boundary data.

A.1 Basic Definitions

A system of balance laws in one space dimension can be written in the form

∂t u+ ∂x f (u) = g(u), (A.1)

where t is the time, x is the space, u : [0,+∞[×R → � ⊆ R
n is the conserved

quantity, f : � → R
n is the flux function, and g : � → R

n is the source
term. In the case g ≡ 0, the system (A.1) is called a system of conservation laws.
Such terminology is justified by the following observation. Integrating (A.1) on an
arbitrary space interval [a, b] and assuming for simplicity u is a smooth function,
then,

d

dt

∫ b

a

u(t, x) dx =
∫ b

a

∂t u(t, x) dx = −
∫ b

a

∂x f (u(t, x)) dx +
∫ b

a

g (u(t, x)) dx

= f (u(t, a))− f (u(t, b))+
∫ b

a

g (u(t, x)) dx.

Thus the variation of the amount of u in the interval [a, b] is related to the quantity
of u entering and exiting, respectively, at x = a and x = b and to the quantity of u
generated by the source function g.

The flux function f is always supposed to be smooth. Therefore (A.1) can be
written, if u is smooth, in the quasi-linear form
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∂t u+ A(u)∂x u = g(u), (A.2)

where A(u) = Df (u) is the Jacobian matrix of f at u.

Definition 38 We say that (A.2), or (A.1), is a hyperbolic system (respectively, a
strictly hyperbolic system) if, for every u ∈ �, all the eigenvalues of the Jacobian
matrix A(u) are real (respectively, real and distinct).

Example 6 The Aw–Rascle–Zhang model for traffic flow is

{
∂t ρ + ∂x (y − ρ p(ρ)) = 0

∂t y + ∂x
(
y
ρ
(y − ρ p(ρ))

)
= 0,

where ρ = ρ(t, x) denotes the average density of cars at time t and at position
x, y = ρ (v + p(ρ)) is a generalized momentum, v is the velocity of cars, p is
a “pressure” term, and γ > 0 is a fixed parameter. In this situation, n = 2 (i.e.,
the system is composed of n = 2 equations), the conserved vector variable u is

(ρ, y), and the flux f (u) is given by
(
y − ρ p(ρ), y

ρ
(y − ρ p(ρ))

)
. Therefore, the

Jacobian matrix A of the flux f is

A(u) =
(−p(ρ)− ρ p(ρ) 1

− y2

ρ2 − y p′(ρ) 2 y
ρ
− p(ρ)

)

and so its eigenvalues are

λ1 = y

ρ
− p(ρ)− ρ p′(ρ), λ2 = y

ρ
− p(ρ).

Clearly, if ρ > 0 and p′(ρ) > 0, then λ1 < λ2, and so the system is strictly
hyperbolic.

Example 7 The p-system model in Eulerian coordinates for gas flow in a tube is

{
∂t ρ + ∂x q = 0

∂t q + ∂x
(
q2

ρ
+ p(ρ)

)
= 0,

where ρ = ρ(t, x) denotes the average density of gas at time t and at position x,
q = q(t, x) is the linear momentum, and p = p(ρ) is the pressure term. Again,
n = 2 (i.e., the system is composed of n = 2 equations), the conserved vector

variable u is (ρ, q), and the flux f (u) is given by
(
q,

q2

ρ
+ p(ρ)

)
. Therefore, the

Jacobian matrix A of the flux f is
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A(u) =
(

0 1

− q2

ρ2 + p′(ρ) 2 q
ρ

)

and so its eigenvalues are

λ1 = q

ρ
−√p′(ρ) λ2 = q

ρ
+√p′(ρ).

Clearly, if ρ > 0 and p′(ρ) > 0, then λ1 < λ2, and so the system is strictly
hyperbolic.

Example 8 The Saint-Venant or shallow water equations for the description of
open channels are

{
∂t H + ∂x (HV ) = 0

∂t V + ∂x
(
V 2

2 + gH
)
= 0,

whereH = H(t, x) denotes the water level at time t and at position x, V = V (t, x)
is the water velocity, and g is the gravitation constant. In this situation, n = 2 (i.e.,
the system is composed of n = 2 equations), the conserved vector variable u is

(H, V ), and the flux f (u) is given by
(
HV, V

2

2 + gH
)

. Therefore, the Jacobian

matrix A of the flux f is

A(u) =
(
V H

g V

)

and so its eigenvalues are

λ1 = V −√gH λ2 = V +√gH.

Clearly, if H > 0, then λ1 < λ2, and so the system is strictly hyperbolic.

A.2 BV Functions

Consider an interval J ⊂ R and a map u : J 
→ R. The total variation of u is
defined as

TV (u)
.= sup

{
N∑
i=1

∣∣u(xj )− u(xj−1)
∣∣
}
, (A.3)
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where the supremum is taken over all N ≥ 1 and all (N + 1)-tuples of points
xj ∈ J such that x0 < x1 < . . . < xN . If the total variation of u is finite, then we
write u ∈ BV(J ;R). Specific properties of BV functions used in this chapter are
presented below; for a proof, see [51, Section 2.4].

Lemma 11 Let u : ]a, b[ 
→ R
n have bounded variation. Then, for every x ∈

]a, b[, the left and right limits

u(x−) .= lim
y 
→x− u(y), u(x+) .= lim

y 
→x+ u(y)

are well defined. Moreover, u has at most countably many points of discontinuity.

The following lemma concerns piecewise constant approximability of BV functions.

Lemma 12 Let u : R 
→ R
n be right continuous with bounded variation. Then, for

every ε > 0, there exists a piecewise constant function v such that

TV (v) ≤ TV (u) , ‖v − u‖L∞ ≤ ε.

If, in addition,

∫ 0

−∞
|u(x)− u(−∞)| dx +

∫ +∞

0
|u(x)− u(+∞)| dx < +∞,

then one can find v with the additional property

‖u− v‖L1 ≤ ε.

The space of BV functions and its closure in L1 are at the center of well-
posedness results for conservation laws using wave-front tracking methods and
other approximation schemes.

A.3 The Method of Characteristics

In this section, we briefly describe the method of characteristics for the Cauchy
problem

{
∂t u+ a(u)∂x u = g(u),
u(0, x) = u0(x),

(A.4)

where a = a(u) and g = g(u) are given smooth functions, and ū is a given initial
condition. The idea of this method consists in finding one-dimensional curves, along
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which the solution to (A.4) can be explicitly computed. In this way, a first order
partial differential equation can be solved using ordinary differential equations.

For every y ∈ R, define the functions t 
→ Xy(t), t 
→ Uy(t) as the solutions to
the system

⎧⎪⎪⎨
⎪⎪⎩

d
dt
Xy(t) = a(Uy(t)),

d
dt
Uy(t) = g(Uy(t)),

Xy(0) = y,
Uy(0) = u0(y).

(A.5)

The curves t 
→ Xy(t) are called characteristics, while Uy(t) represent the solution
u to (A.4) along the characteristics starting at the point (0, y). If the map

(t, y) 
→ (t, Xy(t)) (A.6)

is invertible, then the inverse function (t, X) 
→ (t, yX(t)) allows to express the
solution u to the Cauchy problem (A.4) in the form

u(t, x) = Uyx(t)(t). (A.7)

Example 9 Consider the inviscid scalar Burgers’ equation

∂t u+ u ∂x u = 0 (A.8)

with the initial condition

u0(x) =
{

1 − |x| , if x ∈ [−1, 1],
0, otherwise,

(A.9)

see Fig. A.1. System (A.5) becomes

⎧⎪⎪⎨
⎪⎪⎩

d
dt
Xy(t) = Uy(t),

d
dt
Uy(t) = 0,

Xy(0) = y,
Uy(0) = u0(y),

(A.10)

and its solution is

{
Xy(t) = y + u0(y) t

Uy(t) = u0(y).
(A.11)

Therefore,
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−2 −1 1 2

1

2

0

x

u0

Fig. A.1 The initial datum u0 of Example 9

Fig. A.2 The characteristic
curves for the Cauchy
problem in Example 9

−2 −1 1 2 3

1

2

3

0

x

t

Xy(t) =

⎧⎪⎪⎨
⎪⎪⎩

y, if y < −1,
y + (1 + y)t, if − 1 < y < 0,
y + (1 − y)t, if 0 < y < 1,
y, if y > 1,

(A.12)

see Fig. A.2. We notice that, if t < 1, then the characteristic lines do not intersect
and the function

u(t, x) =

⎧
⎪⎨
⎪⎩

x+1
t+1 , if − 1 ≤ x < t,
1−x
1−t , if t < x ≤ 1,
0, otherwise

provides a classical solution to the Cauchy problem (A.8)–(A.9). If t > 1, then
different characteristic lines intersect and therefore a classical solution does not
exist. In Fig. A.3, the profiles of the solution u at times t = 0.5, t = 0.75, and
t = 0.95 are plotted.

Example 10 Let us consider the inviscid scalar Burgers’ equation

∂t u+ u ∂x u = 0,
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0

1

-2 0 2

x

u

Fig. A.3 Solution to Burgers’ equation of Example 9 at times t = 0.5, t = 0.75, and t = 0.95

with the initial condition u(0, x) = u0(x) = 1
1+x2 , see Fig. A.4. System (A.4) has

the solution

{
Xy(t) = y + 1

1+y2 t,

Uy(t) = 1
1+y2 .

(A.13)

Since Uy(t) does not depend on t , then u(t, x) is constant along the lines in the
(t, x)-plane described in the parametric form as

t 
→
(
t, y + t

1 + y2

)
;

see Fig. A.5. Moreover, along such curves, the value of u is 1
1+y2 .

In Fig. A.5, it is clear that the characteristic curves intersect together. More
precisely, there exists a time T = 8√

27
with the following property. For t < T ,

the characteristic lines do not intersect together and so a classical solution exists,
but for t > T different characteristics intersect, showing that a classical solution
cannot exist for t ≥ T ; see Fig. A.5. In Fig. A.6, the profiles of the solution u
to (A.4) at times t = 0.5, t = 1, and t = 1.5 are plotted.
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−4 −3 −2 −1 1 2 3 4

−1

1

2

0

x

u0

Fig. A.4 The initial datum u0 of the Cauchy problem in Example 10

Fig. A.5 The characteristic
for Burgers’ equation of
Example 10 in the
(t, x)-plane
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t

0
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-6 -4 -2 0 2 4 6

x

u

Fig. A.6 Solution to Burgers’ equation of Example 10 at times t = 0.5, t = 1, and t = 1.5
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A.4 Weak Solutions

As noted in Examples 9 and 10, classical solutions to hyperbolic conservation laws
do not exist in general for all times t ≥ 0. This happens independently of the
regularity of the initial condition. More precisely, when two different characteristic
curves collide, the solution becomes discontinuous. Hence we must deal with the
concept of weak or distributional solutions.

Definition 39 Fix T ∈ [0,+∞]. A function u ∈ L1
loc([0, T ] × R;Rn) is a weak

solution to the balance law

∂t u+ ∂x f (u) = g(u)

if, for every function ψ ∈ C1
c(]0, T [×R;Rn), it holds

∫ T

0

∫

R

(u · ∂t ψ + f (u) · ∂x ψ + g(u) · ψ) dx dt = 0. (A.14)

The usual definition of weak solution for a Cauchy problem is the following.

Definition 40 Fix u0 ∈ L1
loc(R;Rn) and T ∈ [0,+∞]. A function u : [0, T ] ×

R → R
n is a weak solution to the Cauchy problem

{
∂t u+ ∂x f (u) = g(u),
u(0, x) = u0(x),

(A.15)

if u is continuous as a function from [0, T ] into L1
loc, if u is a weak solution to

∂t u + ∂x f (u) = g(u), according to Definition 39, and limt→0+ u(t, x) = ū(x) in
L1(R), which means

lim
t→0+

‖u(t, ·)− u0‖L1 = 0. (A.16)

Weak solutions to conservation laws can have discontinuities, such as shocks or
contact discontinuities. The next result gives a necessary and sufficient condition,
usually called the Rankine–Hugoniot condition, for piecewise constant functions to
be weak solutions. It gives a condition on discontinuities for weak solutions to (A.1)
relating the right and left states with the “speed” λ of the discontinuity.

Proposition 12 Fix time T > 0 and constant states u1, u2 ∈ R
n. The function

u(t, x) =
{
u1, if x < λt,

u2, if x > λt
(A.17)

is a weak solution to ∂t u+ ∂x f (u) = 0 if and only if λ ∈ R satisfies the Rankine–
Hugoniot condition
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f (u1)− f (u2) = λ (u1 − u2) . (A.18)

Note that (A.18) is indeed a system of n scalar equations. In the case n = 1, it can
be written in the form

λ = f (u1)− f (u2)

u1 − u2
,

provided u1 
= u2.

Proof Here we only prove that if u is a weak solution, then the Rankine–Hugoniot
condition holds. The converse implication can be deduced in a similar way, and
hence we omit it.

Assume therefore that u is a weak solution to ∂t u+ ∂x f (u) = 0. Fix ψ : R2 →
R
n a C1 function with compact support, contained in a compact and connected set
K with smooth boundary, and consider the vector field $ : R2 → R

2, defined by

$(t, x) = (u(t, x) · ψ(t, x), f (u(t, x)) · ψ(t, x)) .

Moreover, define the sets

K+ = K ∩ {x > λt}, K− = K ∩ {x < λt}, K0 = K ∩ {x = λt};

see Fig. A.7. Denote by n+ and n−, respectively, the outward normal to K+ and
K− at points of the boundaries ∂K+ and ∂K− of K+ and K−. Note that, for points
satisfying x = λt , the expressions for n+ and n− are given by

n+ = −n− = 1√
λ2 + 1

(λ,−1).

The Divergence Theorem, applied to $ on K+, implies that

∫

K+
div$(t, x) dx dt =

∫

∂K+
n+(t, x) ·$(t, x) dσ =

∫

K0
n+(t, x) ·$(t, x) dσ

= 1√
λ2 + 1

∫ b

a

(λu(t, λt+)− f (u(t, λt+))) · ψ(t, λt+) dt,

where

a = inf
{
t ≥ 0 : (t, x) ∈ K0, ∃ x ∈ R

}
b = sup

{
t ≥ 0 : (t, x) ∈ K0, ∃ x ∈ R

}
.

(A.19)

Moreover, the Divergence Theorem, applied to $ on K−, implies that
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Fig. A.7 Region where the
divergence theorem is applied

n−

n+

x = λt

K+

K−

∫

K−
div$(t, x) dx dt = − 1√

λ2 + 1

∫ b

a

(λu(t, λt+)− f (u(t, λt+)))·ψ(t, λt+) dt.

The fact that u is weak solution to ∂t u+ ∂x f (u) = 0 implies that

0 =
∫

K

div$(t, x) dx dt =
∫

K+
div$(t, x) dx dt +

∫

K−
div$(t, x) dx dt,

and so

0 =
∫ [

λ
(
u+ − u−)− (f (u+)− f (u−))] · ψ(t, λt) dt.

The arbitrariness of the function ψ implies that

λ
(
u+ − u−) = f (u+)− f (u−),

i.e., λ satisfies condition (A.18).
��

The notion of weak solution for conservation laws does not guarantee unique-
ness. The next example shows that there are infinitely many weak solutions for the
same Cauchy problem. Therefore, to obtain a unique solution for a Cauchy problem,
the notion of weak solution must be supplemented with admissibility conditions,
possibly motivated by physical considerations.
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Fig. A.8 The solution uα of Example 11 in the (t, x)-plane

Example 11 Let us consider the scalar Burgers equation

∂t u+ ∂x
(
u2

2

)
= 0,

with the initial condition

u(0, x) = u0(x) =
{

1, if x ≥ 0,
0, if x < 0.

For every 0 < α < 1, the function uα : [0,+∞[×R → R defined by

uα(t, x) =
⎧
⎨
⎩

0, if x < αt
2 ,

α, if αt
2 ≤ x < (1+α)t

2 ,

1, if x ≥ (1+α)t
2

is a weak solution to the Burgers equation; see Fig. A.8. Indeed, uα has two
discontinuities along the lines x = αt/2 and x = (1 + α)t/2; i.e., there are two
shocks travelling with speeds λ1 = α/2 and λ2 = (1+α)/2. Since the flux function

is f (u) = u2

2 , the corresponding Rankine–Hugoniot conditions

f (α)− f (0) = α2

2
− 0 = α

2
(α − 0) = λ1(α − 0)

and
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f (1)− f (α) = 1

2
− α2

2
= 1 + α

2
(1 − α) = λ2(1 − α)

hold.

A.5 Entropy Admissible Solutions

As shown in Example 11, there are situations of non-uniqueness for weak solutions
to Riemann and Cauchy problems. Hence additional conditions are necessary in
order to isolate a unique solution. A possible way is to choose the solution, which
minimizes the entropy dissipation. The next definition introduces therefore the
concept of entropy, entropy flux, and entropy production.

Definition 41 A convex function η ∈ C1(Rn;R) is an entropy for (A.1) if there
exists a function q ∈ C1(Rn;R) such that

∇q(u) = ∇η(u) · ∇f (u) (A.20)

for every u ∈ R
n. The function q is called an entropy flux for η and the pair (η, q) is

called an entropy–entropy flux pair for (A.1). Finally, the function h(u) = ∇η(u) ·
g(u) is said entropy production.

In the scalar case, i.e., when n = 1, Eq. (A.20) can be written in the form

q ′(u) = η′(u)f ′(u). (A.21)

Therefore, for every C1 convex function η, there exist infinitely many entropy fluxes

q(u) =
∫ u

ū

η′(s)f ′(s) ds,

where ū ∈ R is arbitrary.
The definition of entropy admissible solution is the following one.

Definition 42 A weak solution u = u(t, x) to (A.1) is said entropy admissible if,
for every entropy–entropy flux pair (η, q) and for every ψ ∈ C1

c (]0, T [×R;R)
satisfying ψ(t, x) ≥ 0 for all (t, x) ∈ ]0, T [×R, it holds

∫ T

0

∫

R

(η(u)∂t ψ + q(u)∂x ψ + h(u)ψ) dx dt ≥ 0, (A.22)

where h(u) = ∇η(u) · g(u) is the entropy production.
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Example 12 Consider the function

u(t, x) =
{

0, if x < t
2 ,

1, if x ≥ t
2 ,

which is a weak solution to the scalar Burgers equation ∂t u+∂x
(
u2

2

)
= 0, see also

Example 11.
We show here that u is not entropy admissible, according to Definition 42. To

this aim, let us consider the convex entropy η(u) = u2 and the corresponding

entropy flux q(u) = 2u3

3 . Fix a test function ψ ∈ C1
c (]0, T [×R; [0,+∞[) such

that ψ
(
T
2 ,

T
4

)
> 0 and define the sets

�l =
{
(t, x) ∈ [0, T ] × R : x < t

2

}
�r =

{
(t, x) ∈ [0, T ] × R : x > t

2

}
.

We have that

∫ T

0

∫

R

(η(u(t, x))∂t ψ(t, x)+ q(u(t, x))∂x ψ(t, x)) dx dt

=
∫ ∫

�l∪�r
(η(u(t, x))∂t ψ(t, x)+ q(u(t, x))∂x ψ(t, x)) dx dt

=
∫ ∫

�l

(η(0)∂t ψ(t, x)+ q(0)∂x ψ(t, x)) dx dt

+
∫ ∫

�r

(η(1)∂t ψ(t, x)+ q(1)∂x ψ(t, x)) dx dt

=
∫ ∫

�r

div

(
ψ(t, x),

2

3
ψ(t, x)

)
dx dt.

Applying the Divergence Theorem, we deduce that

∫ ∫

�r

div

(
ψ(t, x),

2

3
ψ(t, x)

)
dx dt =

∫ T

0

(
1,

2

3

)
·
(

1√
5
,
−2√

5

)√
5ψ

(
t,
t

2

)
dt

=− 1

3

∫ T

0
ψ

(
t,
t

2

)
dt < 0

and so

∫ T

0

∫

R

(η(u(t, x))∂t ψ(t, x)+ q(u(t, x))∂x ψ(t, x)) dx dt < 0.

Consequently, (A.22) does not hold, proving that u is not entropy admissible.
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Example 13 Consider the function

u(t, x) =
{

1, if x < t
2 ,

0, if x ≥ t
2 ,

which is a weak solution to the scalar Burgers’ equation ∂t u + ∂x
(
u2

2

)
= 0, see

also Example 11.
We show here that u is entropy admissible, according to Definition 42. To this

aim, consider an arbitrary convex entropy η(u) and the corresponding entropy flux
q(u), fix a test function ψ ∈ C1

c (]0, T [×R; [0,+∞)), and define the sets

�l =
{
(t, x) ∈ [0, T ] × R : x < t

2

}
�r =

{
(t, x) ∈ [0, T ] × R : x > t

2

}
.

We have that

∫ T

0

∫

R

(η(u(t, x))∂t ψ(t, x)+ q(u(t, x))∂x ψ(t, x)) dx dt

=
∫ ∫

�l∪�r
(η(u(t, x))∂t ψ(t, x)+ q(u(t, x))∂x ψ(t, x)) dx dt

=
∫ ∫

�l

(η(1)∂t ψ(t, x)+ q(1)∂x ψ(t, x)) dx dt

+
∫ ∫

�r

(η(0)∂t ψ(t, x)+ q(0)∂x ψ(t, x)) dx dt

=
∫ ∫

�l

div (η(1)ψ(t, x), q(1)ψ(t, x)) dx dt

+
∫ ∫

�r

div (η(0)ψ(t, x), q(0)ψ(t, x)) dx dt.

Applying the Divergence Theorem, we deduce that

∫ ∫

�l

div (η(1)ψ(t, x), q(1)ψ(t, x)) dx dt

=
∫ T

0
(η(1), q(1)) ·

(−1√
5
,

2√
5

) √
5

2
ψ

(
t,
t

2

)
dt

=
(
q(1)− η(1)

2

)∫ T

0
ψ

(
t,
t

2

)
dt

and



174 A Balance Laws with Boundary

∫ ∫

�r

div (η(0)ψ(t, x), q(0)ψ(t, x)) dx dt

=
∫ T

0
(η(0), q(0)) ·

(
1√
5
,
−2√

5

) √
5

2
ψ

(
t,
t

2

)
dt

=
(
η(0)

2
− q(0)

)∫ T

0
ψ

(
t,
t

2

)
dt.

Consequently, we deduce that

∫ T

0

∫

R

(η(u(t, x))∂t ψ(t, x)+ q(u(t, x))∂x ψ(t, x)) dx dt

=1

2
(η(0)− η(1)+ 2q(1)− 2q(0))

∫ T

0
ψ

(
t,
t

2

)
dt.

Using (A.20), we have that q ′(u) = uη′(u) for every u and so

q(1)− q(0) =
∫ 1

0
uη′(u) du = η(1)−

∫ 1

0
η(u) du;

hence

1

2
(η(0)− η(1)+ 2q(1)− 2q(0)) = η(0)+ η(1)

2
−
∫ 1

0
η(u) du.

Since η is convex, then

η(u) ≤ η(0)+ (η(1)− η(0)) u

for every u ∈ [0, 1] and so

∫ 1

0
η(u) du ≤ η(0)+ (η(1)− η(0))

∫ 1

0
u du = η(0)+ η(1)

2
.

Finally, the positivity of the function ψ implies that

∫ T

0

∫

R

(η(u(t, x))∂t ψ(t, x)+ q(u(t, x))∂x ψ(t, x)) dx dt ≥ 0,

proving that u is entropy admissible.
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A.5.1 Kruzkov Entropy Condition

In the scalar case, i.e., when n = 1, it is possible to consider entropies which
are continuous but not continuously differentiable. In this setting, one obtains an
entropy condition, which is known as the Kružkov entropy condition; see [198].

For each k ∈ R, consider the convex entropy function ηk(u) = |u− k|, which
is not differentiable at u = k, and consider the corresponding entropy flux qk(u) =
sgn (u− k) (f (u)− f (k)).
Definition 43 A weak solution u = u(t, x) to the scalar equation (A.1) satisfies the
Kružkov entropy admissibility condition if

∫ T

0

∫

R

[|u− k| ∂t ψ + sgn(u− k) (f (u)−f (k)) ∂x ψ + sgn(u− k)g(u)ψ] dx dt ≥ 0

for every k ∈ R and for every ψ ∈ C1
c
(]0, T [×R;R+).

A.6 The Riemann Problem

In this section, we briefly describe the entropy admissible solutions to Riemann
problems. Let � ⊂ R

n be an open set, let f : � → R
n be a smooth flux, and

consider the strictly hyperbolic system of conservation laws

∂t u+ ∂x f (u) = 0. (A.23)

Definition 44 A Riemann problem for (A.23) is the Cauchy problem (A.15), where
the initial condition u0 has the form

u0(x) :=
{
u−, if x < 0,
u+, if x > 0,

(A.24)

with u−, u+ ∈ �.

In view of Definition 44, we describe the solution to the following Riemann
problem:

⎧
⎨
⎩
∂t u+ ∂x f (u) = 0

u(0, x) = u0(x) =
{
u− if x < 0
u+ if x > 0,

(A.25)

where u−, u+ ∈ �. We consider the scalar case, i.e., n = 1, and the system case,
i.e., n > 1, separately.
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A.6.1 The Scalar Case

Here we assume that n = 1 and that � = R for simplicity. The case of � a real
interval is straightforward. Let f : R → R be a smooth flux function, u−, u+ ∈ R,
u− 
= u+. We treat two symmetric situations: the strictly convex and the strictly
concave flux.

A.6.1.1 The Riemann Problem for a Strictly Convex Flux

Assume that the flux function f : R → R is strictly convex. The solution to (A.25)
depends on the following two possibilities.

u− < u+: In this case, f ′(u−) ≤ f ′(u+) and so the characteristic lines, starting
at t = 0, do not intersect together. Therefore (A.25) produces a rarefaction wave
and its solution has the form

u(t, x) =
⎧⎨
⎩
uL, if x < f ′(u−)t,
g
(
x
t

)
, if f ′(u−)t < x < f ′(u+)t,

uR, if x > f ′(u+)t,
(A.26)

where g denotes the inverse map of the derivative f ′ of the flux; see Fig. A.9.
Note that the assumptions on f do imply that f ′ is injective and so invertible.

u− > u+: In this case, f ′(u−) ≥ f ′(u+) and so the characteristic curves
intersect. Therefore, (A.25) produces a shock wave of the form

x

t
x = f ′(u−)t x = f ′(u+)t

u− u+g x
t

)

Fig. A.9 The solution (A.26) to the Riemann problem (A.25) with strictly convex flux function in
the case u− < u+ on the (t, x) space
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x

t
x = Λt

u− u+

Fig. A.10 The solution (A.27) to the Riemann problem (A.25) with strictly convex flux function
in the case u− > u+ on the (t, x) space

u(t, x) =
{
u−, if x < λt,
u+, if x > λt,

(A.27)

where λ = f (u−)−f (u+)
u−−u+ is the speed of the jump, given by the Rankine–Hugoniot

condition, see Fig. A.10.

A.6.1.2 The Riemann Problem for a Concave Flux

Assume that the flux function f : R → R is strictly concave. The solution to (A.25)
depends on the following possibilities:

u− < u+: In this case, f ′(u−) ≥ f ′(u+) and so there exist two different
characteristics, which intersect together. Therefore, (A.25) produces a shock
wave and its solution has the form

u(t, x) =
{
u−, if x < λt,
u+, if x > λt,

(A.28)

where λ = f (u−)−f (u+)
u−−u+ is the speed of the jump, given by the Rankine–Hugoniot

condition.
u− > u+: In this case, f ′(u−) ≤ f ′(u+) and so the characteristic lines, starting

from t = 0, do not intersect together. Therefore, (A.25) produces a rarefaction
wave of the form
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u(t, x) =
⎧⎨
⎩
u−, if x < f ′(u−)t,
g
(
x
t

)
, if f ′(u−)t < x < f ′(u+)t,

u+, if x > f ′(u+)t,
(A.29)

where g denotes the inverse map of the derivative f ′ of the flux.

A.6.2 The System Case

Let f : �→ R
n, n > 1, be a smooth flux function, u−, u+ ∈ �, u− 
= u+.

As before, we denote byA(u) the Jacobian matrix of the flux f and with λ1(u) <

· · · < λn(u) the ordered n eigenvalues of the matrix A(u). Let {r1(u), . . . , rn(u)} be
a basis of right eigenvectors. For i ∈ {1, · · · , n}, we define the directional derivative
of λi(u) in the direction of ri(u) as

∇λi(u) · ri(u) := lim
ε→0+

λi(u+ εri(u))− λi(u)
ε

.

We need to introduce the definition of genuinely nonlinear characteristic field and
of linearly degenerate one.

Definition 45 The i-th characteristic field (i ∈ {1, · · · , n}) is said genuinely
nonlinear if

∇λi(u) · ri(u) 
= 0 ∀u ∈ �.

The i-th characteristic field (i ∈ {1, · · · , n}) is said linearly degenerate if

∇λi(u) · ri(u) = 0 ∀u ∈ �.

If the i-th characteristic field is genuinely nonlinear, then we assume that ∇λi(u) ·
ri(u) > 0 for every u ∈ �.

The Riemann problem (A.25) produces n different waves in general, one for each
characteristic field. In the case a characteristic field is genuinely nonlinear, then, a
shock or a rarefaction wave is produced (as in the scalar case with strictly convex or
concave flux). In the case a characteristic field is linearly degenerate, then, a contact
discontinuity wave is produced (similar to the transport scalar equations).

There are three possible key cases.

1. Centered rarefaction waves. For u− ∈ �, i ∈ {1, · · · , n} and σ > 0, define
Ri(σ )(u

−) as the solution to

{
u̇ = ri(u),
u(0) = u−. (A.30)
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Let σ̄ > 0 and assume that u+ = Ri(σ̄ )(u−) for some i ∈ {1, · · · , n}. If the i-th
characteristic field is genuinely nonlinear, then the function

u(t, x) :=
⎧⎨
⎩
u−, if x < λi(u−)t,
Ri(σ )(u

−), if x = λi(Ri(σ )(u−))t, σ ∈ [0, σ̄ ],
u+, if x > λi(u+)t

(A.31)

is an entropy admissible solution to the Riemann problem (A.25). The function
u(t, x) in (A.31) is called a centered rarefaction wave.

Remark 19 Note that the construction of u in (A.31) can be done only if
λi(u

−) < λi(u+). This condition holds only in the case σ̄ > 0.

2. Shock waves. Fix u− ∈ � and i ∈ {1, · · · , n}. For some σ0 > 0, there exist
smooth functions Si(u−) = Si : [−σ0, σ0] → � and λi : [−σ0, σ0] → R such
that:

(a) f (Si(σ ))− f (u−) = λi(σ )(Si(σ )− u−) for every σ ∈ [−σ0, σ0]
(b) Si(0) = u−, λi(0) = λi(u−)
(c) dSi(σ )

dσ
|σ=0 = ri(u−)

Let σ̄ < 0 and define u+ = Si(σ̄ ). If the i-th characteristic field is genuinely
nonlinear, then the function

u(t, x) :=
{
u−, if x < λi(σ̄ )t,
u+, if x > λi(σ̄ )t

(A.32)

is an entropy admissible solution to the Riemann problem (A.25). The function
u(t, x) in (A.32) is called a shock wave.

Remark 20 If σ̄ > 0, then (A.32) is still a weak solution to (A.25), but it does
not satisfy the entropy condition.

3. Contact discontinuities. Fix u− ∈ �, i ∈ {1, · · · , n} and σ̄ ∈ [−σ0, σ0].
Define u+ = Si(σ̄ ). If the i-th characteristic field is linearly degenerate, then
the function

u(t, x) :=
{
u−, if x < λi(u−)t,
u+, if x > λi(u−)t

(A.33)

is an entropy admissible solution to the Riemann problem (A.25). The function
u(t, x) in (A.33) is called a contact discontinuity.

Definition 46 The waves defined in (A.31), (A.32), and (A.33) are called waves of
the i-th family.
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For each σ ∈ R and i ∈ {1, . . . , n}, let us consider the Lax curve

ψi(σ )(ū) :=
{
Ri(σ )(ū), if σ ≥ 0,
Si(σ )(ū), if σ < 0,

(A.34)

where ū ∈ �. The value σ is called the strength of the wave of the i-th family,
connecting ū to ψi(σ )(ū). Moreover, let us consider the composite function

 (σ1, . . . , σn)(u
−) := ψn(σn) ◦ · · · ◦ ψ1(σ1)(u

−), (A.35)

where u− ∈ � and (σ1, . . . , σn) belongs to a neighborhood of 0 in R
n. The

following result about the local existence of solution to a Riemann problem holds.

Theorem 41 For every compact set K ⊂ �, there exists δ > 0 such that, for
every u− ∈ K and for every u+ ∈ � with

∣∣u+ − u−∣∣ ≤ δ, there exists a unique
(σ1, . . . , σn) in a neighborhood of 0 ∈ R

n satisfying

 (σ1, . . . , σn)(u
−) = u+.

Moreover, the Riemann problem connecting u− with u+ admits an entropy admissi-
ble solution, constructed by piecing together the solutions of n Riemann problems.

In the following examples, we consider the Saint-Venant equations, the Aw–
Rascle–Zhang model, and the p-system, and we describe the various waves for such
systems.

Example 14 The Saint-Venant or shallow water equations are

{
∂t H + ∂x (HV ) = 0,

∂t V + ∂x
(
V 2

2 + gH
)
= 0,

(A.36)

whereH = H(t, x) denotes the water level at time t and at position x, V = V (t, x)
is the water velocity, and g is the gravitation constant; see Example 8.

The Jacobian matrix of the flux f has eigenvalues

λ1 = V −√gH, λ2 = V +√gH

and right eigenvectors

r1 =
(
− H√

gH

1

)
, r2 =

(
H√
gH

1

)
.

This implies that the system (A.36) is strictly hyperbolic, provided H > 0.
Moreover,
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∇λ1 · r1 = 3

2
, ∇λ2 · r2 = 3

2
,

and so the characteristic fields are both genuinely nonlinear.
Let us consider the Riemann problem for the Saint-Venant equations with initial

data

u(0, x) =
{
u− = (H−, V −) , if x < 0,
u+ = (H+, V +) , if x > 0.

The equation u̇ = ri(u) gives the following rarefaction curves starting at u−:

R1 =
{
(H, V ) : V = −2

√
gH + 2

√
gH− + V −, H ≤ H−} ,

R2 =
{
(H, V ) : V = 2

√
gH − 2

√
gH− + V −, H ≥ H−} .

The Rankine–Hugoniot condition, instead, gives the shock curves S1 and S2 starting
at u−, which are

S1 =
{
(H, V ) : V = V − + 2

√
2g

H−
√
H +H− −√2g

√
H +H−, H ≥ H−

}
,

S2 =
{
(H, V ) : V = V − − 2

√
2g

H−
√
H +H− +√2g

√
H +H−, H ≤ H−

}
.

The plots of the Lax curves are in Fig. A.11. The curves R1, R2, S1, and S2 divide
the (H, V ) semi-plane (H > 0) into four regionsA1,A2,A3, andA4; see Fig. A.11.

If u+ belongs to one of these curves, then the Riemann problem is solved by a
single wave. If instead u+ is sufficiently near to u− and belongs to one of the regions
Ai , then the solution to the Riemann problem is given by two centered waves. More
precisely, if u+ ∈ A1, then the solution is given by a rarefaction wave of the first
family and by a shock wave of the second family. If u+ ∈ A2, then the solution is
given by two rarefaction waves. If u+ ∈ A3, then the solution is given by two shock
waves. If u+ ∈ A4, then the solution is given by a shock wave of the first family and
by a rarefaction wave of the second family.

Example 15 The Aw–Rascle–Zhang model for traffic in conservation form, see
Example 6, is

{
∂t ρ + ∂x (y − ρp(ρ)) = 0,

∂t y + ∂x
(
y
ρ
(y − ρp(ρ))

)
= 0,
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H

V

H−

V −

R1
R2

S1

S2

A1

A2

A3

A4

Fig. A.11 The rarefaction and shock curves for the Saint-Venant equations starting from the point
(H−, V −)

where ρ = ρ(t, x) denotes the density of cars at time t and at position x, p = p(ρ)
is a pressure term, y = ρ(v + p(ρ)) is a generalized momentum, and v = v(t, x)

is the average velocity of cars. In this example, we assume p(ρ) = ργ , for some
γ > 0.

The Jacobian matrix of the flux f has eigenvalues

λ1 = y

ρ
− (γ + 1)ργ , λ2 = y

ρ
− ργ

and right eigenvectors

r1 =
(−ρ
−y
)
, r2 =

(
ρ

y + γργ+1

)
.

Note that, since

∇λ1 · r1 = γ (γ + 1)ργ , ∇λ2 · r2 = 0,

the first characteristic field is genuinely nonlinear, while the second one is linearly
degenerate.

Let us consider the Riemann problem for the Aw–Rascle–Zhang model with
initial data

u(0, x) =
{
u− = (ρ−, y−) , if x < 0,
u+ = (ρ+, y+) , if x > 0.
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Fig. A.12 The rarefaction
and shock curves for the
Aw–Rascle–Zhang model
starting from the point
(ρ−, y−)

ρ

y

ρ−

y−

R1

S1

S2

The equation u̇ = r1(u) gives the following rarefaction curve starting at u−:

R1 =
{
(ρ, y) : y = y−

ρ−
ρ, ρ ≤ ρ−

}
.

The Rankine–Hugoniot condition, instead, gives the shock curve S1 and the contact
discontinuity curve S2 starting at u−:

S1 =
{
(ρ, y) : y = y−

ρ−
ρ, ρ ≥ ρ−

}
,

S2 =
{
(ρ, y) : y = y−

ρ−
ρ + ργ+1 − ρ (ρ−)γ , ρ ≥ 0

}
.

The plots of the Lax curves are in Fig. A.12. If u+ belongs to one of these curves,
then the Riemann problem is solved by a single wave. If instead u+ is sufficiently
near to u− and does not belong to the Lax curves through u−, then the solution
to the Riemann problem is given by two centered waves, one of the first family
(rarefaction or shock wave) and one contact discontinuity.

Example 16 The p-system, see Example 7, is given by

{
∂tρ + ∂xq = 0,

∂tq + ∂x
(
q2

ρ
+ p(ρ)

)
= 0,

(A.37)
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where ρ > 0 is the density of the gas and q is the linear momentum density, i.e.,
q = ρv, where v is the speed of the gas. The function p is the pressure and depends
only on the density ρ. Assume that p is of class C2 and

p(ρ) > 0, p′(ρ) > 0, p′′(ρ) ≥ 0

for every ρ > 0. A typical example is the γ -pressure law p(ρ) = kργ for k > 0
and γ ≥ 1. The Jacobian matrix for the flux f is

A(U) =
(

0 1

− q2

ρ2 + p′(ρ) 2 q
ρ

)
,

which has the distinct eigenvalues

λ1 = q

ρ
−√p′(ρ), λ2 = q

ρ
+√p′(ρ),

and the corresponding right eigenfunctions

r1 =
(

ρ

q − ρ√p′(ρ)
)
, r2 =

(
ρ

q + ρ√p′(ρ)
)
.

This implies that the system (A.37) is strictly hyperbolic. Moreover,

∇λ1 · r1 = −√p′(ρ)− ρ p′′(ρ)
2
√
p′(ρ)

, ∇λ2 · r2 = √p′(ρ)+ ρ p′′(ρ)
2
√
p′(ρ)

,

and so the characteristic fields are both genuinely nonlinear.
Let us consider the Riemann problem for (A.37) with initial data

u(0, x) =
{
u− = (ρ−, q−), if x < 0,
u+ = (ρ+, q+), if x > 0.

The equations u̇ = ri(u) give the following rarefaction curves starting at u−:

R1 =
{
(ρ, q) : q = ρq−

ρ−
− ρ

∫ ρ

ρ−

√
p′(r)
r

dr, ρ ≤ ρ−
}
,

R2 =
{
(ρ, q) : q = ρq−

ρ−
+ ρ

∫ ρ

ρ−

√
p′(r)
r

dr, ρ ≥ ρ−
}
.
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ρ

q

ρ−

q−

R1
R2

S1S2

A1

A2

A3

A4

Fig. A.13 The rarefaction and shock curves for the p-system (A.37) starting from the point
(ρ−, q−)

The Rankine–Hugoniot condition, instead, gives the shock curves S1 and S2 starting
at u−:

S1 =
{
(ρ, q) : q = ρq−

ρ−
−
√
ρ

ρ−
(ρ − ρ−) (p(ρ)− p(ρ−)), ρ ≥ ρ−

}
,

S2 =
{
(ρ, q) : q = ρq−

ρ−
−
√
ρ

ρ−
(ρ − ρ−) (p(ρ)− p(ρ−)), ρ ≤ ρ−

}
.

The situation is described in Fig. A.13. The curves Ri and Si divide the (ρ, q)-plane
into four regions A1, A2, A3, and A4. If u+ belongs to one of these curves, then the
Riemann problem is solved by a single wave. If instead u+ is sufficiently near to u−
and belongs to one of the regions Ai , then the solution to the Riemann problem is
given by two centered waves. More precisely, if u+ ∈ A1, then the solution is given
by a rarefaction wave of the first family and by a shock wave of the second family.
If u+ ∈ A2, then the solution is given by two rarefaction waves. If u+ ∈ A3, then
the solution is given by two shock waves. If u+ ∈ A4, then the solution is given by
a shock wave of the first family and by a rarefaction wave of the second family.

A.7 The Cauchy Problem

Once the solution to Riemann problems is defined, one can construct the solution to
a Cauchy problem, by using the wave-front tracking technique.

To this aim, consider the Cauchy problem
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{
∂t u+ ∂x f (u) = 0,
u(0, ·) = u0(·), (A.38)

where f : �→ R
n is a smooth flux and u0 ∈ L1(R;�) ∩ BV (R;�).

We start considering the scalar case, while the system case, much more delicate,
will be only sketched.

A.7.1 Wave-Front Tracking for the Scalar Case

Assume that the flux function f : R → R is smooth and strictly convex or concave
function. Choose a sequence of piecewise constant functions

{
uν0

}
ν

satisfying

TV(uν0) ≤ TV(u0), (A.39)
∥∥uν0
∥∥
L∞ ≤ ‖u0‖L∞ , (A.40)

∥∥uν0 − u0
∥∥
L1 <

1

ν
, (A.41)

for every ν ∈ N; see Fig. A.14. This is possible since u0 ∈ L1 (R;R) ∩ BV (R;R);
see [51, Lemma 2.2].

Fix ν ∈ N. By (A.39), uν0 has a finite number of discontinuities, say x1 <

· · · < xN . For each i = 1, · · · , N , we approximately solve the Riemann problem
generated by the jump (uν0(xi−), uν0(xi+)) with piecewise constant functions of
the type ψ(x−xi

t
), where ψ : R → R. More precisely, if the Riemann problem

generated by (uν0(xi−), uν0(xi+)) admits an exact solution containing a shock, then

x

u

Fig. A.14 A piecewise constant approximation (in blue) of the initial datum ū satisfying (A.40)
and (A.41)
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x

t

Fig. A.15 The wave-front tracking construction until the first time of interaction

ψ(
x−xi
t
) is the exact solution, while if a rarefaction wave appears, then we split

it in a centered rarefaction fan, containing a sequence of jumps of size at most 1
ν

,
travelling with a speed between the characteristic speeds of the states connected. In
this way, we are able to construct an approximate solution uν(t, x) until a time t1,
where at least two wave-fronts interact together; see Fig. A.15.

Remark 21 Notice that it is possible to avoid that three of more wave-fronts interact
at the same time slightly changing the speed of some wave-fronts. This may
introduce a small error in the approximate solution with respect to the exact one.

At time t = t1, uν(t1, ·) is clearly a piecewise constant function. So we can repeat
the previous construction until a second interaction time t = t2 and so on. In order
to prove that a wave-front tracking approximate solution exists for every t > 0, we
need to estimate

1. The number of waves
2. The number of interactions between waves
3. The total variation of the approximate solution

The first two estimates are concerned with the possibility to construct a piecewise
constant approximate solution. The third estimate, instead, is related to the conver-
gence of the approximate solutions toward an exact solution.

Remark 22 The two first bounds are nontrivial for the system case, and it is
necessary to introduce simplified solutions to Riemann problems and/or non-
physical waves.

The next lemma shows that the number of interactions is finite.

Lemma 13 The number of wave-fronts for the approximate solution uν is not
increasing with respect to the time and so uν is defined for every t ≥ 0. Moreover,
the number of interactions between waves is bounded by the number of wave-fronts.
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Fig. A.16 Interaction
between two wave-fronts. The
first one connects the states ul
and um, while the second one
connects um with ur

ul

um

ur

Proof Consider two wave-fronts interacting together. The wave fronts can be:

1. Two shocks
2. Two rarefaction fronts
3. A shock and a rarefaction front

The speeds of waves imply that the case of two rarefaction fronts cannot happen. In
fact, suppose that two rarefaction shocks interact together at a certain time. Denote
with ul , um, and ur , respectively, the left, middle, and right states as in Fig. A.16.
Since these waves are rarefaction shocks, we have

f ′(ul) < f ′(um) < f ′(ur),

where f ′(u) is the characteristic speed of state u. Therefore, the wave connecting ul
to um has a speed less than or equal to the speed of the wave connecting um to ur ,
and the wave-fronts cannot interact.

So the remaining possibilities are the following:

1. Two shocks. In this case, it is clear that after the interaction, a single shock wave
is created. So the number of waves decreases by 1.

2. A shock and a rarefaction front. In this case, either a single shock wave is
produced as in the previous possibility, or a single rarefaction shock is created.
In fact, if the exact solution to the Riemann problem at the interaction time is
given by a rarefaction wave, then the size of the rarefaction wave is less than or
equal to the size of the rarefaction front, which is less than or equal to 1/ν. This
implies that the wave is split in a single rarefaction shock. Thus the number of
waves decreases by 1.

Therefore, we conclude that at each interaction the number of wave-fronts
decreases at least by 1 and so the lemma is proved. ��
Lemma 14 The total variation of uν(t, ·) is not increasing with respect to time.
Therefore, for each t ≥ 0,

TV (uν(t, ·)) ≤ TV (u0). (A.42)

Proof It is clear that the total variation may vary only at interaction times.
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Consider an interaction of two wave-fronts at time t̄ . Let us call by ul , um, and
ur , respectively, the left, the middle, and the right states of the wave-fronts; see
Fig. A.16.

The interaction between the two waves produces a single wave connecting ul
with ur . The variation before t = t̄ due to the interacting waves is given by
|ul − um| + |um − ur |, while the variation after t = t̄ due to the wave produced
is given by |ul − ur |. The triangular inequality implies that

|ul − ur | ≤ |ul − um| + |um − ur |

and so the proof is finished. ��
The following theorem holds.

Theorem 42 Let f : R → R be a smooth strictly convex or strictly concave
function and u0 ∈ L1(R;R) ∩ BV (R;R). Then there exists an entropy admissible
solution u(t, x) to the Cauchy problem (A.38), defined for every t ≥ 0. Moreover,

‖u(t, ·)‖L∞ ≤ ‖u0(·)‖L∞ (A.43)

for every t ≥ 0.

Proof For every ν ∈ N, construct a wave-front tracking approximate solution uν as
before in this section.

Clearly, we have

∣∣uν(t, x)∣∣ ≤ ∣∣uν(0, x)∣∣ ≤ ‖u0‖L∞ (A.44)

for every ν ∈ N, t ≥ 0, and x ∈ R. By Lemma 14,

TV (uν(t, ·)) ≤ TV (u0), (A.45)

for every t ≥ 0 and ν ∈ N. Finally, the maps t 
→ uν(t, ·) are uniformly
Lipschitz continuous with values in L1(R;R). Therefore, by Helly’s theorem (see,
for example, [51, Theorem 2.4]), we can extract a subsequence, denoted again
by uν(t, x), converging to some function u(t, x) in L1([0,+∞[×R;R). Since
‖uν(0, ·)− u0(·)‖L1 → 0, then the initial condition clearly holds.

It remains to prove that u(t, x) is a weak solution to the Cauchy problem (A.38)
and that it is entropy admissible. To prove the first claim, fix T > 0 and an arbitrary
C1 function ψ with compact support in ] −∞, T [×R. We need to prove that

∫ T

0

∫

R

(u∂t ψ + f (u)ψ) dx dt +
∫

R

u0(x)ψ(0, x) dx = 0.

It is sufficient to prove that
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lim
ν→+∞

[∫ T

0

∫

R

(
uν∂t ψ+f (uν)∂x ψ

)
dx dt+

∫

R

uν(0, x)ψ(0, x) dx

]
=0. (A.46)

Fix ν ∈ N. At every t ∈ [0, T ], call x1(t) < · · · < xN(t) the points where uν(t, ·)
has a jump and set

�uν(t, xα) := uν(t, xα+)− uν(t, xα−),
�f (uν(t, xα)) := f (uν(t, xα+))− f (uν(t, xα−)).

The lines xα(t) divide [0, T ]×R into a finite number of regions, say �j , where uν is
constant. Applying the Divergence Theorem to the vector field (ψuν, ψf (uν)) and
splitting the integral (A.46) over the regions �j , we obtain that the integral (A.46)
can be rewritten in the form

∫ T

0

∑
α

[
ẋα(t)�u

ν(t, xα)−�f (uν(t, xα))
]
ψ(t, xα(t)) dt. (A.47)

If xα is a shock wave, then

ẋα(t) ·�uν(t, xα)−�f (uν(t, xα)) = 0,

while if xα is a rarefaction wave, then

ẋα(t) ·�uν(t, xα)−�f (uν(t, xα))

depends linearly on the L∞ distance between uν(0, ·) and u0. Splitting the
summation in (A.47) over waves of the same type, we deduce that the previous
integral tends to 0 as ν → +∞, concluding that u(t, x) is a weak solution to the
Cauchy problem.

Fix now η a convex entropy with a corresponding entropy flux q. It remains to
prove that

lim inf
ν→+∞

∫ T

0

∫

R

[
η(uν)∂t ψ + q(uν)∂x ψ

]
dx dt ≥ 0

for every C1 positive function ψ with compact support. Using again the Divergence
Theorem as before, we need to prove that

lim inf
ν→+∞

∫ T

0

∑
α

[
ẋα(t)�η(u

ν(t, xα))−�q(uν(t, xα))
]
ψ(t, xα) dt ≥ 0,

where
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�η(uν(t, xα)) := η(uν(t, xα+))− η(uν(t, xα−)),
�q(uν(t, xα)) := q(uν(t, xα+))− q(uν(t, xα−)).

Using the same estimates as in the previous case, we conclude. ��

A.7.2 The System Case

For systems, the construction of wave-front tracking approximations is more
complex, because more types of interactions may happen. In particular, the bounds
on the number of waves, interactions, and BV norms are no more directly obtained.

Let us start giving some total variation estimates for interaction of waves along a
wave-front tracking approximation. These permit to illustrate the ideas for obtaining
the needed bounds in the system case. The constants in the estimates depend on the
total variation of the initial data, which is assumed to be sufficiently small.

Consider a wave of the i-th family of strength σi interacting with a wave of the
j -th family of strength σj , i 
= j , and indicate by σ ′k (k ∈ {1, . . . , n}) the strengths
of the new waves produced by the interaction. Then, it holds

∣∣σi − σ ′i
∣∣+
∣∣∣σj − σ ′j

∣∣∣+
∑
k 
=i,j

∣∣σ ′k
∣∣ ≤ C ∣∣σiσj

∣∣ . (A.48)

For the case i = j , let us indicate by σi,1 and σi,2 the strengths of the interacting
waves, and then it holds

∣∣σi,1 + σi,2 − σ ′i
∣∣+
∑
k 
=i

∣∣σ ′k
∣∣ ≤ C ∣∣σi,1σi,2

∣∣ . (A.49)

One can now fix a parameter δν and split rarefactions in rarefaction fans with
fronts of strength at most δν . Also, at each interaction time, one solves exactly the
new Riemann problem, eventually splitting the rarefaction waves in rarefaction fans,
only if the product of interacting waves is bigger than δν . Otherwise, one solves the
Riemann problem only with waves of the same families of the interacting ones, the
error being transported along a non-physical wave, traveling at a speed bigger than
all waves. In this way, it is possible to control the number of waves and interactions,
and then let δν go to zero. For details, see [51, Lemma 7.2].

Consider now a wave-front tracking approximate solution uν , and let xα(t), of
family iα and strength σα , indicate the discontinuities of uν(t). We say that two
discontinuities are interacting if xα < xβ and either iα > iβ or iα = iβ and at least
one of the two waves is a shock. We define the Glimm functional computed at uν(t)
as

Y (uν(t)) = TV(uν(t))+ C1Q(u
ν(t)),
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where C1 is a constant to be chosen suitably and

Q(uν(t)) =
∑∣∣σασβ

∣∣ ,

where the sum is over interacting waves. One can easily prove that the functional Y
is equivalent to the functional measuring the total variation. Clearly, such functional
changes only at interaction times. Using the interaction estimates (A.48) and (A.49),
at an interaction time t̄ , we get

∣∣TV(uν(t̄+))− TV(uν(t̄−))∣∣ ≤ C ∣∣σiσj
∣∣ ,

Q(uν(t̄+))−Q(uν(t̄−)) ≤ −C1
∣∣σiσj

∣∣+ C ∣∣σiσj
∣∣TV(uν(t̄−)).

Therefore,

Y (uν(t̄+))− Y (uν(t̄−)) ≤ ∣∣σiσj
∣∣ [C − C1 + CTV(uν(t̄−))] .

On the other side, for every t ,

TV(uν(t)) ≤ Y (uν(t)).

Then, choosing C1 > C and assuming that TV(uν(0)) is sufficiently small, one has
that Y is decreasing along a wave-front tracking approximate solution and so the
total variation is controlled.

A.8 Boundary Conditions for Scalar Conservation Laws

Here we describe briefly the problem of boundary conditions for conservation laws.
We focus the attention on the following problem:

⎧
⎪⎪⎨
⎪⎪⎩

∂t u+ ∂x f (u) = 0, t > 0, x ∈ (a, b),
u(t, a) = ua(t), t > 0,
u(t, b) = ub(t), t > 0,
u(0, x) = u0(x), x ∈ (a, b),

(A.50)

where a < b, the unknown u is defined on [0,+∞[×]a, b[ with values on R, the
flux f : R → R is a smooth function, ua and ub are the left and right boundary
conditions, and u0 is the initial data. The case with a single boundary can be treated
in a similar way. First note that boundary conditions cannot be always interpreted
in the classical sense. The next examples show different roles played by boundary
conditions.
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Example 17 Consider the following boundary value problem for the transport
equation:

⎧⎨
⎩
∂t u− ∂x u = 0, t > 0, x > 0,
u(t, 0) = 1, t > 0,
u(0, x) = 0, x > 0.

(A.51)

By the method of characteristics, the solution to the conservation law ∂t u−∂x u = 0,
with the initial condition u(0, ·) = 0, is the function u(t, x) = 0 for every t ≥ 0 and
x ≥ 0. In this case, the boundary condition u(t, 0) = 1 in (A.51) cannot be attained,
and it plays no role in the construction of the solution.

Example 18 Consider the following boundary value problem for the transport
equation:

⎧⎨
⎩
∂t u+ ∂x u = 0, t > 0, x > 0,
u(t, 0) = 1, t > 0,
u(0, x) = 0, x > 0.

(A.52)

By the method of characteristics, the solution to the problem (A.52) is

u(t, x) =
{

1, if t > 0, 0 ≤ x < t,
0, otherwise.

In this case, the boundary condition u(t, 0) = 1 in (A.52) is attained for every t > 0.

Boundary conditions for conservation laws have to be interpreted in a weak
sense. Various formulations are present in the literature; see, for example, [29, 123,
212]. Following [29], we give the following definition of solution to (A.50).

Definition 47 A function

u : C0
(
[0,+∞[;L1 (]a, b[;R)

)

such that u(t) has finite total variation for every t ≥ 0 is a weak entropy admissible
solution to the initial-boundary value problem (A.50) if the following conditions
hold:

1. For every C1 function ψ ≥ 0 with compact support in ]0,+∞[×]a, b[ and for
every entropy–entropy flux pair (η, q), it holds

∫ +∞

0

∫ b

a

(η(u)∂t ψ + q(u)∂x ψ) dx dt ≥ 0. (A.53)

2. The limit
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lim
t→0+

‖u(t, ·)− u0(·)‖L1(]a,b[) = 0 (A.54)

holds.
3. The weak boundary condition at x = a

max
k∈[α(t),β(t)]

sgn (u(t, a+)− ua(t)) [f (u(t, a+))− f (k)] = 0 (A.55)

holds for a.e. t > 0, where

α(t) = min {u(t, a+), ua(t)} , β(t) = max {u(t, a+), ua(t)} ,

and u(t, a+) denotes the right trace at x = a of u(t, ·).
4. The weak boundary condition at x = b

min
k∈[γ (t),δ(t)] sgn (u(t, b−)− ub(t)) [f (u(t, b−))− f (k)] = 0 (A.56)

holds for a.e. t > 0, where

γ (t) = min {u(t, b−), ub(t)} , δ(t) = max {u(t, b−), ub(t)} ,

and u(t, b−) denotes the left trace at x = b of u(t, ·).

A.8.1 The Left Boundary Condition for the Riemann Problem

We describe in detail the solution to the following boundary value: problem

⎧
⎨
⎩
∂t u+ ∂x f (u) = 0, t > 0, x > 0,
u(t, 0) = ũ, t > 0,
u(0, x) = u0, x > 0,

(A.57)

where u ∈ [0, 1], ũ, u0 ∈ [0, 1] are constants, and f : [0, 1] → R is a C2 strictly
concave function satisfying f (0) = f (1) = 0. Denote by σ ∈ ]0, 1[ the point of
maximum for f and by ū ∈ [0, 1] the right trace at x = 0 of a solution to (A.57)
according to Definition 47. We finally denote

α = min {ū, ũ} , β = max {ū, ũ} .

Since ū denotes the right trace at x = 0 of a solution to (A.57), we may suppose
that the classical Riemann problem
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⎧⎨
⎩
∂t u+ ∂x f (u) = 0, t > 0, x ∈ R,

u(0, x) = ū, x < 0,
u(0, x) = u0, x > 0

is solved with waves with non-negative speed, i.e.,

either ū = u0,

or ū < u0 and f (ū) < f (u0),

or u0 < ū ≤ σ.

We deduce now the relations between the trace ū and the boundary datum ũ,
so that condition (A.55) is satisfied. Assume first that ũ < σ . We have different
possibilities.

1. ū < ũ. In this case, we deduce that

max
k∈[α,β] sgn (ū− ũ) [f (ū)− f (k)] = max

k∈[ū,ũ]
[f (k)− f (ū)]

= f (ũ)− f (ū) > 0.

So condition (A.55) is not satisfied, i.e., this case does not happen.
2. ū = ũ. In this case, we deduce that

max
k∈[α,β] sgn (ū− ũ) [f (ū)− f (k)] = max

k∈[ū,ũ]
[f (k)− f (ū)] = 0.

Hence condition (A.55) holds.
3. ũ < ū ≤ σ . In this case, we deduce that

max
k∈[α,β] sgn (ū− ũ) [f (ū)− f (k)] = max

k∈[ũ,ū]
[f (ū)− f (k)]

= f (ū)− f (ũ) > 0.

So condition (A.55) is not satisfied, i.e., this case does not happen.
4. ũ < σ < ū. In this case, we deduce that

max
k∈[α,β] sgn (ū− ũ) [f (ū)− f (k)] = max

k∈[ũ,ū]
[f (ū)− f (k)]

=
{
f (ū)− f (ũ) > 0, if f (ũ) < f (ū),
0, otherwise.

Hence condition (A.55) is satisfied only if f (ũ) ≥ f (ū).
Consider now the case ũ ≥ σ . We have different possibilities.

1. ū < σ ≤ ũ. In this case, we deduce that
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max
k∈[α,β] sgn (ū− ũ) [f (ū)− f (k)] = max

k∈[ū,ũ]
[f (k)− f (ū)]

= f (σ)− f (ū) > 0.

So condition (A.55) is not satisfied, i.e., this case does not happen.
2. σ ≤ ū < ũ. In this case, we deduce that

max
k∈[α,β] sgn (ū− ũ) [f (ū)− f (k)] = max

k∈[ū,ũ]
[f (k)− f (ū)] = 0.

Hence condition (A.55) is satisfied.
3. ū = ũ. In this case, we deduce that

max
k∈[α,β] sgn (ū− ũ) [f (ū)− f (k)] = 0.

Hence condition (A.55) is satisfied.
4. ũ < ū. In this case, we deduce that

Table A.1 Relations between the boundary datum ũ and the admissible traces ū of a solution
to (A.57) satisfying condition (A.55) of Definition 47

Boundary datum ũ Traces ū satisfying (A.55)

ũ < σ either ū = ũ or ū > σ and f (ū) ≤ f (ũ)
ũ ≥ σ ū ≥ σ

ũ ũ

ū ū

1
2

1
2

1
2

1
2

1 1

1 1

Fig. A.17 Relations between the boundary datum and the trace of a solution in the case of f (u) =
u(1 − u). The admissible regions are colored in red. Left: relations described in Table A.1. Right:
relations described in Table A.2
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max
k∈[α,β] sgn (ū− ũ) [f (ū)− f (k)] = max

k∈[ũ,ū]
[f (ū)− f (k)] = 0.

Hence condition (A.55) is satisfied.

We summarize all the previous results in Table A.1 and in Fig. A.17, left.

A.8.2 The Right Boundary Condition for the Riemann Problem

Similar to Sect. A.8.1, we briefly describe the solution to the following boundary
value problem:

⎧
⎨
⎩
∂t u+ ∂x f (u) = 0, t > 0, x < 0,
u(t, 0) = ũ, t > 0,
u(0, x) = u0, x < 0,

(A.58)

where u ∈ [0, 1], ũ, u0 ∈ [0, 1] are constants, and f : [0, 1] → R is a C2 strictly
concave function satisfying f (0) = f (1) = 0. Denote by σ ∈ ]0, 1[ the point of
maximum for f and by ū ∈ [0, 1] the left trace at x = 0 of a solution to (A.58), and
define γ = min {ū, ũ}, δ = max {ū, ũ}.

We deduce now the relations between the trace ū and the boundary datum ũ, so
that condition (A.56) of Definition 47 is satisfied. Assume first that ũ ≤ σ . We have
different possibilities.

1. ū ≤ ũ. In this case, we deduce that

min
k∈[γ,δ] sgn (ū− ũ) [f (ū)− f (k)] = min

k∈[ū,ũ]
[f (k)− f (ū)] = 0.

Hence condition (A.56) holds.
2. ũ < ū ≤ σ . In this case, we deduce that

min
k∈[γ,δ] sgn (ū− ũ) [f (ū)− f (k)] = min

k∈[ũ,ū]
[f (ū)− f (k)] = 0.

Hence condition (A.56) holds.
3. ũ ≤ σ < ū. In this case, we deduce that

min
k∈[γ,δ] sgn (ū− ũ) [f (ū)− f (k)] = min

k∈[ũ,ū]
[f (ū)− f (k)]

= f (ū)− f (σ) < 0.

Hence condition (A.56) does not hold.

Consider now the case ũ > σ . We have different possibilities.
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1. ū ≤ σ < ũ. In this case, we deduce that

min
k∈[γ,δ] sgn (ū− ũ) [f (ū)− f (k)] = min

k∈[ū,ũ]
[f (k)− f (ū)]

=
{

0, if f (ū) ≤ f (ũ),
f (ũ)− f (ū), if f (ū) > f (ũ).

So condition (A.56) is satisfied only if f (ū) ≤ f (ũ).
2. σ < ū < ũ. In this case, we deduce that

min
k∈[γ,δ] sgn (ū− ũ) [f (ū)− f (k)] = min

k∈[ū,ũ]
[f (k)− f (ū)]

= f (ũ)− f (ū) < 0.

Hence condition (A.56) does not hold.
3. ū = ũ. In this case, we deduce that

min
k∈[γ,δ] sgn (ū− ũ) [f (ū)− f (k)] = 0.

Hence condition (A.56) is satisfied.
4. ũ < ū. In this case, we deduce that

min
k∈[γ,δ] sgn (ū− ũ) [f (ū)− f (k)] = min

k∈[ũ,ū]
[f (ū)− f (k)]

= f (ū)− f (ũ) < 0.

Hence condition (A.56) is not satisfied.

We summarize all the previous results in Table A.2 and in Fig. A.17, right.

Table A.2 Relations between the boundary datum ũ and the admissible traces ū of a solution
to (A.57) satisfying condition (A.56) of Definition 47

Boundary datum ũ Traces ū satisfying (A.56)

ũ ≤ σ ū ≤ σ
ũ > σ either ū = ũ or ū < σ and f (ū) ≤ f (ũ)



Appendix B
Models for Vehicular Traffic and
Conservation Laws on Networks

In this appendix, we provide various results for hyperbolic conservation laws on
networks. We first start with our key example of vehicular traffic and then turn to
other possible applications.

The development of models for vehicular traffic on networks started with the
pioneering work of Holden and Risebro [178] in 1995. After around a decade, a
renewed interest gave rise to many models, see Chitour and Piccoli [70], Coclite
et al. [76], Garavello and Piccoli [141, 142], Herty et al. [175, 177], Holden and
Risebro [178], and Lebacque and Khoshyaran [207]. The same models were used for
other applications such as telecommunication networks (see D’Apice et al. [108]),
gas pipelines networks (see Banda et al. [26] and Colombo and Garavello [77]), and
supply chains (see Armbruster et al. [20], D’Apice and Manzo [107], and Göttlich
et al. [156]).

B.1 Lighthill–Whitham–Richard Model for vehicular Traffic
on Networks

The most well-known macroscopic model for traffic flow, the celebrated Lighthill–
Whitham–Richard (briefly LWR), consists of a single conservation law. One first
starts from the conservation of vehicles written as

d

dt

∫ x2

x1

u(t, x) dx = f (t, x1)− f (t, x2),

where x1 and x2 are two locations on a stretch of road, u is the car density, and f
represents the flux. In other words, the time variation in the amount of cars between
x1 and x2 is given by the difference between the incoming flux at x1 and the outgoing
flux at x2. Recalling that f = f (u, v) = uv, where v is the average speed, and
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differentiating, we get

∂t u+ ∂x f (u, v) = 0. (B.1)

Equation (B.1) does not provide self-contained mathematical model, since it
depends on two variables u and v. To overcome this difficulty, the LWR model
assumed that v can be expressed as a function of u, thus obtaining a closed system:

∂tu+ ∂xf (u) = 0, (B.2)

where u = u(t, x) ∈ [0, umax], with umax being the maximum density of cars on
the road.
The usual assumptions on the functions v = v(u) and f = f (u) = u v(u) are the
following:

1. v is decreasing.
2. f is monotonically increasing on an interval [0, σ ], σ ∈]0, umax[, and decreasing

on [σ, umax].
3. σ is the unique maximum point of f .
4. f is concave.

On the interval [0, σ ], the traffic is said to be in free flow, while above σ the traffic
is said to be in congested flow.
We define the following:

Definition 48 Let τ : [0, umax] → [0, umax] be the map such that f (τ (u)) =
f (u) for every u ∈ [0, umax] and τ (u) 
= u for every u ∈ [0, umax] \ {σ } .

We are now ready to describe a model for LWR on a network. A network is
a topological graph given by a couple (I,J ) , where I = {Ii : i = 1, · · · , N} is a
finite set of intervals parameterizing roads, and J is a finite set vertices representing
junctions. We assume that on each Ii the evolution of car density is given by an
LWR model (B.2), and thus the dynamics is specified if at junctions the evolution is
uniquely determined.

It is easy to check that the conservation of cars through the junctions is not
sufficient to isolate a unique solution, as first observed by Holden and Risebro [178].
The authors used the maximization of a functional at vertexes to get uniqueness of
solutions, and then many alternative ideas were proposed (see [142] for a complete
account). In order to implement such ideas, we first define the Riemann problem
(RP) at a junction J , which is a Cauchy problem with initial data constant on each
road incident at the junction. One can see that the evolution of traffic load on the
whole network is assigned once one prescribes a Riemann solver at each junction,
i.e., a map assigning a solution with every Riemann problem at the junction. Given
initial conditions (ui,0, uj,0), where i runs on incoming roads and j on outgoing
ones, density values (̂ui , ûj ) are assigned so that the solution on the incoming road
i is given by a single wave (ui,0, ûi ) and on the outgoing road j by the single wave
(̂uj , uj,0).
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Let us first detail the concept of solution on a network. First, we assume that
on each road (B.2) is satisfied in weak sense, that is, for every test function ϕ =
ϕ(t, x) : R+ × Ii → R

+, it holds

∫ +∞

0

∫ bi

ai

(
ui
∂ϕ

∂t
+ f (ui)∂ϕ

∂x

)
dx dt = 0,

where Ii = [ai, bi] and ui is the car density on Ii . One further considers entropy
conditions.
A solution at a junction J is defined as follows. Assume there are n incoming roads,
say I1, . . . , In, and m outgoing ones, say In+1, . . . , In+m, and then a solution is a
collection of functions u1, · · · , un+m such that

n+m∑
l=1

[∫ +∞

0

∫ bl

al

(
ul
∂ϕl

∂t
+ f (ul)∂ϕl

∂x

)
dx dt

]
= 0 (B.3)

for every set of test functions ϕl smoothly connected at the junction, i.e., such that

ϕi(·, bi) = ϕj (·, aj ), ∂ϕi

∂x
(·, bi) = ∂ϕj

∂x
(·, aj )

for all i = 1, . . . , n and all j = n+1, . . . , n+m. A consequence of such definition
is the following equality:

n∑
i=1

f (ui(t, b
−
i )) =

n+m∑
j=n+1

f (uj (t, a
+
j )),

which implies the conservation of cars through the junction. We are now ready to
detail the approaches to isolate a unique solution at the junction.

Recall that a Riemann problem for a conservation law on a real line consists of
a Cauchy problem with Heaviside-type initial data, usually assumed to be constant
to the left and right of the origin. See Sect. A.6 for a complete description. Self-
similar solutions consist of shocks and rarefactions and solutions to general Cauchy
problems are constructed via wave-front tracking using Riemann problems as
building blocks, see Sect. A.7.1. The map associating a solution to every Heaviside-
type initial datum is referred to as Riemann solver. Following the same logic, a
Riemann problem at a junction is a Cauchy problem with constant initial data on
every road, the junction representing the discontinuity point. Then, a Riemann solver
at a junction J is defined as follows:

Definition 49 A Riemann solver (RS) at J is a mapping associating with every
initial datum u0 = (u0,1, . . . , u0,n+m) ∈ R

n+m a vector û = (û1, . . . , ûn+m) ∈
R
n+m such that:
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(i) On every incoming road Ii , the solution is that of the Riemann problem
(u0,i , ûi ).

(ii) On every outgoing road Ij , the solution is that of the Riemann problem
(ûj , u0,j ).

The Riemann solver must satisfy the consistency condition RS(RS(u0)) = RS(u0).

To have a well-defined solution and conserve the number of cars through the
junction, we further impose the following:

(H1) The waves generated from the junction must have negative speeds on the
incoming arcs and positive speeds on the outgoing ones.

(H2) The solution to a Riemann problem at a vertex must satisfy Eq. (B.3).
(H3) The mapping u0,l 
→ f (ûl) is continuous for every l = 1, · · · , n+m.

(H1) ensured conservation of cars, while (H2) is necessary to define a weak solution
at the junction.

If we assign a Riemann solver at every junction J , then a solution on the whole
network will be a solution u to the conservation law on every road and such that

RS(uJ (t)) = uJ (t),

where uJ (t) := (u1(t, b
−
1 ), . . . , un(t, b

−
n ), un+1(t, a

+
n+1), , . . . , un+m(t, a

+
n+m)) ∈

R
n+m.

B.2 Dynamics at Simple Junctions

Various approaches were proposed in the literature to define Riemann Solvers at
junctions. Most of them are based on the following rules:

(A) Traffic distribution coefficients αji ∈]0, 1[ represent the percentage of traffic
moving from incoming road i to outgoing road j . Such coefficients can be
organized in a traffic distribution matrix:

A = {αji
}
j=n+1,...,n+m, i=1,...,n ∈ R

m×n.

A is row stochastic, i.e., for every i = 1, · · · , n,

n+m∑
j=n+1

αji = 1.

(B) Drivers behave so as to maximize the flux through the junction, while distribut-
ing according to rule (A).
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If n > m, that is, if there are more incoming than outgoing roads, then an additional
rule is needed:

(C) There is a priority vector (p1, . . . , pn) assigning the percentage of traffic
through the junction from each road. For instance, if there are two incoming
roads a and b and one outgoing road c and Q is the amount of cars going
through the junction, then p1Q comes from a and p2Q = (1 − p1)Q from b.

Following rules (A), (B), and (C), we can uniquely define a Riemann solver as
follows. First, we will define the solution by assigning an Initial-Boundary Value
Problem (IBVP) on each road. These IBVPs will be designed so that the boundary
value would be attained by the solution; otherwise, we may violate conservation
of cars through the junction. This is achieved by imposing admissible values on
each road generating waves with negative speed on incoming roads and positive on
outgoing ones, see also [142] for an extensive discussion. Such restriction has the
advantage of allowing to define only the flow through the junction, being the values
of the densities automatically determined by the admissibility condition on waves’
speed sign. We explain this fact below in detail for the case of simple junctions, but
first we start proving it for the general case.
The achievable flow on each road is described by the following:

Proposition 13 Let
(
u1,0, u2,0, . . . , un+m,0

)
be the initial densities of an RP at J

and γmaxi , i = 1, . . . , n, and γmaxj , j = n+ 1, . . . , n+m, be the maximum fluxes
that can be obtained on incoming roads and outgoing roads, respectively. Then,

γmaxi =
{
f
(
ui,0
)
, if ui,0 ∈ [0, σ ] ,

f (σ ) , if ui,0 ∈ ]σ, umax] ,
i = 1, · · · , n, (B.4)

γmaxj =
{
f (σ) , if uj,0 ∈ [0, σ ] ,
f
(
uj,0

)
, if uj,0 ∈ ]σ, umax] ,

j = n+ 1, · · · , n+m. (B.5)

In particular, densities can be reconstructed by flows at the junction.

Proof We focus on incoming road, being the outgoing case similar. Fix an incoming
road i, and let ûi be the trace at the junction given by the Riemann solver and(
ui,0, ûi

)
the corresponding wave with negative speed. If ui,0 ∈ [0, σ ] , then ûi ∈

{ui,0}∪
]
τ
(
ui,0
)
, 1
]
. Thus either there is no wave, if ûi = ui,0, or the wave is a shock

with negative speed, see Fig. B.1 (left), which would lower the flux. Therefore the
maximal flux is given by f (ui,0). Notice also that for every flux value in [0, f (ui,0)],
there exists a unique ûi .
If, instead, ui,0 ∈ [σ, 1] , then ûi ∈ [σ, 1]. The generated wave

(
ui,0, ûi

)
is a

rarefaction or a shock with negative speed, see Fig. B.1 (right). Then every flux
can be achieved, i.e., all of the interval [0, f (σ )] and, again, there exists a unique
admissible value of ûi for each flux value.
The analysis for outgoing roads is similar, see Fig. B.2. ��
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Fig. B.2 Images of Riemann Solvers for the outgoing road

Proposition 13 allows to restate rules (A), (B), and (C) as a linear programming
problem in terms of the incoming fluxes γ̂i = f (̂ui). Indeed, rule (A) allows to
determine the outgoing fluxes γ̂j = f (̂uj ) in terms of the incoming ones. Then
rule (B) provides a linear functional in the fluxes γ̂i to be maximized. The constraints
are given by the formulas (B.4) and (B.5). Rule (C) allows to choose a unique
solution to the linear programming problem in case of more incoming than outgoing
roads.

In the following sections, we will explicitly solve the Riemann problems in the
following cases: junctions of type 2×1 (two incoming roads and one outgoing road),
junctions of type 1 × 2 (one incoming road and two outgoing roads), and junctions
of type 2 × 2 (two incoming roads and two outgoing roads). We refer the reader
to [142] for a complete description of the general case.

B.2.1 Two Incoming and One Outgoing Roads

Assume to have two incoming roads a and b and one outgoing road c. For constant
initial data

(
ua,0, ub,0, uc,0

)
, the solution is defined as follows. Define

γ̂c = min
{
γmaxa + γmaxb , γ maxc

}
,
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Fig. B.3 The possible different cases described in Sect. B.2.1

where γmaxi , i = a, b, is defined as in (B.4) and γmaxc as in (B.5). The quantity γ̂c
is the maximal flux through the junction, thus respecting rule (B). For rule (A), the
traffic distribution matrix is simply the vector (1, 1) and no restriction is imposed.
In the space of incoming fluxes (γa, γb) define a line by

γb = 1 − q
q

γa. (B.6)

Such a line reflects rule (C), and we set P to be the point of intersection of the
line (B.6) with the maximal flux line γa + γb = γ̂c. If the point P belongs to the
admissible region � = {

(γa, γb) : 0 ≤ γi ≤ γmaxi , 0 ≤ γa + γb ≤ γ̂c, i = a, b
}
,

then P is the solution; see Fig. B.3, left. Otherwise, we set (γ̂a, γ̂b) = Q, where Q
is the point of � ∩ {(γa, γb) : γa + γb = γ̂c} closest to the line (B.6), see Fig. B.3,
right. Given the fluxes, the densities are determined uniquely. The construction is
summarized in the following:

Proposition 14 Consider a junction J with n = 2 incoming roads and m =
1 outgoing road. For every ua,0, ub,0, uc,0 ∈ [0, umax] , there exists a unique
admissible weak solution u = (ua, ub, uc) at the junction J , satisfying rules (A),
(B), and (C), such that

ua (0, ·) ≡ ua,0, ub (0, ·) ≡ ub,0, uc (0, ·) ≡ uc,0.

Moreover, there exists a unique 3-tuple (̂ua, ûb, ûc) ∈ [0, umax]3 such that

ûi ∈
{{
ui,0
} ∪ ]τ (ui,0

)
, umax

]
, if 0 ≤ ui,0 ≤ σ,

[σ, umax] , if σ ≤ ui,0 ≤ umax, i = a, b,

and

ûc ∈
{

[0, σ ] , if 0 ≤ uc,0 ≤ σ,{
uc,0

} ∪ [0, τ (uc,0
)[
, if σ ≤ uc,0 ≤ umax,
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and for i ∈ {a, b}, the solution is given by the wave
(
ui,0, ûi

)
, while for the outgoing

road, the solution is given by the wave
(̂
uc, uc,0

)
.

B.2.2 One Incoming and Two Outgoing Roads

Let us now consider the junction with the incoming road a and two outgoing roads
b and c. The distribution matrix A, of rule (A), takes the form

A =
(

α

1 − α
)
,

where α ∈ ]0, 1[ and (1 − α) indicate the percentage of cars which, from road a,
goes to roads b and c, respectively. Thanks to rule (B), the solution to an RP is

γ̂ = (γ̂a, γ̂b, γ̂c) = (γ̂a, αγ̂a, (1 − α) γ̂a) ,

where

γ̂a = min

{
γmax
a ,

γmax
b

α
,
γmax
c

1 − α
}
.

Once we have obtained γ̂a, γ̂b, and γ̂c, it is possible to find in a unique way ûi , i ∈
{a, b, c}, reasoning as in the proof of Proposition 14. Then we obtain the following:

Proposition 15 Consider a junction J with n = 1 incoming road and m = 2
outgoing roads. For every ua,0, ub,0, uc,0 ∈ [0, umax], there exists a unique
admissible weak solution u = (ua,b , uc) at the junction J , respecting rules (A)
and (B), such that

ua (0, ·) ≡ ua,0, ub (0, ·) ≡ ub,0, uc (0, ·) ≡ uc,0.

Moreover, there exists a unique 3-tuple (̂ua, ûb, ûc) ∈ [0, umax]3 such that

ûa ∈
{{
ua,0

} ∪ ]τ (ua,0
)
, umax

]
, if 0 ≤ ua,0 ≤ σ,

[σ, umax] , if σ ≤ ua,0 ≤ umax,

and

ûj ∈
{

[0, σ ] , if 0 ≤ uj,0 ≤ σ,{
uj,0

} ∪ [0, τ (uj,0
)[
, if σ ≤ uj,0 ≤ umax, j = b, c,
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and for the incoming road, the solution is given by the wave
(
ua,0, ûa

)
, while for

j = b, c, the solution is given by the wave
(̂
uj , uj,0

)
.

B.2.3 Two Incoming and Two Outgoing Roads

Let us now consider the junction with two incoming roads a and b and two outgoing
roads c and d. The distribution matrix A, of rule (A), takes the form

A =
(

α β

1 − α 1 − β
)
, (B.7)

where α, β ∈ ]0, 1[. We assume that α 
= β; otherwise, we may have more than one
solution to the linear programming problem, see [142] for details.

First notice that constraints from outgoing roads fluxes can be expressed as

αγ̂a + βγ̂b ≤ γmaxc , (1 − α)γ̂a + (1 − β)γ̂b ≤ γmaxd .

Define P = (γ1, γ2) to be the point of intersection of the two lines:

αγ1 + βγ2 = γmaxc , (1 − α)γ1 + (1 − β)γ2 = γmaxd .

To express the solution, we need to distinguish some cases:

Case a). If γ1 ≤ γmaxa and γ2 ≤ γmaxb , then the solution is given by

γ̂a = γ1, γ̂b = γ2.

Case b). If γ1 > γ
max
a and γ2 > γ

max
b , then the solution is given by

γ̂a = γmaxa , γ̂b = γmaxb .

Case c). Assume γ1 > γ
max
a and γ2 ≤ γmaxb . If α < β (thus 1−β < 1−α), then

the constraint given by outgoing road c is more stringent than that of outgoing
road d, and thus the solution is given by

γ̂a = γmaxa , γ̂b = min

{
γmaxc − αγmaxa

β
, γ maxb

}
.

Otherwise, i.e., if α > β, then the solution is given by

γ̂a = γmaxa , γ̂b = min

{
γmaxd − (1 − α)γmaxa

1 − β , γmaxb

}
.
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Case d). Assume γ1 ≤ γmaxa and γ2 > γ
max
b . If α > β (thus 1−β > 1−α), then

the constraint given by outgoing road c is more stringent than that of outgoing
road d, and thus the solution is given by

γ̂a = min

{
γmaxc − βγmaxb

α
, γ maxa

}
, γ̂b = γmaxb .

Otherwise, i.e., if α < β, then the solution is given by

γ̂a = min

{
γmaxd − (1 − β)γmaxb

1 − α , γmaxa

}
, γ̂b = γmaxb .

B.3 Constructing Solutions on a Network

In this section, we describe a general approach to construct solutions on networks.
The scalar case was extensively studied and there are general results, while results
for the systems case are available only in special cases.

Cauchy problems on a network are defined once initial data on each road are
specified: u0 = (u1,0, · · · , uN,0), where ui,0 : Ii → R

d is a measurable and
bounded function. In some cases, entering edges to the network are given, and then
boundary conditions must be assigned.

A solution to the Cauchy problem on a network is an N vector-valued functions
ui = ui(t, x) : R+ × Ii → R

d such that:

(i) t 
→ ‖ui(t, ·)‖L1
loc

is continuous for each i = 1, · · · , N .
(ii) ui is a weak entropic solution to (B.2) on Ii .

(iii) At each junction, incoming and outgoing densities ui give an admissible
solution as specified in Sects. B.1 and B.2.

(iv) ui(0, x) = ui,0(x) for almost every x ∈ Ii .
Solutions can be constructed via wave-front tracking algorithm extended to the

network case and consist of the following steps:

1. Approximate initial data with piecewise constant functions. Then, use wave-
front tracking algorithm solving classical Riemann problems within roads and
Riemann problems at junctions. At each interaction time, solve a new Riemann
problem.

2. Estimate the number of waves to allow the construction for any time and the total
variation of solution for compactness.

3. Using compactness properties, pass to the limit in approximations and prove the
limit is a solution.

Notice that the number of waves may increase due to interactions with junctions,
and thus suitable functionals must be used (see [139, 141, 142] ). On the other side,
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due to finite speed of propagation of waves, the total variation estimates on the flux
can be done separately for each junction.

Theorem 43 For each junction J of the network, consider the network with only J
and incident roads prolonged to infinity. If there exists C > 0 such that for every
u0 = (u1,0, · · · , uN,0) with bounded total variation we have

TV (f (u(t))) ≤ C · TV (f (u0)) ,

then the total variation is bounded on the entire network (with a time-dependent
constant Ct > 0.)

Once the estimate is available for the fluxes, still one has to deduce the same
estimate for the densities uν . General results are available for the scalar case and are
based on controlling the number of waves crossing the maximum of the flux called
big shocks. The general strategy works as follows. Define the following:

Definition 50 A wave (u−i , u
+
i ) on road Ii is a big shock if u−i < u

+
i and

sgn (u−i − σ) · sgn (u+i − σ) < 0.

Definition 51 Given a junction J and an incoming arc Ii , ui(t, bi−) is called good
datum at time t > 0 if ui(t, bi−) ∈ [σ, umax] and bad datum otherwise. For an
outgoing arc Ij , uj (t, aj+) is a good datum at time t > 0 if

uj (t, aj+) ∈ [0, σ ]

and a bad datum otherwise.

Then, we have the following lemma:

Lemma 15 If an arc Ii incident to a junction J has a good datum, then the datum
remains good and no big shocks emerge from J until a wave interacts with J from
Ii . If Ii has a bad datum, then at an interaction time either no wave is produced on
Ii or a big shock is produced on Ii and the new density is a good datum.

Lemma 15 allows to limit the number of big shocks on every road, and thus the flux
u 
→ f (u) can be inverted and total variation estimates on u hold true. We refer the
reader to [139, 142] for details. We also refer the reader to Sect. 3.2 for details on
Riemann solvers at junctions which guarantee existence of solutions.
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