
Jennifer L. Castle
David F. Hendry

Modelling our 
Changing World

PALGRAVE TEXTS IN ECONOMETRICS



Palgrave Texts in Econometrics

Series Editor
Michael P. Clements

Henley Business School
University of Reading

Reading, UK

Founding Editors
Kerry Patterson

Department of Economics
University of Reading

Reading, UK

Terence Mills
School of Business and Economics

Loughborough University
UK



This is a series of themed books in econometrics, where the subject is
interpreted as including theoretical developments, applied econometrics
and more specialized fields of application, for example financial econo-
metrics, the econometrics of panel data sets, forecasting and so on. Each
book in the series is directed to particular aspects of the underlying and
unifying theme.

More information about this series at
http://www.palgrave.com/gp/series/14078

http://www.palgrave.com/gp/series/14078


Jennifer L. Castle • David F. Hendry

Modelling our
Changing World



Jennifer L. Castle
Magdalen College
University of Oxford
Oxford, UK

David F. Hendry
Nuffield College
University of Oxford
Oxford, UK

Palgrave Texts in Econometrics
ISBN 978-3-030-21431-9 ISBN 978-3-030-21432-6 (eBook)
https://doi.org/10.1007/978-3-030-21432-6

© The Editor(s) if applicable and The Author(s) 2019. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons license and indicate if
changes were made.
The images or other third party material in this book are included in the book’s Creative Commons
license, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Palgrave Pivot imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Additional material to this book can be downloaded from http://extras.springer.com.

https://doi.org/10.1007/978-3-030-21432-6
http://creativecommons.org/licenses/by/4.0/
http://extras.springer.com


Preface

This short introduction to Modelling our Changing World focuses on the
concepts, tools and techniques needed to successfully model time series
data. The basic framework draws on Hendry and Nielsen (2007), sum-
marized in Hendry and Nielsen (2010) and Hendry and Mizon (2016). It
emphasizes the need for general models to account for the complexities
of the modern world and the magnitudes of the many changes that have
occurred historically. The combination of evolutionary and abrupt
changes poses a major challenge for empirical modelling and hence for
developing appropriate methods for selecting models. Fortunately, many
of the key concepts can be explained using simple examples. Moreover,
computer software for automatic model selection can be used to under-
take the more complicated empirical modelling studies.

Modelling our Changing World is aimed at general academic readers
interested in a wide range of disciplines. The book is applicable to many
areas within the sciences and social sciences, and the examples discussed
cover our recent work on climate, volcanoes and economics. All disciplines
using time series data should find the book of value. The level minimizes
technicalities in favour of visual and textual descriptions, and provides a set
of primers to introduce core concepts in an intuitive way. Any more
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technical discussion with mathematics occurs in boxed material and can be
skipped without missing the key ideas and intuition. Undergraduates on
environmental and economics courses including some statistics and
econometrics should find it a useful complement to standard textbooks.

The book commences with some ‘Primers’ to elucidate the key con-
cepts, then considers evolutionary and abrupt changes, represented by
trends and shifts in a number of time series. Sometimes, we can use trends
and breaks to our advantage, but first we must be able to find them in the
data being modelled to avoid an incorrect representation. Once a good
empirical model of changing series has been built combining our best
theoretical understanding and most powerful selection methods, there
remains the hazardous task of trying to see what the future might hold.
Our approach uses OxMetrics (see Doornik 2018b) and PcGive (Doornik
and Hendry 2018) as that is the only software that implements all the
tools and techniques needed in the book. The software is available for
download from www.timberlake.co.uk/software/oxmetrics.html. Most
recently, XLModeler is an Excel add-in that provides much of the func-
tionality of PcGive: see Doornik et al. 2019. More advanced Monte Carlo
simulations also require Ox (see Doornik 2018a). The accompanying
online appendix includes all files required to enable a full replication of the
empirical example in Chapter 6, including data, algebra, and batch files
using OxMetrics.

The references provide plenty of further reading for interested readers.
For readers looking to follow up with a more technical treatment we
recommend Hendry and Doornik (2014) for model selection, Clements
and Hendry (1998, 1999) for forecasting, and Hendry (1995) for a
comprehensive treatment of econometric modelling with time series data.

Oxford, UK Jennifer L. Castle
David F. Hendry
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1
Introduction

Abstract The evolution of life on Earth—a tale of both slow and abrupt
changes over time—emphasizes that change is pervasive and ever present.
Change affects all disciplines using observational data, especially time
series of observations. When the dates of events matter, so data are not
ahistorical, they are called non-stationary denoting that some key prop-
erties like their means and variances change over time. There are several
sources of non-stationarity and they have different implications for mod-
elling and forecasting. This Chapter introduces the structure of our book
which will explore how to model such observational data on an ever-
changing world.

Keywords Change · Observational data · Stationarity · Non-stationarity ·
Forecast failure

Earth has undergone many remarkable events in its 4.5 billion years, from
early forms of life through the evolution and extermination of enormous
numbers of species, to the present day diversity of life. It has witnessed
movements of continents, impacts from outer space, massive volcanism,
and experienced changing climates from tropical through ice ages, and
recent changes due to anthropogenic interventions following the devel-

© The Author(s) 2019
J. L. Castle and D. F. Hendry, Modelling our ChangingWorld,
Palgrave Texts in Econometrics, https://doi.org/10.1007/978-3-030-21432-6_1
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2 J. L. Castle and D. F. Hendry

opment of homo sapiens, especially since the industrial revolution. The
world is ever changing, both slowly over time and due to sudden shocks.
This book explores how we can model observational data on such a world.

Many disciplines within the sciences and social sciences are confronted
with data whose properties change over time. While at first sight, mod-
elling volcanic eruptions, carbon dioxide emissions, sea levels, global tem-
peratures, unemployment rates, wage inflation, or population growth seem
to face very different problems, they share many commonalities. Measure-
ments of such varied phenomena come in the form of time-series data.
When observations on a given phenomenon, say CO2 emissions, popu-
lation growth or unemployment, come from a process whose properties
remain constant over time—for example, having the same mean (average
value) and variance (movements around that mean) at all points in time—
they are said to be stationary. This is a technical use of that word, and does
not entail ‘unmoving’ as in a traffic jam. Rather, such time series look
essentially the same over different time intervals: indeed, a stationary time
series is ahistoric in that the precise dates of observations should notmatter
greatly. However, almost all social, political, economic and environmental
systems are non-stationary, with means, variances and other features, such
as correlations between variables, changing over time. In the real world,
whether an event under consideration happened in 1914, 1929, 1945 or
2008 usually matters, a clear sign that the data are non-stationary.
Much of economic analysis concerns equilibrium states although we all

know that economies are buffeted by many more forces than those con-
tained in such analyses. Sudden political changes, financial and oil crises,
evolution of social mores, technological advances, wars and natural catas-
trophes all impinge on economic outcomes, yet are rarely part of theoretical
economic analyses. Moreover, the intermittent but all too frequent occur-
rence of such events reveals that disequilibrium is the more natural state
of economies. Indeed, forecast failures—where forecasts go badly wrong
relative to their expected accuracy—reveal that such non-stationarities do
happen, and have adverse effects both on economies and on the verisimil-
itude of empirical economic models. Castle et al. (2019) provide an intro-
duction to forecasting models and methods and the properties of the
resulting forecasts, explaining why forecasting mishaps are so common.



1 Introduction 3

To set the scene, the book begins with a series of primers on non-
stationary time-series data and their implications for empirical model
selection. Two different sources of non-stationarity are delineated, the
first coming from evolutionary changes and the second from abrupt, often
unanticipated, shifts. Failing to account for either can produce misleading
inferences, leading to models that do not adequately characterise the avail-
able evidence. We then go on to explore how features of non-stationary
time-series data can bemodelled, utilising bothwell-established and recent
innovative techniques. Some of the proposed new techniques may sur-
prise many readers. The solution is to include more variables than you
have observations for, which is important to capture the ever changing
nature of the data. Nevertheless, both theoretical analyses and computer
simulations confirm that the approach is not only viable, but has excellent
properties.
Various examples from different disciplines demonstrate not only the

difficulties of working with such data, but also some advantages. We will
gain insights into a range of phenomena by carefully modelling change in
its many forms. The examples considered include the underlying causes
and consequences of climate change, macroeconomic performance, var-
ious social phenomena and even detecting the impacts of volcanic erup-
tions on temperatures.However, valuable insights from theoretical subject-
matter analyses must also be retained in an efficient approach and again
recent developments can facilitate doing so. Forecasting will inevitably be
hazardous in an ever-changing world, but we consider some ways in which
systematic failure can be partly mitigated.
The structure of the book is as follows. In Chapter 2, primers outline

the key concepts of time series, non-stationarity, structural breaks and
model selection. Chapter 3 explores some explanations for change and
briefly reviews the history of time-series modelling. Chapter 4 looks at
how to use the ever changing data to your advantage: non-stationarity in
some form is invaluable for identifying causal relationships and conducting
policy. Chapter 5 shows how various forms of break can be detected and
hence modelled. Chapter 6 examines an empirical example of combining
theory and data to improve inference. Chapter 7 looks at forecasting non-
stationary time series, with hints on how to handle structural breaks over
the forecast horizon, and finally Chapter 8 concludes.

http://dx.doi.org/10.1007/978-3-030-21432-6_2
http://dx.doi.org/10.1007/978-3-030-21432-6_3
http://dx.doi.org/10.1007/978-3-030-21432-6_4
http://dx.doi.org/10.1007/978-3-030-21432-6_5
http://dx.doi.org/10.1007/978-3-030-21432-6_6
http://dx.doi.org/10.1007/978-3-030-21432-6_7
http://dx.doi.org/10.1007/978-3-030-21432-6_8
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2
Key Concepts: A Series of Primers

Abstract This chapter provides four primers. The first considers what
a time series is and notes some of the major properties that time series
might exhibit. The second extends that to distinguish stationary from
non-stationary time series, where the latter are the prevalent form, and
indeed provide the rationale for this book. The third describes a specific
form of non-stationarity due to structural breaks, where the ‘location’
of a time series shifts abruptly. The fourth briefly introduces methods
for selecting empirical models of non-stationary time series. Each primer
notes at the start what key aspects will be addressed.

Keywords Time series · Persistence · Non-stationarity · Nonsense
relations · Structural breaks · Location shifts · Model selection ·
Congruence · Encompassing
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6 J. L. Castle and D. F. Hendry

2.1 Time Series Data

What is a time series and what are its properties?

A time series orders observations
Time series can be measured at different frequencies
Time series exhibit different patterns of ‘persistence’
Historical time can matter

A Time Series Orders Observations
A time series is any set of observations ordered by the passing of time.
Table 2.1 shows an example. Each year, a different value arises. There are
millions of recorded time series, in most social sciences like economics
and politics, environmental sciences like climatology, and earth sciences
like volcanology among other disciplines.
The most important property of a time series is the ordering of obser-

vations by ‘time’s arrow’: the value in 2014 happened before that in 2015.
We live in a world where we seem unable to go back into the past, to undo
a car crash, or a bad investment decision, notwithstanding science-fiction
stories of ‘time-travellers’.That attribute will be crucial, as time-series anal-
ysis seeks to explain the present by the past, and forecast the future from
the present. That last activity is needed as it also seems impossible to go
into the future and return with knowledge of what happens there.

Time Series Occur at Different Frequencies
A second important feature is the frequency at which a time series is
recorded, from nano-seconds in laser experiments, every second for elec-
tricity usage, through days for rainfall, weeks, months, quarters, years,
decades and centuries to millenia in paleo-climate measures. It is relatively
easy to combine higher frequencies to lower, as in adding up the economic

Table 2.1 A short annual time series

Date 2012 2013 2014 2015 2016 2017

Value 4 6 5 9 7 3
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output of a country every quarter to produce an annual time series. An
issue of concern to time-series analysts is whether important information
is lost by such temporal aggregation. Using a somewhat stretched exam-
ple, a quarterly time series that went 2, 5, 9, 4 then 3, 4, 8, 5 and so
on, reveals marked changes with a pattern where the second ‘half ’ is much
larger than the ‘first’, whereas the annual series is always just a rather unin-
formative 20. The converse of creating a higher-frequency series from a
lower is obviously more problematic unless there are one or more closely
related variables measured at the higher frequency to draw on. For exam-
ple, monthly measures of retail sales may help in creating a monthly series
of total consumers’ expenditure from its quarterly time series. In July
2018, the United Kingdom Office for National Statistics started produc-
ing monthly aggregate time series, using electronic information that has
recently become available to it.

Time Series Exhibit Patterns of ‘Persistence’
A third feature concerns whether or not a time series, whatever its fre-
quency, exhibits persistent patterns. For example, are high values followed
by lower, or are successive values closely related, so one sunny day is most
likely to be succeeded by another? Monthly temperatures in Europe have
a distinct seasonal pattern, whereas annual averages are less closely related
with a slow upward trend over the past century.

Figure 2.1 illustrates two very different time series.The toppanel records
the annual unemployment rate in the United Kingdom from 1860–2017.
The vertical axis records the rate (e.g., 0.15 is 15%), and the horizontal
axis reports the time. As can be seen (we call this ocular econometrics),
when unemployment is high, say above the long-run mean of 5% as from
1922–1939, it is more likely to be high in the next year, and similarly when
it is low, as from 1945–1975, it tends to stay low. By way of contrast, the
lower panel plots some computer generated random numbers between−2
and +2, where no persistence can be seen.
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UK unemployment rate 

1860 1880 1900 1920 1940 1960 1980 2000 2020

0.05
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0.15 (a) UK unemployment rate 
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Fig. 2.1 Panel (a) UK annual unemployment rate, 1860–2017; (b) a sequence of
random numbers

Many economic time series are very persistent, so correlations between
values of the same variable many year’s apart can often be remarkably
high. Even for the unemployment series in Fig. 2.1(a), there is consid-
erable persistence, which can be measured by the correlations between
values increasingly far apart. Figure 2.2(a) plots the correlations between
values r -years’ apart for the UK unemployment rate, so the first vertical
bar is the correlation between unemployment in the current year and that
one year earlier, and so on going back 20 years. The dashed lines show an
interval within which the correlations are not significantly different from
zero.Note that sufficiently far apart correlations are negative, reflecting the
‘long swings’ between high and low unemployment visible in Fig. 2.1(a).
Figure 2.2(b) again shows the contrast with the correlations between suc-
cessively far apart random numbers, where all the bars lie in the interval
shown by the dashed lines.
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Fig. 2.2 Correlations between successively futher apart observations: (a) UK unem-
ployment rates; (b) random numbers

Historical Time can Matter
Historical time is often an important attribute of a time series, so it matters
that an event occurred in 1939 (say) rather than 1956. This leads to our
second primer concerned with a very fundamental property of all time
series: does it ‘look essentially the same at different times’, or does it
evolve? Examples of relatively progressive evolution include technology,
medicine, and longevity, where the average age of death in the western
world has increased at about a weekend every week since around 1860.
But major abrupt and often unexpected shifts can also occur, as with
financial crises, earthquakes, volcanic eruptions or a sudden slow down in
improving longevity as seen recently in the USA.
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2.2 Stationarity and Non-stationarity

What is a non-stationary time series?

A time series is not stationary if historical time
matters

Sources of non-stationarity
Historical review of understanding non-stationarity

A Time Series is Not Stationary if Historical Time Matters
We all know what it is like to be stationary when we would rather be
moving: sometimes stuck in traffic jams, or still waiting at an airport
long after the scheduled departure time of our flight. A feature of such
unfortunate situations is that the setting ‘looks the same at different times’:
we see the same trees beside our car until we start to move again, or the
same chairs in the airport lounge. The word stationary is also used in
a more technical sense in statistical analyses of time series: a stationary
process is one where its mean and variance stay the same over time. Our
solar system appears to be almost stationary, looking essentially the same
over our lives (though perhaps not over very long time spans).

A time series is stationary when its first twomoments, namely the mean
and variance, are finite and constant over time.1 In a stationary process,
the influence of past shocks must die out, because if they cumulated, the
variance could not be constant. Since past shocks do not accumulate (or
integrate), such a stationary time series is said to be integrated of order
zero, denoted I(0).2 Observations on the process will center around the
mean, with a spread determined by themagnitude of its constant variance.
Consequently, any sample of a stationary process will ‘look like’ any other,
making it ahistorical. The series of random numbers in Fig. 2.1(b) is an
example. If an economy were stationary, we would not need to know the

1More precisely, this is weak stationarity, and occurs when for all values of t (denoted ∀t) the
expected value E[·] of a random variable yt satisfies E[yt ] = μ, the variance, E[(yt − μ)2] = σ 2,
and the covariances E[(yt − μ)(yt−s − μ)] = γ (s) ∀s, where μ, σ 2, and γ (s) are finite and
independent of t and γ (s) → 0 quite quickly as s grows.
2When the moments depend on the initial conditions of the process, stationarity holds only asymp-
totically (see e.g., Spanos 1986), but we ignore that complication here.
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Fig. 2.3 Births and deaths per thousand of the UK population

historical dates of the observations: whether it was 1860–1895 or 1960–
1995 would be essentially irrelevant.

As a corollary, a non-stationary process is one where the distribution
of a variable does not stay the same at different points in time–the mean
and/or variance changes–which can happen for many reasons. Station-
arity is the exception and non-stationarity is the norm for most social
science and environmental times series. Specific events can matter greatly,
including major wars, pandemics, and massive volcanic eruptions; finan-
cial innovation; key discoveries like vaccination, antibiotics and birth con-
trol; inventions like the steam engine, dynamo and flight; etc. These can
cause persistent shifts in the means and variances of the data, thereby
violating stationarity. Figure 2.3 shows the large drop in UK birth rates
following the introduction of oral contraception, and the large declines
in death rates since 1960 due to increasing longevity. Comparing the two
panels shows that births exceeded deaths at every date, so the UK popula-
tion must have grown even before net immigration is taken into account.
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Economies evolve and change over time in both real and nominal terms,
sometimes dramatically as in major wars, the US Great Depression after
1929, the ‘Oil Crises’ of the mid 1970s, or the more recent ‘Financial
Crisis and Great Recession’ over 2008–2012.

Sources of Non-stationarity
There are two important sources of non-stationarity often visible in time
series: evolution and sudden shifts. The former reflects slower changes,
such as knowledge accumulation and its embodiment in capital equip-
ment, whereas the latter occurs from (e.g.) wars, major geological events,
and policy regime changes. The first source is the cumulation of past
shocks, somewhat akin to changes in DNA cumulating over time to per-
manently change later inherited characteristics. Evolution results from
cumulated shocks, and that also applies to economic and other time series,
making their means and variances change over time. The second source
is the occurrence of sudden, often unanticipated, shifts in the level of a
time series, called location shifts. The historical track record of economic
forecasting is littered with forecasts that went badly wrong, an outcome
that should occur infrequently in a stationary process, as then the future
would be like the past. The four panels of Fig. 2.4 illustrate both such
non-stationarities.

Panel (a) records US annual constant-price per capita food expenditure
from 1929–2006 which has more than doubled, but at greatly varying
rates manifested by the changing slopes of the line, with several major
‘bumps’. Panel (b) reports the rates of price inflation workers faced: rela-
tively stable till 1914, then rising and falling by around 20% per annum
during and immediately after the First World War, peaking again during
the oil crises of the 1970s before returning to a relatively stable trajectory.
In Panel (c) real oil prices in constant price dollars fell for almost a century
with intermittent temporary upturns before their dramatic revival in the
Oil Crises that started the UK’s 1970s inflation, with greatly increased
volatility. Finally, Panel (d) records both the UK’s coal output (dashed
line) and its CO2 emissions (solid line), both inMt per annum: what goes
up can come down. The fall in the former from 250 Mt per annum to
near zero is as dramatic a non-stationarity as one could imagine, as is the
behaviour of emissions, with huge ‘outliers’ in the 1920s and a similar ‘∩’
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Fig. 2.4 (a) US real per capita annual food expenditure in $000; (b) UK price infla-
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shape. In per capita terms, the UK’s CO2 emissions are now below any
level since 1860–when the UK was the workshop of the world.

An important source of non-stationarity is that due to what are called
processes with unit roots. Such processes are highly persistent as they
cumulate past shocks. Indeed, today’s value of the time series equals the
previous value plus the new shock: i.e., there is a unit parameter link-
ing the successive values. Figure 2.5(a) shows the time series that results
from cumulating the randomnumbers in Fig. 2.1(b), which evolves slowly
downwards in this instance, but could ‘wander’ in any direction. Next,
Fig. 2.5(b) records the resulting correlations between successive values,
quite unlike that in Fig. 2.2(b). Even for observations 20 periods apart,
the correlation is still large and positive.

Empirical modelling relating variables faces important difficulties when
time series are non-stationary. If two unrelated time series are non-
stationary because they evolve by accumulating past shocks, their cor-
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Fig. 2.5 (a) Time series of the cumulated random numbers; (b) correlations
between successively futher apart observations

relation will nevertheless appear to be significant about 70% of the time
using a conventional 5% decision rule.

Apocryphal examples during the Victorian era were the surprising high
positive correlations between the numbers of humanbirths and storks nest-
ing in Stockholm, and between murders and membership of the Church
of England. As a consequence, these are called nonsense relations. A silly
example is shown in Fig. 2.6(a) where the global atmospheric concentra-
tions of CO2 are ‘explained’ by the monthly UK Retail Price Index (RPI),
partly because both have increased over the sample, 1988(3) to 2011(6).
However, Panel (b) shows that the changes in the two series are essentially
unrelated.
The nonsense relations problem arises because uncertainty is seriously

under-estimated if stationarity is wrongly assumed. During the 1980s,
econometricians established solutions to this problem, and en-route also
showed that the structure of economic behaviour virtually ensured that
most economic data would be non-stationary. At first sight, this poses
many difficulties for modelling economic data. But we can use it to
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Fig. 2.6 (a) ‘Explaining’ global levels of atmospheric CO2 by the UK retail price
index (RPI); (b) no relation between their changes

our advantage as such non-stationarity is often accompanied by common
trends. Most people make many more decisions (such as buying numer-
ous items of shopping), than the small number of variables that guide
their decisions (e.g., their income or bank balance). That non-stationary
data often move closely together due to common variables driving eco-
nomic decisions enables us to model the non-stationarities. Below, we will
use the behaviour of UK wages, prices, productivity and unemployment
over 1860–2016 to illustrate the discussion and explain empirical mod-
ellingmethods that handle non-stationarities which arise from cumulating
shocks.

Many economic models used in empirical research, forecasting or for
guiding policy have beenpredicated on treating observeddata as stationary.
But policy decisions, empirical research and forecasting also must take
the non-stationarity of the data into account if they are to deliver useful
outcomes. We will offer guidance for policy makers and researchers on
identifying what forms of non-stationarity are prevalent, what hazards
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each form implies for empirical modelling and forecasting, and for any
resulting policy decisions, and what tools are available to overcome such
hazards.

Historical Review of Understanding Non-stationarity
Developing a viable analysis of non-stationarity in economics really com-
mencedwith the discovery of the problem of ‘nonsense correlations’.These
high correlations are found between variables that should be unrelated: for
example, that between the price level in the UK and cumulative annual
rainfall shown in Hendry (1980).3 Yule (1897) had considered the pos-
sibility that both variables in a correlation calculation might be related
to a third variable (e.g., population growth), inducing a spuriously high
correlation: this partly explains the close relation in Fig. 2.6. But by Yule
(1926), he recognised the problem was indeed ‘nonsense correlations’. He
suspected that high correlations between successive values of variables,
called serial, or auto, correlation as in Fig. 2.5(b), might affect the cor-
relations between variables. He investigated that in a manual simulation
experiment, randomly drawing from a hat pieces of paper with digits writ-
ten on them. He calculated correlations between pairs of draws for many
samples of those numbers and also betweenpairs after the numbers for each
variable were cumulated once, and finally cumulated twice. For example,
if the digits for the first variable went 5, 9, 1, 4, . . ., the cumulative num-
bers would be 5, 14, 15, 19, . . . and so on. Yule found that in the purely
random case, the correlation coefficient was almost normally distributed
around zero, but after the digits were cumulated once, he was surprised to
find the correlation coefficient was nearly uniformly distributed, so almost
all correlation values were equally likely despite there being no genuine
relation between the variables. Thus, he found ‘significant’, though not
very high, correlations far more often than for non-cumulated samples.
Yule was even more startled to discover that the correlation coefficient
had a U-shaped distribution when the numbers were doubly cumulated,
so the correct hypothesis of no relation between the genuinely unrelated
variables was virtually always rejected due to a near-perfect, yet nonsense,
correlation of ±1.

3Extensive histories of econometrics are provided byMorgan (1990),Qin (1993, 2013), andHendry
and Morgan (1995).
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Granger and Newbold (1974) re-emphasized that an apparently ‘sig-
nificant relation’ between variables, but where there remained substan-
tial serial correlation in the residuals from that relation, was a symptom
associated with nonsense regressions. Phillips (1986) provided a techni-
cal analysis of the sources and symptoms of nonsense regressions. Today,
Yule’s three types of time series are called integrated of order zero, one,
and two respectively, usually denoted I(0), I(1), and I(2), as the number of
times the series integrate (i.e., cumulate) past values. Conversely, differ-
encing successive values of an I(1) series delivers an I(0) time series, etc.,
but loses any information connecting the levels. At the same time as Yule,
Smith (1926) had already suggested that a solution was nesting models
in levels and differences, but this great step forward was quickly forgot-
ten (see Terence Mills 2011). Indeed, differencing is not the only way to
reduce the order of integration of a group of related time series, as Granger
(1981) demonstrated with the introduction of the concept of cointegra-
tion, extended by Engle and Granger (1987) and discussed in Sect. 4.2:
see Hendry (2004) for a history of the development of cointegration.
The history of structural breaks–the topic of the next ‘primer’–has

been less studied, but major changes in variables and consequential shifts
between relationships date back to at least the forecast failures that wrecked
the embryonic US forecasting industry (see Friedman 2014). In consid-
ering forecasting the outcome for 1929–what a choice of year!–Smith
(1929) foresaw the major difficulty as being unanticipated location shifts
(althoughhe used different terminology), but like his other important con-
tribution just noted, this insight also got forgotten. Forecast failure has
remained a recurrent theme in economics with notable disasters around
the time of the oil crises (see e.g., Perron 1989) and the ‘Great Recession’
considered in Sect. 7.3.
What seems to have taken far longer to realize is that to every forecast

failure there is an associated theory failure as emphasized by Hendry and
Mizon (2014), an important issue we will return to in Sect. 4.4.4 Mean-
time, we consider the other main form of non-stationarity, namely the
many forms of ‘structural breaks’.

4See http://www.voxeu.org/article/why-standard-macro-models-fail-crises for a less technical expla-
nation.

http://dx.doi.org/10.1007/978-3-030-21432-6_4
http://dx.doi.org/10.1007/978-3-030-21432-6_7
http://dx.doi.org/10.1007/978-3-030-21432-6_4
http://www.voxeu.org/article/why-standard-macro-models-fail-crises
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2.3 Structural Breaks

What are structural breaks?

Types of structural breaks
Causes of structural breaks
Consequences of structural breaks
Tests for structural breaks
Modelling facing structural breaks
Forecasting in processes with structural breaks
Regime-shift models

Types of Structural Breaks
A structural break denotes a shift in the behaviour of a variable over time,
such as a jump in the money stock, or a change in a previous relation-
ship between observable variables, such as between inflation and unem-
ployment, or the balance of trade and the exchange rate. Many sudden
changes, particularly when unanticipated, cause links between variables to
shift. This is a problem that is especially prevalent in economics as many
structural breaks are induced by events outside the purview of most eco-
nomic analyses, but examples abound in the sciences and social sciences,
e.g., volcanic eruptions, earthquakes, and the discovery of penicillin. The
consequences of not taking breaks into account include poormodels, large
forecast errors after the break, mis-guided policy, and inappropriate tests
of theories.

Such breaks can take many forms. The simplest to visualize is a shift in
the mean of a variable as shown in the left-hand panel of Fig. 2.7. This is
a ‘location shift’, from a mean of zero to 2. Forecasts based on the zero
mean will be systematically badly wrong.

Next, a shift in the variance of a time series is shown in the right-hand
graph of Fig. 2.7. The series is fairly ‘flat’ till about observation 19, then
varies considerably more after.

Of course, both means and variances can shift, more than once and
at different times. Such shifts in a variable can also be viewed through
changes in its distribution as in Fig. 2.8. Both breaks have noticeable
effects if the before–after distributions are plotted together as shown. For
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Fig. 2.8 The impacts on the statistical distributions of the two examples of struc-
tural breaks

a location shift, the entire distribution is moved to a new center; for a
variance increase, it remains centered as before but much more spread.

Distributional shifts certainly occur in the real world, as Fig. 2.9 shows,
plotting four sub-periods of annual UK CO2 emissions in Mt. The first
three sub-periods all show the centers of the distributionsmoving to higher
values, but the fourth (1980–2016) jumps back below the previous sub-
period distribution.
Shifts in just one variable in a relationship causes their link to break. In
the left-hand graph of Fig. 2.10, the dependent variable has a location
shift, but the explanatory variable does not: separate fits are quite unlike
the overall fit. In the right-hand graph of Fig. 2.10, the regression slope
parameter changes from 1 to 2. Combinations of breaks in means, vari-
ances, trends and slopes can also occur. Naturally, such combinations can
be very difficult to unravel empirically.
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Causes of Structural Breaks
The world has changed enormously in almost every measurable way over
the last few centuries, sometimes abruptly (for a large body of evidence, see
the many time series in https://ourworldindata.org/). Of the numerous
possible instances, dramatic shifts include World War I; the 1918–20 flu’
epidemic; 1929 crash and ensuing Great Depression; World War II; the
1970s oil crises; 1997 Asian financial crisis; the 2000 ‘dot com’ crash; and

https://ourworldindata.org/
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the 2008–2012 financial crisis and Great Recession (and maybe Brexit).
Such large and sudden breaks usually lead to location shifts. More gradual
changes can cause the parameters of relationships to ‘drift’: changes in
technology, social mores, or legislation usually take time to work through.

Consequences of Structural Breaks
The impacts of structural breaks on empirical models naturally depend on
their forms, magnitudes, and numbers, as well as on how well specified
the model in question is. When large location shifts or major changes
in the parameters linking variables in a relationship are not handled cor-
rectly, statistical estimates of relations will be distorted. As we discuss in
Chapter 7, this often leads to forecast failure, and if the ‘broken’ relation
is used for policy, the outcomes of policy interventions will not be as
expected. Thus, viable relationships need to account for all the structural
breaks that occurred, even though in practice, there will be an unknown
number, most of which will have an unknown magnitude, form, and
duration and may even have unknown starting and ending dates.

Tests for Structural Breaks
There are many tests for structural breaks in given relationships, but these
often dependnot only on knowing the correct relationship to be tested, but
also on knowing a considerable amount about the types of breaks, and the
properties of the time series being analyzed. Tests include those proposed
by Brown et al. (1975), Chow (1960), Nyblom (1989), Hansen (1992a),
Hansen (1992b) (for I(1) data), Jansen andTeräsvirta (1996), and Bai and
Perron (1998, 2003). Perron (2006) provided a wide ranging survey of
then available methods of estimation and testing in models with structural
breaks, including their close links to processes with unit roots, which
are non-stationary stochastic processes (discussed above) that can cause
problems in statistical inference. To apply any test requires that the model
is already specified, so while it is certainly wise to test if there are important
structural breaks leading to parameter non-constancies, their discovery
then reveals themodel to be flawed, and how to ‘repair’ it is always unclear.
Tests can reject because of other untreated problems than the one for which
they were designed: for example, apparent non-constancy may be due to
residual autocorrelation, or unmodelled persistence left in the unexplained
component, which distorts the estimated standard errors (see e.g., Corsi

http://dx.doi.org/10.1007/978-3-030-21432-6_7
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et al. 1982). A break can occur because an omitted determinant shifts, or
from a location shift in an irrelevant variable included inadvertently, and
the ‘remedy’ naturally differs between such settings.

Modelling Facing Structural Breaks
Failing to model breaks will almost always lead to a badly-specified empir-
ical model that will not usefully represent the data. Knowing of or hav-
ing detected breaks, a common approach is to ‘model’ them by adding
appropriate indicator variables, namely artificial variables that are zero for
most of a sample period but unity over the time that needs to be indi-
cated as having a shift: Fig. 2.7 illustrates a step indicator that takes the
value 2 for observations 21–30. Indicators can be formulated to reflect
any relevant aspect of a model, such as changing trends, or multiplied
by variables to capture when parameters shift, and so on. It is possible to
designmodel selection strategies that tackle structural breaks automatically
as part of their algorithm, as advocated by Hendry and Doornik (2014).
Even though such approaches, called indicator saturation methods (see
Johansen and Nielsen 2009; Castle et al. 2015), lead to more candidate
explanatory variables than there are available observations, it is possible
for a model selection algorithm to include large blocks of indicators for
any number of outliers and location shifts, and even parameter changes
(see e.g., Ericsson 2012). Indicators relevant to the problem at hand can
be designed in advance, as with the approach used to detect the impacts
of volcanic eruptions on temperature in Pretis et al. (2016).

Forecasting in Processes with Structural Breaks
In the forecasting context, not all structural breaks matter equally, and
indeed somehave essentially no effect on forecast accuracy, butmay change
the precision of forecasts, or estimates of forecast-error variances. Clements
andHendry (1998) provide a taxonomy of sources of forecast errors which
explains why location shifts—changes in the previous means, or levels, of
variables in relationships—are the main cause of forecast failures. Ericsson
(1992) provides a clear discussion. Figure 2.7 again illustrates why the
previous mean provides a very poor forecast of the final 10 data points.
Rapid detection of such shifts, or better still, forecasting them in advance,
can reduce systematic forecast failure, as can a number of devices for
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robustifying forecasts after location shifts, such as intercept corrections
and additional differencing, the topic of Chapter 7.

Regime-Shift Models
An alternative approach models shifts, including recessions, as the out-
come of stochastic shocks in non-linear dynamic processes, the large lit-
erature on which was partly surveyed by Hamilton (2016). Such models
assume there is a probability at any point in time, conditional on the
current regime and possibly several recent past regimes, that an economy
might switch to a different state. A range of models have been proposed
that could characterize such processes, which Hamilton describes as ‘a
rich set of tools and specifications on which to draw for interpreting data
and building economic models for environments in which there may be
changes in regime’. However, an important concern is which specification
and which tools apply in any given instance, and how to choose between
themwhen a givenmodel formulation is not guaranteed to be fully appro-
priate. Consequently, important selection and evaluation issues must be
addressed.

2.4 Model Selection

Why do we need model selection?

What is model selection?
Evaluating empirical models
Objectives of model selection
Model selection methods
Concepts used in analyses of statistical model selection
Consequences of statistical model selection

What is Model Selection?
Model selection concerns choosing a formal representation of a set of
data from a range of possible specifications thereof. It is ubiquitous
in observational-data studies because the processes generating the data
are almost never known. How selection is undertaken is sometimes not

http://dx.doi.org/10.1007/978-3-030-21432-6_7
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described, and may even give the impression that the final model reported
was the first to be fitted.When the number of candidate variables needing
analyzed is larger than the available sample, selection is inevitable as the
complete model cannot be estimated. In general, the choice of selection
method depends on the nature of the problem being addressed and the
purpose for which a model is being sought, and can be seen as an aspect
of testing multiple hypotheses: see Lehmann (1959). Purposes include
understanding links between data series (especially how they evolved over
the past), to test a theory, to forecast future outcomes, and (in e.g., eco-
nomics and climatology) to conduct policy analyses.

It might be thought that a single ‘best’ model (on some criteria) should
resolve all four purposes, but that transpires not to be the case, especially
when observational data are not stationary. Indeed, the set of models from
which one is to be selectedmay be implicit, as when the functional form of
the relation under study is not known (linear, log-linear or non-linear), or
when there may be an unknown number of outliers, or even shifts. Model
selection can also apply to the design of experiments such that the data
collected is well-suited to the problem. As Konishi and Kitagawa (2008,
p. 75) state, ‘The majority of the problems in statistical inference can be
considered to be problems related to statistical modeling’. Relatedly, Sir
David Cox (2006, p. 197) has said, ‘How [the] translation from subject-
matter problem to statistical model is done is often the most critical part
of an analysis’.

Evaluating Empirical Models
Irrespective of how models are selected, it is always feasible to evaluate
any chosen model against the available empirical evidence. There are two
main criteria for doing so in our approach, congruence and encompassing.
The first concerns how well the model fits the data, the theory and

any constraints imposed by the nature of the observations. Fitting the
data requires that the unexplained components, or residuals, match the
properties assumed for the errors in the model formulation. These usually
entail no systematic behaviour, such as successive residuals being correlated
(serial or autocorrelation), that the residuals are relatively homogeneous
in their variability (called homoscedastic), and that all parameters which
are assumed to be constant over time actually are. Matching the theory
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requires that the model formulation is consistent with the analysis from
which it is derived, but does not require that the theory model is imposed
on the data, both because abstract theory may not reflect the underlying
behaviour, and because little would be learned if empirical results merely
put ragged cloth on a sketchy theory skeleton. Matching intrinsic data
properties may involve taking logarithms to ensure an inherently positive
variable is modelled as such, or that flows cumulate correctly to stocks,
and that outcomes satisfy accounting constraints.

Although satisfying all of these requirements may seem demanding,
there are settings in which they are all trivially satisfied. For example, if the
data are all orthogonal, and independent identically distributed (IID)—
such as independent draws from a Normal distribution with a constant
mean and variance and no data constraints—all models would appear to
be congruent with whatever theory was used in their formulation. Thus,
an additional criterion is whether a model can encompass, or explain the
results of, rival explanations of the same variables.There is a large literature
on alternative approaches, but the simplest is parsimonious encompass-
ing in which an empirical model is embedded within the most general
formulation (often the union of all the contending models) and loses no
significant information relative to that general model. In the orthogonal
IID setting just noted, a congruent model may be found wanting because
some variables it excluded are highly significant statisticallywhen included.
That example also emphasizes that congruence is not definitive, and most
certainly is not ‘truth’, in that a sequence of successively encompassing
congruent empirical models can be developed in a progressive research
strategy: see Mizon (1984, 2008), Hendry (1988, 1995), Govaerts et al.
(1994), Hoover and Perez (1999), Bontemps and Mizon (2003, 2008),
and Doornik (2008).
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Objectives of Model Selection
At base, selection is an attempt to find all the relevant determinants of a
phenomenon usually represented by measurements on a variable, or set of
variables, of interest, while eliminating all the influences that are irrelevant
for the problem at hand. This is most easily understood for relationships
between variables where some are to be ‘explained’ as functions of others,
but it is not known which of the potential ‘explaining’ variables really
matter. A simple strategy to ensure all relevant variables are retained is
to always keep every candidate variable; whereas to ensure no irrelevant
variables are retained, keep no variables at all. Manifestly these strategies
conflict, but highlight the ‘trade-off ’ that affects all selection approaches:
the more likely a method is to retain relevant influences by some criterion
(such as statistical significance) the more likely some irrelevant influences
will chance to be retained. The costs and benefits of that trade-off depend
on the context, the approach adopted, the sample size, the numbers of
irrelevant and relevant variables—which are unknown—how substantive
the latter are, as well as on the purpose of the analysis.

For reliably testing a theory, the model must certainly include all the
theory-relevant variables, but also all the variables that in fact affect the
outcomes being modelled, whereas little damage may be done by also
including some variables that are not actually relevant. However, for fore-
casting, even estimating the in-sample process that generated the data need
not produce the forecasts with the smallest mean-square errors (see e.g.,
Clements and Hendry 1998). Finally, for policy interventions, it is essen-
tial that the relation between target and instrument is causal, and that the
parameters of the model in use are also invariant to the intervention if the
policy change is to have the anticipated effect. Here the key concept is of
invariance under changes, so shifts in the policy variable, say a price rise
intended to increase revenue from sales, does not alter consumers’ attitudes
to the company in question, thereby shifting their demand functions and
so leading to the unintended consequence of a more than proportionate
fall in sales.

Model Selection Methods
Most empirical models are selected by some process, varying from impos-
ing a theory-model on the data evidence (having ‘selected’ the theory),
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through manual choice, which may be to suit an investigator’s prefer-
ences, to when a computer algorithm such as machine learning is used.
Even in this last case, there is a large range of possible approaches, as well
as many choices as to how each algorithm functions, and the different
settings in which each algorithm is likely to work well or badly—as many
are likely to do for non-stationary data. The earliest selection approaches
were manual as no other methods were on offer, but most of the deci-
sions made during selection were then undocumented (see the critique in
Leamer 1978), making replication difficult. In economics, early selection
criteria were based on the ‘goodness-of-fit’ of models, pejoratively called
‘datamining’, butGilbert (1986) highlighted that a greater danger of selec-
tion was its being used to suppress conflicting evidence. Statistical analyses
of selection methods have provided many insights: e.g., Anderson (1962)
established the dominance of testing from the most general specification
and eliminating irrelevant variables relative to starting from the simplest
and retaining significant ones. The long list of possible methods includes,
but is not restricted to, the following, most of which use parsimony (in
the sense of penalizing larger models) as part of their choice criteria.

Information criteria have a long history as amethod of choosing between
alternative models. Various information criteria have been proposed, all of
which aim to choose between competing models by selecting the model
with the smallest information loss.The trade-off between information loss
and model ‘complexity’ is captured by the penalty, which differs between
information criteria. For example, the AIC proposed by Akaike (1973),
sought to balance the costs when forecasting from a stationary infinite
autoregression of estimation variance from retaining small effects against
the squared bias of omitting them. Schwarz (1978) SIC (also called BIC,
for Bayesian information criterion), aimed to consistently estimate the
parameters of a fixed, finite-dimensionalmodel as the sample size increased
to infinity. HQ, fromHannan andQuinn (1979), established the smallest
penalty function that will deliver the same outcome as SIC in very large
samples. Other variants of information criteria include focused criteria
(see Claeskens and Hjort 2003), and the posterior information criterion
in Phillips and Ploberger (1996).
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Variants of selection by goodness of fit include choosing by the maxi-
mummultiple correlation coefficient (criticised by Lovell 1983); Mallows
(1973)Cp criterion; step-wise regression (see e.g., Derksen and Keselman
1992, which Leamer called ‘unwise’), which is a class of single-path search
procedures for (usually) adding variables one at a time to a regression (e.g.,
including the next variable with the highest remaining correlation), only
retaining significant estimated parameters, or dropping the least signifi-
cant remaining variables in turn.
Penalised-fit approaches like shrinkage estimators, as in James and Stein
(1961), and the Lasso (least absolute shrinkage and selection operator)
proposed by Tibshirani (1996) and Efron et al. (2004). These are like
step-wise with an additional penalty for each extra parameter.
Bayesian selection methods which often lead to model averaging: see
Raftery (1995), Phillips (1995), Buckland et al. (1997), Burnham and
Anderson (2002), and Hoeting et al. (1999), and Bayesian structural time
series (BSTS: Scott and Varian 2014).
Automated general-to-specific (Gets) approaches as inHoover and Perez
(1999), Hendry and Krolzig (2001), Doornik (2009), and Hendry and
Doornik (2014). This approach will be the one mainly used in this book
when we need to explicitly select a model from a larger set of candidates,
especially when there are more such candidates than the number of obser-
vations.
Model selection also has many different designations, such as subset selec-
tion (Miller 2002), and may include computer learning algorithms.

Concepts for analyses of statistical model selection
There are also many different concepts employed in the analyses of statis-
tical methods of model selection. Retention of irrelevant variables is often
measured by the ‘false-positives rate’ or ‘false-discovery rate’ namely, how
often irrelevant variables are incorrectly selected by a test adventitiously
rejecting the null hypothesis of irrelevance. If a test is correctly calibrated
(which unfortunately is often not the case for many methods of model
selection, such as step-wise), and has a nominal significance level of (say)
1%, it should reject the null hypothesis incorrectly 1% of the time (Type-I
error).Thus, if 100 such tests are conducted under the null, 1 should reject
by chance on average (i.e., 100 × 0.01).Hendry andDoornik (2014) refer
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to the actual retention rate of irrelevant variables during selection as the
empirical gauge and seek to calibrate their algorithm such that the gauge
is close to the nominal significance level. Johansen and Nielsen (2016)
investigate the distribution of estimates of the gauge. Bayesian approaches
often focus on the concept of ‘model uncertainty’, essentially the proba-
bility of selecting closely similar models that nevertheless lead to different
conclusions. With 100 candidate variables, there are 2100 ≈ 1030 possi-
ble models generated by every combination of the 100 variables, creating
great scope for such model uncertainty. Nevertheless, when all variables
are irrelevant, on average 1 variable would be retained at 1%, so model
uncertainty has been hugely reduced from a gigantic set of possibilities
to a tiny number. Although different irrelevant variables will be selected
adventitiously in different draws, this is hardly a useful concept of ‘model
uncertainty’.
Themore pertinent difficulty is finding and retaining relevant variables,

which depends on how substantive their influence is. If a variable would
not be retained by the criterion in use even when it was the known sole
relevant variable, it will usually not be retained by selection from a larger
set. Crucially, a relevant variable can only be retained if it is in the candi-
date set being considered, so indicators for outliers and shifts will never be
found unless they are considered. One strategy is to always retain the set
of variables entailed by the theory that motivated the analysis while select-
ing from other potential determinants, shift effects etc., allowing model
discovery jointly with evaluating the theory (see Hendry and Doornik
2014).

Consequences of Statistical Model Selection
Selection of course affects the statistical properties of the resulting esti-
mated model, usually because only effects that are ‘significant’ at the pre-
specified level are retained. Thus, which variables are selected varies in
different samples and on average, estimated coefficients of retained rele-
vant variables are biased away from the origin. Retained irrelevant variables
are those that chanced to have estimated coefficients far from zero in the
particular data sample. The former are often called ‘pre-test biases’ as in
Judge and Bock (1978). The top panel in Fig. 2.11 illustrates when ̂b
denotes the distribution without selection, and˜b with selection requiring
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Fig. 2.11 (a) The impact on the statistical distributions of selecting only significant
parameters; (b) distributions after bias correction

significance at 5%. The latter distribution is shifted to the right and has a
mean E[˜b] of 0.276 when the unselected mean E[̂b] is 0.2, leading to an
upward bias of 38%.

However, if coefficients of relevant variables are highly significant, such
selection biases are small. In some settings, such biases can be corrected
after selection in well-structured algorithms, as shown by Hendry and
Krolzig (2005). The lower panel in Fig. 2.11 illustrates the effect of bias
correction on the distribution of˜b to b. There is a strong shift back to the
left, and the corrected mean is 0.213, so now is only slightly biased. The
same bias corrections applied to the coefficients of irrelevant variables that
are retained by chance can considerably reduce their mean-square errors.

A more important issue is that omitting relevant variables will bias the
remaining retained coefficients (except if all variables are mutually orthog-
onal), and that effect will often be far larger than selection biases, and can-
not be corrected as it is not known which omitted variables are relevant.
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Of course, simply asserting a relation and estimating it without selection is
likely to be even more prone to such biases unless an investigator is omni-
scient. In almost every observational discipline, especially those facing
non-stationary data, selection is inevitable. Consequently, the least-worst
route is to allow for as many potentially relevant explanatory variables
as feasible to avoid omitted-variables biases, and use an automatic selec-
tion approach, aka a machine-learning algorithm, balancing the costs of
over and under inclusion. Hence, Campos et al. (2005) focus on methods
that commence from the most general feasible specification and conduct
simplification searches leading to three generations of automatic selection
algorithms in the sequence Hoover and Perez (1999), PcGets by Hendry
and Krolzig (2001) and Autometrics by Doornik (2009), embedded in the
approach to model discovery by Hendry and Doornik (2014). We now
consider the prevalence of non-stationarity in observational data.
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3
Why Is the World Always Changing?

Abstract Empirical models used in disciplines as diverse as economics
through to climatology analyze data assuming observations are from sta-
tionary processes even though themeans and variances ofmost ‘real world’
time series change. We discuss some key sources of non-stationarity in
demography, economics, politics and the environment, noting that (say)
non-stationarity in economic data will ‘infect’ variables that are influenced
by economics. Theory derivations, empirical models, forecasts and policy
will go awry if the two forms of non-stationarity introduced above are not
tackled. We illustrate non-stationary time series in a range of disciplines
and discuss how to address the important difficulties that non-stationarity
creates, as well as some potential benefits.

Keywords Sources of change · Wages, prices and productivity ·
Modelling non-stationarity

Many empirical models used in research and to guide policy in disciplines
as diverse as economics to climate change analyze data by methods that
assume observations come from stationary processes. However, most ‘real
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world’ time series are not stationary in that the means and variances of
outcomes change over time. Present levels of knowledge, living standards,
average age of death etc., are not highly unlikely draws from their distribu-
tions in medieval times, but come from distributions with very different
means and variances. For example, the average age of death in London
in the 1860s was around 45, whereas today it is closer to 80—a huge
change in the mean. Moreover, some individuals in the 1860s lived twice
the average, namely into their 90s, whereas today, no one lives twice the
average age, so the relative variance has also changed.

3.1 Major Sources of Changes

As well as the two World Wars causing huge disruption, loss of life, and
massive damage to infrastructure, there have been numerous smaller con-
flicts, which are still devastating for those caught up in such conflict.
In addition to those dramatic shifts noted above as causes of structural
breaks, we could also include for the UK the post World War I crash;
the 1926 general strike; and the creation of the European Union with
the UK joining the EU (but now threatening to leave). There were many
policy regime shifts, including periods on then off the Gold Standard; the
Bretton Woods agreement in 1945; floating exchange rates from 1973;
in and out of the Exchange Rate Mechanism (ERM) till October 1992;
Keynesian fiscal policies; then Monetarist; followed by inflation targeting
policies; and the start of the Euro zone. All that against a background
of numerous important and evolving changes: globalization and develop-
ment worldwide with huge increases in living standards and reductions
in extreme poverty; changes in inequality, demography, health, longevity,
and migration; legal reforms and different social mores; huge technology
advances in electricity, refrigeration, transport, communications (includ-
ing telephones, radio, television, and now mobiles), flight, nuclear power,
medicine, new materials, computers, and containerization, with major
industrial decline from cotton, coal, steel, and shipbuilding industries
virtually vanishing, but being replaced by businesses based on new tech-
nologies and services.
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Fig. 3.1 Global mean sea-level (GMSL) has risen by more than 20 cm since 1880
(Source CSIRO)

Because economic data are non-stationary, that will ‘infect’ other vari-
ables which are influenced by economics (e.g., CO2 emissions), and so
spread like a pandemic to most socio-economic and related variables, and
probably will feed back onto economics. Many theories, most empirical
models of time series, and all forecasts will go awry when both forms of
non-stationarity introduced above are not tackled. A key feature of pro-
cesses where the distributions of outcomes shift over time is that probabili-
ties of events calculated in one time period need not apply in another: ‘once
in a hundred years’ can become ‘once a decade’. Flooding by storm surges
becomes more likely with sea-levels rising from climate change. Figure 3.1
shows that global mean sea-level has risen over 20 cm since 1880, and is
now rising at 3.4mm p.a. versus 1.3mm p.a. over 1850–1992 (see e.g.,
Jevrejeva et al. 2016).1

1See https://www.cmar.csiro.au/sealevel/sl_data_cmar.html.

https://www.cmar.csiro.au/sealevel/sl_data_cmar.html
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More generally, an important source of changes are environmental,
perhaps precipitated by social and economic behaviour likeCO2 emissions
and their consequences, but also occurring naturally as with earthquakes,
volcanic eruptions and phenomena like El Niño. Policy decisions have
to take non-stationarities into account: as another obvious example, with
increasing longevity, pension payments and life insurance commitments
and contracts are affected.
We first provide more illustrations of non-stationary time series to

emphasize how dramatically many have changed. Figure 3.2, left-hand
panel graphs UK annual nominal wages and prices over the long historical
period 1860–2014. These have changed radically over the last 150 years,
rising by more than 70,000% and 10,000% respectively. Their rates of
growth have also changed intermittently, as can be seen from the chang-
ing slopes of the graph lines. The magnitude of a 25% change is marked
to clarify the scale. It is hard to imagine any ‘revamping’ of the statistical
assumptions such that these outcomes could be construed as coming from
stationary processes.2

Figure 3.2, right-hand panel, records productivity, measured as out-
put per person per year, with real wages (i.e., in constant prices), namely
the difference between the two (log) time series in the left-hand panel.
Both trend strongly, but move closely together, albeit with distinct slope
changes and ‘bumps’ en route. The ‘flat-lining’ after the ‘Great Reces-
sion’ of 2008–2012 is highlighted by the ellipse. The wider 25% change
marker highlights the reduced scale. Nevertheless, both productivity and
real wages have increased by about sevenfold over the period, a huge rise in
living standards. This reflects a second key group of causes of the chang-
ing world: increased knowledge inducing technical and medical progress,
embodied in the latest vintage of capital equipment used by an increasingly
educated workforce.

Figure 3.3(a) plots annual wage inflation (price inflation is similar as
Fig. 2.4(b) showed) to emphasize that changes, or growth rates, also can
be non-stationary, here from both major shifts in means (the thicker black
line in Panel (a)), as well as in variances. Compare the quiescent 50-year

2It is sometimes argued that economic time series could be stationary around a deterministic trend,
but it seems unlikely that GDP would continue trending upwards if nobody worked.

http://dx.doi.org/10.1007/978-3-030-21432-6_2
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Fig. 3.2 Indexes of UK wages and prices (left-hand panel) and UK real wages and
productivity (right-hand panel), both on log scales

Wage inflation 
Time-varying mean of wage inflation 

1860 1880 1900 1920 1940 1960 1980 2000 2020
-0.25

-0.15

-0.05

0.05

0.15

0.25
5% change (a)

Wage inflation 
Time-varying mean of wage inflation 

Changes in real UK National Debt 

1860 1880 1900 1920 1940 1960 1980 2000 2020

-0.1
0.0
0.1
0.2
0.3
0.4
0.5 WWI →

WWII
↓

Oil
Crisis

↓

Lawson/
Major
crash →

Boer
War

↓

1921−22 crash
↓

`Great
Recession'

↓5% change

(b)Changes in real UK National Debt 
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period before 1914 with the following 50 years, noting the scale of 5% in
(a). Historically, wages have fallen (and risen) more than 20% in a year.

Figure 3.3(b) records changes in realUKNationalDebt, with the associ-
ated events. In any empirical, observationally-based discipline, ‘causes’ can
never be ‘proved’, merely attributed as overwhelmingly likely. The events
shown on Fig. 3.3(b) nevertheless seem to be the proximate causes: real
National Debt rises sharply in crises, including wars and major recessions.
Even in constant prices, National Debt has on occasion risen by 50% in
a year—and that despite inflation then being above 20%—although here
the 5% scale is somewhat narrower than in (a). Wars and major recessions
are the third set of reasons why the world is ever changing, although at a
deeper level of explanation one might seek to understand their causes.

None of the above real-world time series has a constant mean or vari-
ance, so cannot be stationary.The two distinct features of stochastic trends
and sudden shifts are exhibited, namely ‘wandering’ widely, most apparent
in Fig. 3.2, and suddenly shifting as in Fig. 3.3, features that will recur.
Such phenomena are not limited to economic data, but were seen above
in demographic and climatological time series.

Figure 3.4 illustrates the non-stationary nature of recent climate time
series compared to ice-age cycles for global concentrations of atmospheric
CO2 relative to recent rapid annual increases (see e.g., Sundquist and
Keeling 2009). The observations in the left-hand panel are at 1000 year
intervals, over almost 800,000 years, whereas those in the right-hand panel
are monthly, so at dramatically different frequencies.

Given the almost universal absence of stationarity in real-world time
series, Hendry and Juselius (2000) delineated four issues with important
consequences for empirical modelling, restated here as:

(A) the key role of stationarity assumptions in empirical modelling and
inference in many studies, despite its absence in data;

(B) the potentially hazardous impacts on theory analyses, empirical mod-
elling, forecasting and policy of incorrectly assuming stationarity;

(C) themany sources of the twomain forms of non-stationarity (evolution
and abrupt shifts), that need to be considered when modelling;

(D) yet fortunately, statistical analyses can often be undertaken to elimi-
nate many of the most adverse effects of non-stationarity.
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Fig. 3.4 Levels of atmospheric CO2 in parts per million (ppm)

We now consider issues (A), (B) and (D) in turn: the sources referred
to in (C) have been discussed immediately above.

3.2 Problems if Incorrectly Modelling
Non-stationarity

(A) Theories and models of human behaviour that assume stationarity, so
do not account for the non-stationarity in their data, will continually fail
to explain outcomes. In a stationary world, the best predictor of what we
expect an event to be like tomorrow should be based on all the information
available today. This is the conditional expectation given all the relevant
information. In elementary econometrics and statistics textbooks, such a
conditional expectation is proved to provide the smallest variance of all
unbiased predictors of themean of the distribution. An implicit, and never
stated, assumption is that the distributions over which such conditional
expectations are calculated are constant over time. But if the mean of its
distribution shifts, a conditional expectation today can predict a value
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that is far from tomorrow’s outcome. This will create a ‘disequilibrium’,
where individuals who formed such expectations will need to adjust to
their mistakes.

(B) In fact, the mathematical basis of much of ‘modern’ macroeco-
nomics requires stationarity to be valid, and fails when distributions shift
in unanticipated ways. As an analogy, continuing to use such mathemat-
ical tools in non-stationary worlds is akin to insisting on using Euclidian
geometry to measure angles of triangles on a globe: then navigation can
go seriously adrift. We return to this aspect in the next chapter.

In turn, the accuracy and precision of forecasts are affected by non-
stationarity. Its presence leads to far larger interval forecasts (the range
within which a forecaster anticipates the future values should lie) than
would occur in stationary processes, so if a stationary model is incorrectly
fitted, its calculated uncertainty can dramatically under-estimate the true
uncertainty. This is part of the explanation for the nonsense-regressions
issue we noted above. Worse still, unexpected location shifts usually lead
to forecast failure, where forecast errors are systematically much larger
than would be expected in the absence of shifts, as happened during the
Financial Crisis and Great Recession over 2008–2012. Consequently, the
uncertainty of forecasts can bemuch greater than that calculated from past
data, both because the sources of evolution in data cumulate over time,
and also because ‘unknown unknowns’ can occur, especially unanticipated
location shifts.

Scenarios based on outcomes produced by simulating empirical models
are often used in economic policy, for example, by the Bank of England
in deciding its interest-rate decisions. When the model is a poor represen-
tation of the non-stationarities prevalent in the economy, policy changes
(such as interest-rate increases) can actually cause location shifts that then
lead to forecast failure, so after the event, what had seemed a good decision
is seen to be badly based.
Thus, all four arenas of theory, modelling, forecasting and policy face

serious hazards from non-stationarity unless it is appropriately handled.
Fortunately, in each setting some actions can be taken, albeit providing
palliative, rather than complete, solutions. Concerning theory derivations,
there is an urgent need to develop approaches that allow for economic
agents always facing disequilibrium settings, and needing error-correction
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strategies after suffering unanticipated location shifts. Empiricalmodelling
can detect and remove location shifts that have happened: for example,
statistical tools for dealing with shifts enabled Statistics Norway to revise
their economic forecasts within two weeks of the shock induced by the
Lehmann Brothers bankruptcy in 2008. Modelling can also avoid the
‘nonsense relation’ problem by checking for genuine long-run connections
between variables (called cointegration, the development of which led
to a Nobel Prize for Sir Clive Granger), as well as embody feedbacks
that help correct previous mistakes. Forecasting devices can allow for the
ever-growing uncertainty arising from cumulating shocks. There are also
methods for helping to robustify forecasts against systematic failure after
unanticipated location shifts. Tests have been formulated to check for
policy changes having caused location shifts in the available data, and if
found, warn against the use of those models for making future policy
decisions.

(D) Finally, although non-stationary time series data are harder to
model and forecast, there are some important benefits deriving from non-
stationarity. Long-run relationships are difficult to isolate with stationary
data: since all connections between variables persist unchanged over time,
it is not easy to determine genuine causal links. However, cumulated
shocks help reveal what relationships stay together (i.e., cointegrate) for
long time periods. This is even more true of location shifts, where only
connected variables will move together after a shift (called co-breaking).
Such shifts also alter the correlations between variables, facilitating more
accurate estimates of empirical models, and revealing what variables are
not consistently connected. Strong trends and location shifts can also
highlight genuine connections, such as cointegration, through a fog of
measurement errors in data series. Lastly, past location shifts allow the
tests noted in the previous paragraph to be implemented before a wrong
policy is adopted. The next chapter considers how to model trends and
shifts and the potential benefits of doing so.
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4
Making Trends and Breaks Work

to Our Advantage

Abstract ThepreviousChapter noted there are benefits of non-stationarity,
so we now consider that aspect in detail. Non-stationarity can be caused
by stochastic trends and shifts of data distributions. The simplest example
of the first is a random walk of the kind created by Yule, where the cur-
rent observation equals the previous one perturbed by a random shock.
This form of integrated process occurs in economics, demography and
climatology. Combinations of I(1) processes are also usually I(1), but in
some situations stochastic trends can cancel to an I(0) outcome, called
cointegration. Distributions can shift in many ways, but location shifts
are the most pernicious forms for theory, empirical modelling, forecasting
and policy. We discuss how they too can be handled, with the potential
benefit of highlighting when variables are not related as assumed.
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4.1 Potential Solutions to Stochastic Trend
Non-stationarity

As described in Sect. 2.2, Yule created integrated processes deliberately,
but there are many economic, social and natural mechanisms that induce
integratedness in data. Perhaps the best known example of an I(1) process
is a random walk, where the current value is equal to the previous value
plus a random error. Thus the change in a random walk is just a ran-
dom error. Such a process can wander widely, and was first proposed by
Bachelier (1900) to describe the behaviour of prices in speculativemarkets.
However, such processes also occur in demography (see Lee and Carter
1992) as well as economics, because the stock of a variable, like popu-
lation or inventories, cumulates the net inflow as discussed for Fig. 2.3.
A natural integrated process is the concentration of atmospheric CO2,
as emissions cumulate due to CO2’s long atmospheric lifetime, as in the
right-hand panel of Fig. 3.4. Such emissions have been mainly anthro-
pogenic since the industrial revolution.When the inflows to an integrated
process are random, the variance will grow over time by cumulating past
perturbations, violating stationarity. Thus, unlike an I(0) process which
varies around a constant mean with a constant variance, an I(1) process
has an increasing variance, usually called a stochastic trend, and may also
‘drift’ in a general direction over time to induce a trend in the level.

Cumulating past random shocks should make the resulting time series
relatively smooth since successive observations share a large number of
past inputs. Also the correlations between successive values will be high,
and only decline slowly as their distance apart increases–the persistence
discussed in Sect. 2.1. Figure 4.1(a), (b) illustrates for the logs of wages
and real wages, where the sequence of successive correlations shown is
called a correlogram. Taking wages in the top-left panel (a) as an example,
the outcome in any year is still correlated 0.97 with the outcome 20
years previously, and similar high correlations between variables 20 years
apart hold for real wages. Values outside the dashed lines are significantly
different from zero at 5%.

Differencing is the opposite of integration, so an I(1) process has first
differences that are I(0). Thus, despite its non-stationarity, an I(1) pro-
cess can be reduced to I(0) by differencing, an idea that underlies the

http://dx.doi.org/10.1007/978-3-030-21432-6_2
http://dx.doi.org/10.1007/978-3-030-21432-6_2
http://dx.doi.org/10.1007/978-3-030-21432-6_3
http://dx.doi.org/10.1007/978-3-030-21432-6_2
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Fig. 4.1 Twenty successive serial correlations for (a) nominal wages; (b) real wages;
(c) wage inflation; and (d) real wage growth

empirical modelling and forecasting approach in Box and Jenkins (1976).
Now successive values in the correlogram should decline quite quickly, as
Figs. 4.1(c) and (d) show for the differences of these two time series. Wage
inflation is quite highly correlated with its values one and two periods ear-
lier, but there are much smaller correlations further back, although even as
far back as 20 years, all the correlations are positive. However, the growth
of real wages seems essentially random in terms of its correlogram. As a
warning, such evidence does not imply that real wage growth cannot be
modelled empirically, merely that the preceeding value by itself does not
explain the current outcome.

Differences of I(1) time series should also be approximately Normally
distributed when the shocks are nearly Normal. Such outcomes implicitly
suppose there are no additional ‘abnormal’ shocks such as location shifts.
Figure 4.2 illustrates for wage and price inflation, and the growth in real
wages and productivity. None of the four distributions is Normal, with all
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Fig. 4.2 Densities of the differences for: (a) nominal wages; (b) prices; (c) real
wages and (d) productivity

revealing large outliers, which cannot be a surprise given their time series
graphs in Fig. 3.2.
To summarise, both the mean and the variance of I(1) processes change

over time, and successive values are highly interdependent. As Yule (1926)
showed, this can lead to nonsense regression problems. Moreover, the
conventional forms of distributions assumed for estimates of parameters in
empirical models under stationarity no longer hold, so statistical inference
becomes hazardous unless the non-stationarity is taken into account.

4.2 Cointegration Between I(1) Processes

Linear combinations of several I(1) processes are usually I(1) as well. How-
ever, stochastic trends can cancel between series to yield an I(0) outcome.
This is called cointegration. Cointegrated relationships define a ‘long-run
equilibrium trajectory’, departures fromwhich induce ‘equilibriumcorrec-

http://dx.doi.org/10.1007/978-3-030-21432-6_3
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tion’ thatmoves the relevant system back towards that path.1 Equilibrium-
correction mechanisms are a very large class of models that coincide with
cointegrated relations when data are I(1), but also apply to I(0) processes
which are implicitly always cointegrated in that all linear combinations
are I(0). When the data are I(2) there is a generalized form of cointegra-
tion leading to I(0) combinations. Equilibrium-correction mechanisms
(EqCMs) can be written in a representation in which changes in variables
are inter-related, but also include lagged values of the I(0) combinations.
EqCMs have the key property that they converge back to the long-run
equilibrium of the data beingmodelled.This is invaluable when that equi-
librium is constant, but as we will see, can be problematic if there are shifts
in equilibria.

Real wages and productivity, shown in Fig. 3.2, are each I(1), but their
differential, which is the wage share shown in Fig. 4.3, could be I(0).
The wage share cancels the separate stochastic trends in real wages and
productivity to create a possible cointegrating relationwhere the stochastic

1Davidson et al. (1978), and much of the subsequent literature, call these ‘error correction’.

http://dx.doi.org/10.1007/978-3-030-21432-6_3
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Fig. 4.4 Pairs of artificial time series: (i) unrelated I(0); (ii) unrelated I(1); (iii) coin-
tegrated

trends have been removed, but there also seem to be long swings and
perhaps location shifts, an issue we consider in Sect. 4.3.
To illustrate pairs of variables that are (i) unrelated I(0) but autocorre-

lated, (ii) unrelated I(1), and (iii) cointegrated, Fig. 4.4 shows 500 obser-
vations on computer-generated data. The very different behaviours are
marked, and although rarely so obvious in practice, the close trajectories
of real wages and productivity in Fig. 3.3 over 150 years resembles the
bottom panel.

In economics, integrated-cointegrated data seem almost inevitable
because of the Granger (1981) Representation Theorem, for which he
received the Sveriges Riksbank Prize in Economic Science in Memory of
Alfred Nobel in 2003. His result shows that cointegration between vari-
ables must occur if there are fewer decision variables (e.g., your income
and bank account balance) than the number of decisions (e.g., hundreds
of shopping items: see Hendry 2004, for an explanation). If that setting

http://dx.doi.org/10.1007/978-3-030-21432-6_3
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was the only source of non-stationarity, there would be two ways of bring-
ing an analysis involving integrated processes back to I(0): differencing
to remove cumulative inputs (which always achieves that aim), or finding
linear combinations that form cointegrating relations. There must always
be fewer cointegrating relations than the total number of variables, as
otherwise the system would be stationary, so some variables must still be
differenced to represent the entire system as I(0).
Cointegration is not exclusive to economic time series. The radia-

tive forcing of greenhouse gases and other variables affecting global cli-
mate cointegrate with surface temperatures, consistent with models from
physics (see Kaufmann et al. 2013; Pretis 2019). Thus, cointegration
occurs naturally, and is consistent with many existing theories in the nat-
ural sciences where interacting systems of differential equations in non-
stationary time series can be written as a cointegrating model.

Other sources of non-stationarity also matter, however, especially shifts
in the means of data distributions of I(0) variables, including equilibrium
correction means, and growth rate averages, so we turn to this second
main source of non-stationarity. There is a tendency in the econometrics
literature to identify ‘non-stationarity’ purely with integrated data (time
series with unit roots), and so incorrectly claim that differencing a time
series induces stationarity. Certainly, a unit root is removed by considering
the difference, but there are other sources of non-stationarity, so for clarity
we refer to the general case as wide-sense non-stationarity.

4.3 Location Shifts

Location shifts are changes from the previous mean of an I(0) variable.
There have been enormous historical changes since 1860 in hours of work,
real incomes, disease prevalence, sanitation, infant mortality, and average
age of death among many other facets of life: see http://ourworldindata.
org/ for comprehensive coverage. Figure 3.2 showed how greatly log wages
and prices had increased over 1860–2014 with real wages rising sevenfold.
Such huge increases could not have been envisaged in 1860. Uncertainty
abounds, both in the real world and in our knowledge thereof. However,
some events are so uncertain that probabilities of their happening can-

http://ourworldindata.org/
http://ourworldindata.org/
http://dx.doi.org/10.1007/978-3-030-21432-6_3
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not be sensibly assigned. We call such irreducible uncertainty ‘extrinsic
unpredictability’, corresponding to unknown unknowns: see Hendry and
Mizon (2014). A pernicious form of extrinsic unpredictability affecting
inter-temporal analyses, empirical modelling, forecasting and policy inter-
ventions is that of unanticipated location shifts, namely shifts that occur at
unanticipated times, changing by unexpected magnitudes and directions.

Figure 4.5 illustrates a hypothetical setting. The initial distribution is
either a standard Normal (solid line) with mean zero and variance unity,
or a ‘fat-tailed’ distribution (dashed line), which has a high probability of
generating ‘outliers’ at unknown times and of unknown magnitudes and
signs (sometimes called anomalous ‘black swan events’ as in Taleb 2007).
As I(1) time series can be transformed back to I(0) by differencing or coin-
tegration, the Normal distribution often remains the basis for calculating
probabilities for statistical inference, as in random sampling from a known
distribution. Hendry and Mizon (2014) call this ‘intrinsic unpredictabil-
ity’, because the uncertainty in the outcome is intrinsic to the properties of
the random variables. Large outliers provide examples of ‘instance unpre-
dictability’ since their timings, magnitudes and signs are uncertain, even
when they are expected to occur in general, as in speculative asset markets.
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Fig. 4.5 Location shift in a normal or a fat-tailed distribution
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However, in Fig. 4.5 the baseline distribution experiences a location
shift to a newNormal distribution (dotted line) with a mean of−5. As we
have already seen, there are many causes for such shifts, and many shifts
have occurred historically, precipitated by changes in legislation, wars,
financial innovation, science and technology, medical advances, climate
change, socialmores, evolving beliefs, and different political and economic
regimes. Extrinsically unpredictable location shifts canmake the new ordi-
nary seem highly unusual relative to the past. In Fig. 4.5, after the shift,
outcomes will now usually lie between 3 and 7 standard deviations away
from the previous mean, generating an apparent ‘flock’ of black swans,
which could never happen with independent sampling from the baseline
distribution, even when fat-tails are possible. During the Financial Cri-
sis in 2008, the possibility of location shifts generating many extremely
unlikely bad draws does not seem to have been included in risk models.
But extrinsic unpredictability happens in the real world (see e.g., Soros
2008): as we have remarked, current outcomes are not highly discrepant
draws from the distributions prevalent in the Middle Ages, but ‘normal’
draws from present distributions that have shifted greatly. Moreover, the
distributions of many data differences are not stationary: for example,
real growth per capita in the UK has increased intermittently since the
Industrial Revolution as seen in Fig. 3.2, and most nominal differences
have experienced location shifts, illustrated by Fig. 3.3. Hendry (2015)
provides dozens of other examples.

4.4 Dynamic-Stochastic General Equilibrium
(DSGE) Models

Everyone has to take decisions at some point in time that will affect their
future in important ways: marrying, purchasing a house with a mortgage,
making an investment in a risky asset, starting a pension or life insurance,
and so on. The information available at the time reflects the past and
present but obviously does not include knowledge of the future. Conse-
quently, a view has to be taken about possible futures that might affect
the outcomes.

http://dx.doi.org/10.1007/978-3-030-21432-6_3
http://dx.doi.org/10.1007/978-3-030-21432-6_3
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All too often, such views are predicated on there being no unantici-
pated future changes relevant to that decision, namely the environment
is assumed to be relatively stationary. Certainly, there are periods of rea-
sonable stability when observing how past events unfolded can assist in
planning for the future. But as this book has stressed, unexpected events
occur, especially unpredicted shifts in the distributions of relevant vari-
ables at unanticipated times. Hendry and Mizon (2014) show that the
intermittent occurrence of ‘extrinsic unpredictability’ has dramatic conse-
quences for any theory analyses of time-dependent behaviour, empirical
modelling of time series, forecasting, and policy interventions. In partic-
ular, the mathematical basis of the class of models widely used by central
banks, namely DSGE models, ceases to be valid as DSGEs are based on
an inter-temporal optimization calculus that requires the absence of dis-
tributional shifts.
This is not an ‘academic’ critique: the supposedly ‘structural’ Bank of

England Quarterly Model (BEQM) broke down during the Financial
Crisis, and has since been replaced by another DSGE called COMPASS,
whichmay be pointing in thewrong direction: seeHendry andMuellbauer
(2018).

DSGE Models
Many of the theoretical equations in DSGE models take a form in
which a variable today, denoted yt , depends on its ‘expected future
value’ often written as Et [yt+1|I t ], where Et [·] indicates the date
at which the expectation is formed about the variable in the [ ].
Such expectations are conditional on what information is avail-
able, which we denoted by It , so are naturally called conditional
expectations, and are defined to be the average over the relevant
conditional distribution. If the relation between yt+1 and It shifts
as in Fig. 4.5, yt+1 could be far from what was expected.

As we noted above, in a stationary world, a ‘classic’ proof in elementary
statistics courses is that the conditional expectation has the smallest vari-
ance of all unbiased predictors of the mean of their distribution. By basing
their expectations for tomorrow on today’s distribution, DSGE formula-
tions assume stationarity, possibly after ‘removing’ stochastic trends by
some method of de-trending. From Fig. 4.5 it is rather obvious that the
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previous mean, and hence the previous conditional expectation, is not an
unbiased predictor of the outcome after a location shift.

As we have emphasized, underlying distributions can and do shift
unexpectedly. Of course, we are all affected to some extent by unantici-
pated shifts of the distributions relevant to our lives, such as unexpectedly
being made redundant, sudden increases in mortgage costs or tax rates, or
reduced pension values after a stock market crash. However, we then usu-
ally change our plans, and perhaps also our views of the future. The first
unfortunate outcome for DSGEmodels is that their parameters shift after
a location shift. The second is that their mathematical derivations usually
assume that the agents in their model do not change their behaviour from
what would be the optimum in a stationary world. However, as ordinary
people seem unlikely to be better at forecasting breaks than professional
economists, or even quickly learning their implications after they have
occurred, most of us are forced to adapt our plans after such shifts.

By ignoring the possibility of distributional shifts, conditional expec-
tations can certainly be ‘proved’ to be unbiased, but that does not imply
they will be in practice. Some econometric models of inflation, such as
the so-called new-Keynesian Phillips curve, involve expectations of the
unknown future value written as E[yt+1|It ]. A common procedure is to
replace that conditional expectation by the actual future outcome yt+1,
arguing that the conditional expectation is unbiased for the actual out-
come, so will only differ from it by unpredictable random shocks with a
mean of zero. That implication only holds if there have been no shifts in
the distributions of the variables, and otherwise will entail mis-specified
empirical models that can seriously mislead in their policy implications as
Castle et al. (2014) demonstrate.
There is an intimate link between forecast failure, the biasedness of con-

ditional expectations and the inappropriate application of inter-temporal
optimization analysis: when the first is due to an unanticipated location
shift, the other two follow. Worse, a key statistical theorem in modern
macroeconomics, called the law of iterated expectations, no longer holds
when the distributions from which conditional expectations are formed
change over time. The law of iterated expectations implies that today’s
expectation of tomorrow’s outcome, given what we know today, is equal
to tomorrow’s expectation. Thus, one can ‘iterate’ expectations over time.
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The theorem is not toohard to provewhen all the distributions involved are
the same, but it need not hold when any of the distributions shift between
today and tomorrow for exactly the same reasons as Fig. 2.8 reveals: that
shift entails forecast failure, a violation of today’s expectation being unbi-
ased for tomorrow, and the failure of the law of iterated expectations.

As a consequence, dynamic stochastic general equilibrium models are
inherently non-structural; their mathematical basis fails when substan-
tive distributional shifts occur and their parameters will be changed. This
adverse property of all DSGEs explains the ‘break down’ of BEQM fac-
ing the Financial Crisis and Great Recession as many distributions shifted
markedly, including that of interest rates (to unprecedently low levels from
Quantitative Easing) and consequently the distributions of endowments
across individuals and families.Unanticipated changes in underlying prob-
ability distributions, especially location shifts, have detrimental impacts on
all economic analyses involving conditional expectations and hence inter-
temporal derivations as well as causing forecast failure.What we now show
is that with appropriate tools, the impacts of outliers and location shifts
on empirical modelling can be taken into account.

4.5 Handling Location Shifts

At first sight, location shifts seem highly problematic for econometric
modelling, but as with stochastic trends, there are several potential solu-
tions. Differencing a time series will also inadvertently convert a location
shift to an impulse (an impulse in the first difference is equivalent to a
step-shift in the level). Secondly, time series can co-break, analogous to
cointegration, in that location shifts can cancel between series.
Thus, time series can be combined to remove some or all of the indi-

vidual shifts. Individual series may exhibit multiple shifts, but when mod-
elling one series by another, co-breaking implies that fewer shifts will be
detected when the series break together. Figure 3.2 showed the divergent
strong but changing trends in nominal wages and prices, and Fig. 3.3
recorded the many shifts in wage inflation. Nevertheless, as shown by the
time series of real wage growth in Fig. 4.6, almost all the shifts in wage
inflation and price inflation cancelled over 1860–2014. The only one not

http://dx.doi.org/10.1007/978-3-030-21432-6_2
http://dx.doi.org/10.1007/978-3-030-21432-6_3
http://dx.doi.org/10.1007/978-3-030-21432-6_3
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Fig. 4.6 Partial co-breaking between wage and price inflation

to is the huge ‘spike’ in 1940, which was a key step in the UK’s war effort,
to encourage new workers to replace army recruits.
The third possible solution is to find all the location shifts and outliers

whatever their magnitudes and signs then include indicators for them in
themodel.To do so requires us to solve the apparently impossible problem
of selecting from more candidate variables in a model than observations.
Hendry (1999) accidently stumbled over a solution. Most contributors to
Magnus and Morgan (1999) had found that models of US real per capita
annual food demand were non-constant over the sample 1929–1952, so
dropped that earlier data from their empirical modelling. Figure 2.4(a)
indeed suggests very different behaviour pre and post 1952, but by itself
that does not entail that econometric models which include explanatory
variables like food prices and real incomes must shift. To investigate why,
yet replicate others’ models, Hendry added impulse indicators (which are
‘dummy variables’ that are zero everywhere except for unity at one data
point) for all observations pre-1952, which revealed three large outliers
corresponding to a US Great Depression food programme and post-war
de-rationing. To check that his model was constant from 1953 onwards,
he later added impulse indicators for that period, thereby including more

http://dx.doi.org/10.1007/978-3-030-21432-6_2
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variables plus indicators than observations, but only entered in his model
in two large blocks, each much smaller than the number of observations.
This has led to a statistical theory for modelling multiple outliers and
location shifts (see e.g., Johansen and Nielsen 2009; Castle et al. 2015),
available in our computational tool Autometrics (Doornik 2009) and in
the packageGets (Pretis et al. 2018) in the statistical software environment
R. This approach, called indicator saturation, considers a possible outlier
or shift at every point in time, but only retains significant indicators. That
is how the location-shift lines drawn on Fig. 3.3 were chosen, and is the
subject of Chapter 5.

Location shifts are of particular importance in policy, because a policy
change inevitably creates a location shift in the system of which it is
a part. Consequently, a necessary condition for the policy to have its
intended effect is that the parameters in the agency’s empirical models of
the target variables must remain invariant to that policy shift. Thus, prior
to implementing a policy, invariance should be tested, and that can be
done automatically as described in Hendry and Santos (2010) and Castle
et al. (2017).

4.6 Some Benefits of Non-stationarity

Non-stationarity is pervasive, and as we have documented, needs to be
handled carefully to produce viable empirical models, but its occurrence
is not all bad news. When time series are I(1), their variance grows over
time, which can help establish long-run relationships. Some economists
believe that so-called ‘observational equivalence’—where several different
theories look alike on all data—is an important problem.While that worry
could be true in a stationary world, cointegration can only hold between
I(1) variables that are genuinely linked. ‘Observational equivalence’ is also
unlikely facing location shifts: no matter how many co-breaking relations
exist, there must always be fewer than the number of variables, as some
must shift to change others, separating the sheep from the goats.
When I(1) variables also trend, or drift, that can reveal the underly-

ing links between variables even when measurement errors are quite large
(see Duffy and Hendry 2017). Those authors also establish the benefits

http://dx.doi.org/10.1007/978-3-030-21432-6_3
http://dx.doi.org/10.1007/978-3-030-21432-6_5
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of location shifts that co-break in identifying links between mis-measured
variables: intuitively, simultaneous jumps in both variables clarify their
connection despite any ‘fog’ from measurement errors surrounding their
relationship. Thus, large shifts can help reveal the linkages between vari-
ables, as well as the absence thereof.

Moreover, empirical economics is plagued by very high correlations
between variables (as well as over time), but location shifts can substan-
tively reduce such collinearity. In particular, as demonstrated by White
and Kennedy (2009), location shifts can play a positive role in clarifying
causality. Also, White (2006) uses large location shifts to estimate the
effects of natural experiments.

Finally, location shifts also enable powerful tests of the invariance of the
parameters of policymodels to policy interventions before new policies are
implemented, potentially avoiding poor policy outcomes (see Hendry and
Santos 2010). Thus, while wide-sense non-stationarity poses problems for
economic theories, empirical modelling and forecasting, there are benefits
to be gained as well.

Non-stationary time series are the norm in many disciplines including
economics, climatology, and demography as illustrated in Figs. 2.3–3.2:
the world changes, often in unanticipated ways. Research, and especially
policy, must acknowledge the hazards of modelling what we have called
wide-sense non-stationary time series, where distributions of outcomes
change, as illustrated in Fig. 4.5. Individually and together when stochas-
tic trends and location shifts are not addressed, they can distort in-sample
inferences, lead to systematic forecast failure out-of-sample, and substan-
tively increase forecast uncertainty as we will discuss in Chapter 7. How-
ever, both forms can be tamed in part using the methods of cointegration
and modelling location shifts respectively, as Fig. 4.6 showed.

A key feature of every non-stationary process is that the distribution
of outcomes shifts over time, illustrated in Fig. 4.7 for histograms and
densities of logs of UK real GDP in each of three 50-year epochs. Conse-
quently, probabilities of events calculated in one time period do not apply
in another: recent examples include increasing longevity affecting pen-
sion costs, and changes in frequencies of flooding vitiating flood-defence
systems.

http://dx.doi.org/10.1007/978-3-030-21432-6_2
http://dx.doi.org/10.1007/978-3-030-21432-6_3
http://dx.doi.org/10.1007/978-3-030-21432-6_7
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Fig. 4.7 Histograms and densities of logs of UK real GDP in each of three 50-year
epochs

The problem of shifts in distributions is not restricted to the levels of
variables: distributions of changes can also shift albeit that is more difficult
to see in plots like Fig. 4.7. Consequently, Fig. 4.8 shows histograms and
densities of changes in UK CO2 emissions in each of four 40-year epochs
in four separate graphs but on common scales for both axes. The shifts
are now relatively obvious at least between the top two plots and between
pre and post World War II, although the wide horizontal axis makes any
shifts between the last two periods less obvious.

Conversely, we noted some benefits of stochastic trends and location
shifts as they help reveal genuine links between variables, and also highlight
non-constant links, both of which are invaluable knowledge in a policy
context.
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Fig. 4.8 Histograms and densities of changes in UK CO2 emissions in each of four
40-year epochs
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5
Detectives of Change: Indicator Saturation

Abstract Structural changes are pervasive from innovations affecting
many disciplines. These can shift distributions, altering relationships and
causing forecast failure. Many empirical models also have outliers: both
can distort inference. When the dates of shifts are not known, they need
to be detected to be handled, usually by creating an indicator variable that
matches the event.The basic example is an impulse indicator equal to unity
for the date of an outlier and zero elsewhere. We discuss an approach to
finding multiple outliers and shifts called saturation estimation. For find-
ing outliers, an impulse indicator is created for every observation and the
computer program searches to see which, if any, match an outlier. Simi-
larly for location shifts: a step indicator equal to unity till time t is created
for every t and searched over. We explain how and why this approach
works.

Keywords Detecting shifts · Indicator saturation methods ·
Impulse-indicator saturation (IIS) · Step-indicator saturation (SIS) ·
Outliers · Non-linearity
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Shifting distributions are indicative of structural change, but that can take
many forms, from sudden location shifts, changes in trend rates of growth,
or in estimated parameters reflecting changes over time in relationships
between variables. Further, outliers that could be attributed to specific
events, but are not modelled, can lead to seemingly fat-tailed distributions
when in fact the underlying process generating the data is thin tailed.
Incorrect or changing distributions pose severe problems for modelling
any phenomena, and need to be correctly dealt with for viable estimation
and inference on parameters of interest. Empirical modelling that does
not account for shifts in the distributions of the variables under analysis
risks reaching potentially misleading conclusions by wrongly attributing
explanations from such contamination to chance correlations with other
included variables, as well as having non-constant parameters.
While the dates of somemajor events like the Great Depression, oil and

financial crises, and major wars are known ex post, those of many other
events are not. Moreover, the durations and magnitudes of the impacts
on economies of shifts are almost never known. Consequently, it behoves
any investigator of economic (and indeed many other) time series to find
and neutralize the impacts of all the in-sample outliers and shifts on the
estimates of their parameters of interest. Shifts come at unanticipated times
withmany different shapes, durations andmagnitudes, so generalmethods
to detect them are needed. ‘Ocular’ approaches to spotting outliers in a
model are insufficient: an apparent outlier may be captured by one of the
explanatory variables, and the absence of any obvious outliers does not
entail that large residuals will not appear after fitting.

It may be thought that the considerable number of tests required to
check for outliers and shifts everywhere in a sample might itself be dis-
torting, and hence adversely affect statistical inference. In particular, will
one find too many non-existent perturbations by chance?That worry may
be exacerbated by the notion of using an indicator saturation approach,
where an indicator for a possible outlier or shift at every observation is
included in the set of explanatory variables to be searched over. Even if
there are just 100 observations, there will be a hundred indicators plus
variables, so there are many trillions of combinations of models created
by including or omitting each variable and every indicator, be they for
outliers or for shifts starting and ending at different times.
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Despite the apparent problems, indicator saturation methods can
address all of these forms of mis-specification. First developed to detect
unknown numbers of outliers of unknownmagnitudes at unknown points
in the sample, including at the beginning and end of a sample, the method
can be generalized to detect all forms of deterministic structural change.
We begin by outlining the method of impulse-indicator saturation (IIS)
to detect outliers, before demonstrating how the approach can be gener-
alized to include step, trend, multiplicative and designer saturation. We
then briefly discuss how to distinguish between non-linearity and struc-
tural change.

Saturation methods can detect multiple breaks, and have the additional
benefit that they can be undertaken conjointly with all other aspects of
model selection. Explanatory variables, dynamics and non-linearities can
be selected jointly with indicators for unknown breaks and outliers. Such a
‘portmanteau’ approach to detecting breaks while also selecting over many
candidate variables is essential when the underlying DGP is unknown and
has to be discovered from the available evidence. Most other break detec-
tion methods rely on assuming the model is somehow correctly specified
other than the breaks, and such methods can lack power to detect breaks
if the model is far from ‘correct’, an event that will occur with high prob-
ability in non-stationary time series.

5.1 Impulse-Indicator Saturation

IIS creates a complete set of indicator variables. Each indicator takes the
value 1 for a single observation, and 0 for all other observations. As many
indicators as there are observations are created, each with a different obser-
vation corresponding to the value 1. So for a sample of T observations,
T indicators are then included in the set of candidate variables. However,
all those indicators are most certainly not included together in the regres-
sion, as otherwise a perfect fit would always result and nothing would
be learned. Although saturation creates T additional variables when there
are T observations, Autometrics provides an expanding and contracting
block search algorithm to undertake model selection when there are more
variables than observations, as discussed in the model selection primer
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in Chapter 2. To aid exposition, we shall outline the ‘split-half ’ approach
analyzed in Hendry et al. (2008), which is just the simplest way to explain
and analyze IIS, so bear in mind that such an approach can be general-
ized to a larger number of possibly unequal ‘splits’, and that the software
explores many paths.

Defining Indicators
Impulse indicators are defined as {1{ j=t}} where 1{ j=t} is equal to
unity when j = t and equal to zero otherwise for j = 1, . . . , T .

Including an impulse indicator for a particular observation in a static
regression delivers the same estimate of the model’s parameters as if that
observation had been left out. Consequently, the coefficient of that indi-
cator is equal to the residual of the associated observation when predicted
from amodel based on the other observations. In dynamic relations, omit-
ting an observation can distort autocorrelations, but an impulse indicator
will simply deliver a zero residual at that observation. Thus, in both cases,
including T /2 indicators provides estimates of the model based on the
other half of the observations. Moreover, we get an estimate of any dis-
crepancies in that half of the observations relative to the other half. Those
indicators can then be tested for significance using the estimated error vari-
ance from the other half as the baseline, and any significant indicators are
recorded. Importantly, under the null, each half ’s estimates of parameters
and error variance are unbiased.
To understand the ‘split-half ’ approach, consider a linear regression

that only includes an intercept, to which we add the first T /2 impulse
indicators, although there are in fact no outliers. Doing so has the same
effect as dummying out the first half of the observations such that unbiased
estimates of the mean and variance are obtained from the remaining data.
Any observations in the first half that are discrepant relative to those
estimates at the chosen significance level, α, say 1%, will result in selected
indicators. The locations of any significant indicators are recorded, then
the first T /2 indicators are replaced by the second T /2, and the procedure
repeated. The two sets of sub-sample significant indicators (if any) are
added to the model for selection of the finally significant indicators. This
step is not superfluous: when there is a location shift, for example, some

http://dx.doi.org/10.1007/978-3-030-21432-6_2
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Fig. 5.1 ‘Split-half’ IIS search under null. (a) The data time series; (b) the first 5
impulse indicators included; (c) the other set of impulse indicators; (d) the outcome,
as no indicators are selected

indicators may be significant as approximations to the shift, but become
insignificant when the correct indicators are included.

Figure 5.1 illustrates the ‘split-half ’ approach when T = 9 for an inde-
pendent, identically distributed (IID) Normal random variable with a
mean of 6.0 and a variance of 0.33. Impulse indicators will be selected at
the significance level α = 0.05.

Computer Generated Data
The IID Normal variable is denoted by yt ∼ IN[μ, σ 2

y ], where μ

is the mean and σ 2
y is the variance. A random number genera-

tor on a computer creates an IN[0, 1] series which is then scaled
appropriately.

Figure 5.1(a) shows the data time series, where the dating relates to
periods before and after a shift described below. Then panels (b) and (c)
record which of the 9 impulse indicators were included in turn, then panel
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(d) shows the outcome, where the fitted model is just a constant as no
indicators are selected. Since αT = 0.05 × 9 = 0.45, that is the average
null retention rate, where α is called the theoretical gauge, whichmeasures
a key property of the procedure. This implies that we expect about one
irrelevant indicator to be retained every second time IIS is applied to T = 9
observations using α = 0.05 when the null is true, so finding none is not
a surprise.

Hendry et al. (2008) establish a feasible algorithm for IIS, and derive its
null distribution for an IID process. Johansen and Nielsen (2009) extend
those findings to general dynamic regression models (possibly with trends
or unit roots), and show that the distributions of regression parameter
estimates remain almost unaltered, despite investigating the potential rel-
evance of T additional indicators, with a small efficiency loss under the
null of no breaks when αT is small. For a stationary process, with a
correct null of no outliers and a symmetric error distribution, under rela-
tively weak assumptions, the limiting distribution of the estimators of the
regression parameters of interest converges to the population parameters
at the usual rate (namely

√
T ) despite using IIS. Moreover, that is still

a Normal distribution, where the variance is somewhat larger than the
conventional form, determined by the stringency of the significance level
used for retaining impulse indicators. For example, using a 1%significance
level, the estimator variance will be around 1% larger.

If the significance level is set to the inverse of the sample size, 1/T , only
one irrelevant indicator will be retained on average by chance, entailing
that just one observation will be ‘dummied out’. Think of it: IIS allows
us to examine T impulse indicators for their significance almost costlessly
when they are not needed. Yet IIS has also checked for the possibility of
an unknown number of outliers, of unknown magnitudes and unknown
signs, not knowing in advance where in the data set they occurred!
The empirical gauge g is the fraction of incorrectly retained variables, so

here is the number of indicators retainedunder the null divided by T .More
generally, if on average one irrelevant variable in a hundred is adventitiously
retained in the final selection, the empirical gauge is g = 0.01. Johansen
and Nielsen (2016) derive its distribution, and show g is close to α for
small α. IIS has a close affinity to robust statistics, which is not surprising
as it seeks to prevent outliers from contaminating estimates of parameters
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of interest. Thus, they also demonstrate that IIS is a member of the class
of robust estimators, being a special case of a 1-step Huber-skip estimator
when the model specification is known.

Illustrating IIS for an Outlier
We generate an outlier of size λ at observation k by
yt = μ + λ1{t=k} + εt where εt ∼ IN

[
0, σ 2

ε

]
and λ �= 0.

To illustrate ‘split-half ’ IIS search under the alternative (i.e., when there
is an outlier as in the box), Fig. 5.2 records the behaviour of IIS for an
outlier ofλ = −1.0 at observation k = 1, so earlier dates are shown as neg-
ative. Selecting at α = 0.05, no first-half indicators are retained (Fig. 5.2
panel (b)), as the discrepancy between the first-half and second-half means
is not large relative to the resulting variance. When those indicators are
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Fig. 5.2 (a) Perturbed data time series; (b) the first 5 impulse indicators included;
(c) the other set of impulse indicators where the dashed line indicates retained;
(d) the outcome with and without the selected indicator
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dropped and the second set entered, the first for the period after the outlier
is now retained: note that the first-half variance is very small.

Here the combined set is also just the second selection. When the null
of no outliers or breaks is true, any indicator that is significant on a sub-
sample would remain so overall, but for many alternatives, sub-sample
significance can be transient, due to an unmodelled feature that occurs
elsewhere in the data set.

Despite its apparently arcane formulation involving more variables plus
indicators than available observations, the properties ofwhichwediscussed
above, IIS is closely related to a number of other well-known statistical
approaches. First, consider recursive estimation, where a model is fitted
to a small initial subset of the data, say K > N values when there are N
variables, then observations are added one at a time to check for changes
in parameter estimates. In IIS terms, this is equivalent to starting with
impulse indicators for the last T − K observations, then dropping those
indicators one at a time as each next observation is included in the recur-
sion.

Second, rolling regressions, where a fixed sample length is used, so earlier
observations are dropped as later ones are added, is a further special case,
equivalent to sequentially adding impulse indicators to eliminate earlier
observations and dropping those for later.
Third, investigators sometimes drop observations or truncate their sam-

ple for what they view as discrepant periods such as wars. Again, this is
a special case of IIS, namely including impulse indicators for the obser-
vations to be eliminated, precisely as we discussed above for modelling
US food demand from 1929 to 1952. A key lack in all these methods is
not inspecting the indicators for their significance or information content.
However, because the variation in such apparently ‘discrepant’ periods can
be invaluable in breaking collinearities and enhancing estimation preci-
sion, much can be learned by applying IIS instead, and checking which, if
any, observations are actually problematic, perhaps using archival research
to find out why.

Fourth, the Chow test for parameter constancy can be implemented by
adding impulse indicators for the subsample to be tested, clearly a special
case of IIS. Thus, IIS nests all of these settings. There is a large literature
on testing for a known number of breaks, but indicator saturation is
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applicable when there is an unknown number of outliers or shifts, and can
be implemented jointly with selecting over other regressors. Instrumental
variables variants follow naturally, with the added possibility of checking
the instrument equations for outliers and shifts, leading to being able to
test the specification of the equation of interest for invariance to shifts in
the instruments.

IIS is designed to detect outliers rather than location shifts, but split-
half can also be used to illustrate indicator saturation when there is a single
location shift which lies entirely within one of the halves. For a single loca-
tion shift, Hendry and Santos (2010) show that the detection power, or
potency, of IIS is determined by the magnitude of the shift; the length
of the break interval, which determines how many indicators need to be
found; the error variance of the equation; and the significance level, α,
as a Normal-distribution critical value, cα, is used by the IIS selection
algorithm. Castle et al. (2012) establish the ability of IIS in Autometrics to
detect multiple location shifts and outliers, including breaks close to the
start and end of the sample, as well as correcting for non-Normality. Nev-
ertheless, we next consider step-indicator saturation, which is explicitly
designed for detecting location shifts.

5.2 Step-Indicator Saturation

A step shift is just a block of contiguous impulses of the same signs
and magnitudes. Although IIS is applicable to detecting these, then the
retained indicators could be combined into one dummy variable taking
the average value of the shift over the break period and 0 elsewhere, per-
haps after conducting a joint F-test on the ex post equality of the retained
IIS coefficients, there is a more efficient method for detecting step shifts.
We can instead generate a saturating set of T − 1 step-shift indicators
which take the value 1 from the beginning of the sample up to a given
observation, and 0 thereafter, with each step switching from 1 to 0 at
a different observation. Step indicators are the cumulation of impulse
indicators up to each next observation. The ‘T ’th step would just be the
intercept. The T − 1 steps are included in the set of candidate regressors.
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The split-half algorithm is conducted in exactly the same way, but there
are some differences.

Defining Step Indicators
Step indicators are defined by 1{t≤ j}, j = 1, . . . , T , where
1{t≤ j} = 1 for observations up to j , and zero otherwise.

First, while impulse indicators are mutually orthogonal, step indicators
overlap increasingly as their second index increases. Second, for a location
shift that is not at either end, say from T1 to T2, two indicators are required
to characterize it:1{t≤T2} − 1{t<T1}.Third, for a split-half analysis, the ease
of detection is affected by whether or not T1 and T2 lie in the same split,
and whether location shifts occur in both halves with similar signs and
magnitudes. Castle et al. (2015) derive the null retention frequency of SIS
and demonstrate the improved potency relative to IIS for longer location
shifts.
We now consider ‘split-sample’ SIS for the same data as used for IIS

above. As it happens, the second half coincides with the break period, so
rather than use the first and second halves, we illustrate ‘half-sample’ SIS,
where some indicators are chosen from each half as shown in Fig. 5.3 under
the null. AsAutometrics software usesmulti-path block searches, this choice
is potentially one of many paths explored, so has no specific advantage,
but hopefully avoids the impression that the method is successful because
the shift neatly coincides with the second half.

Figure 5.3 panel (a) records the time series; panels (b) and (c) the first
and second choices of the 9 step indicators where now solid, dotted, dashed
and long dashed clarify the steps, and panel (d) reports the same outcome
as for IIS, as no indicators are selected.

Illustrating SIS for a Location Shift
Here we generate a location shift of magnitude λ at observation k
by yt = μ + λ1{t≥k} + εt where εt ∼ IN

[
0, σ 2

ε

]
and λ �= 0.

Next, wemodify the process that generated an outlier to instead generate a
location shift of λ = −1 at k = 0, but with the same half selections of step
indicators. Figure 5.4 illustrates the outcome. Panel (a) records the shifted
data, (b) shows the first selection of step indicators and (c) the remainder
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Data

0.00

0.25

0.50

0.75

1.00

-3      -2      -1       0       1        2       3        4 

(b)

0.00

0.25

0.50

0.75

1.00

-3      -2      -1       0       1        2       3        4 

(c)
Data
Model fit 

5.75

6.00

6.25

-3      -2      -1       0       1        2       3       4 

(d)
Data
Model fit 

Fig. 5.3 (a) The data time series; (b) the 4 step indicators included; (c) the other
set of step indicators; (d) the outcome as no indicators are selected

where now the thick solid line denotes the selected indicator, with (d)
showing the outcome with and without that selected step indicator.

Notice how the fit without handling the shift produces ‘spurious’ resid-
ual autocorrelation, as all the residuals are first positive, then all become
negative after observation 1. ‘Treating’ the residual autocorrelation by a
conventional recipe would not be a good solution (see Mizon 1995) as
the location shift is not correctly modelled. Finally, a more parsimonious
and less ‘overfitted’ outcome results than would be found using IIS which
would produce a perfect fit to the last 4 data points.

Figure 4.6 for the growth of real wages was used to illustrate co-breaking
between wage growth and inflation, both of which experienced myriad
shifts.However, the graph hides that the latter half of the twentieth century
had a substantively higher mean real-wage growth at 1.8% p.a. post-1945
versus 0.7% p.a. pre, and 1.3% overall. Real wages would have increased
16-fold at 1.8% p.a. from 1860, rather than just threefold at 0.7% p.a.,

http://dx.doi.org/10.1007/978-3-030-21432-6_4
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Fig. 5.4 (a) The shifted time series; (b) the first 4 step indicators included where
the thick solid line denotes selected; (c) the other 4 step indicators; (d) the outcome
with the selected step indicator

and sevenfold in practice: ‘small’ changes in growth rates can dramati-
cally alter living standards. The location shifts shown on the graph were
selected by SIS at α = 0.005, and were not noticed, or included, in earlier
models, but helped clarify the many influences on real wages (see Castle
and Hendry 2014).

5.3 Designing Indicator Saturation

But why stop at step-indicator saturation? A location shift in the growth
rate of a variable must imply that there is a change in the trend of the
variable itself.
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5.3.1 Trend-Indicator Saturation

Thus, one way of capturing a trend break would be to saturate the model
with a series of trend indicators, which generate a trend up to a given
observation and 0 thereafter for every observation. However, trend breaks
can be difficult to detect as small changes in trends can take time to
accumulate, even if they eventually lead to very substantial differences.

Defining Trend Indicators
Trend indicators are defined as T j t = t − j + 1 for t ≥ j, j =
1, . . . , T and 0 otherwise.

Figure 5.5 also illustrated the issue that although the long-run effect of
the step shift detected by SIS starting in 1945 was dramatic, that would
not have been clear at the time. The average growth of 1.4% p.a. over the
first 15 years, 1945–1960, after SIS detects the shift, is little different from
the 1.2% p.a. near the start of data period over the 15 years 1864–1879.
Indeed, fitting SIS to the sample up to 1960, it finds a location shift from
1944 of 1.1% which could be the end of aWorldWar II effect rather than
the start of the prolonged higher growth to come.
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Fig. 5.5 A location shift in the growth of UK real wages
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Fig. 5.6 Several trend breaks in UK real wages detected by TIS

We illustrate trend-indicator saturation (TIS) for the level of real wages
as shown in Fig. 5.6. Selection was undertaken at α = 0.001, using such
a tight significance level because the variable is I(1) with shifts, so con-
siderable residual serial correlation seemed likely. An overall trend was
retained without selection, so deviations therefrom were being detected.
Even at such a tight significance level, nine trend indicators were retained,
several acting for short periods, as with the jump between 1939 and 1940
(matching the spike in Fig. 5.5), and the flattening over 1973–1981, and
again at the end of the period.

5.3.2 Multiplicative-Indicator Saturation

Ericsson (2012) considered a wide range of possible indicator satura-
tion methods, including combining IIS and SIS (super saturation) and
multiplicative-indicator saturation (MIS) where every variable in a can-
didate set is multiplied by every step indicator. For example, with 100
observations and four regressor variables there will be 400 candidates to
select from. Kitov and Tabor (2015) have investigated the properties of
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MIS by simulation, and found it can detect shifts in regression parameters
despite the huge number of candidate variables. This prompted Castle
et al. (2017) to apply the approach to successfully detect induced shifts
in estimated models following a policy intervention. They offer an expla-
nation for the surprisingly good performance of MIS as follows. Imagine
knowing where a shift occurred, so you split your data sample at that point
andfit the now correctly specifiedmodel separately to the two sub-samples.
You would be deservedly surprised if those appropriate sub-sample esti-
mates did not reflect the parameter shifts. Choosing the split by MIS will
add variability, but the correct indicator, or one close to it, should be
selected as that is where the parameters changed. Of course, as ever with
model selection, ‘unlucky’ draws from the error distribution may make
the shift appear to happen slightly earlier or later than actually occurred.
We consider an application of MIS in the next Chapter.

5.3.3 Designed-Break Indicator Saturation

If the breaks under investigation have a relatively regular shape, saturation
techniques can be ‘designed’ appropriately, denoted DIS. This idea has
been used by Pretis et al. (2016) to detect the impacts of volcanic erup-
tions on temperature records. When a volcano erupts, it spews material
into the atmosphere and above, which can ‘block’ sunlight, or more accu-
rately, reduce received solar radiation. The larger the eruption, the more
solar radiation is reduced. Thus, the eruption of Tambora in 1816 created
the ‘year without a summer’ in the Northern Hemisphere, adding to the
difficulties people confronted just after the end of the Napoleonic wars.
More generally, atmospheric temperatures drop rapidly during and imme-
diately after an eruption, then as the ejected material is removed from the
atmosphere, temperature slowly recovers, like a ‘ν’. Thus, a saturating set
of indicators with such a shape can be created and applied to the relevant
time series, selecting rather like we described above for SIS. The follow
up in Schneider et al. (2017) demonstrates the success of DIS for detect-
ing the impacts of volcanic eruptions to improve dendrochronological
temperature reconstructions.
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5.4 Outliers and Non-linearity

The methods discussed above were designed to detect unknown outliers
(IIS), location shifts (SIS), trend breaks (TIS), parameter changes (MIS)
and volcanic eruptions (DIS) that actually happened, at a pre-set signif-
icance level. An alternative explanation for what appears to be structural
change is that the data generating process is non-linear. Possible examples
include Markov switching models (see e.g., Hamilton 1989), threshold
(see e.g., Priestley 1981) and smooth transition models (see e.g., Granger
Teräsvirta 1993), where the non-linearity is ‘regular’ in some way. Dis-
tinguishing between the two explanations can be difficult. Indeed, non-
linearities and deterministic structural breaks can often be closely similar.
But a key advantage of Autometrics is that it operates as a variable selection
algorithm, allowing selection over non-linear functions as well as poten-
tial outliers and breaks, so both explanations can be tested jointly, and
both explanations could well play a role in explaining the phenomena of
interest.
The Autometrics-based approach in Castle and Hendry (2014) creates

a class of non-linear functions from transformations of the original data
variables to approximate a wide range of potential non-linearities in a
low-dimensional way. The problem with including, say, a general cubic
function of all the (non-indicator) candidate variables is the explosion in
the number of terms that need to be considered. For example, with 20
candidates, there are 1539 cubic terms. However, their simplification adds
only 60 terms, at the possible risk of not capturing all the non-linearity in
some settings. When an investigator has a specific non-linear function as
a preferred explanation, that can be tested against the selected model by
encompassing to see if (a) the proposed function is significant, and if so
(b) whether it eliminates all the other non-linear terms.
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6
The Polymath: Combining Theory and Data

Abstract There are numerous possible approaches to building a model
of a given data set, whether it be time series, cross section or panel. In
economics, imposing a ‘theory model’ on the data, by simply estimat-
ing its parameters, is common. In ‘big data’ analyses, various methods of
selecting relationships are used (aka ‘data mining’), but in practice, mod-
ellers often select equations from data using theory-based guidelines. We
discuss an approach that can retain all available theory information unaf-
fected by selecting over additional candidate variables, lags (for time series),
and non-linear functions, taking account of both potential outliers and
shifts, yet can deliver an improved model when the theory specification is
incomplete, incorrect, or changes over time.

Keywords Theory driven · Data driven · Evaluation · Discovery ·
Modelling inflation
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6.1 Theory Driven and Data Driven Models

Two main approaches to empirically modelling a relationship are purely
theory driven andpurely data driven. In the former, common in economics,
the putative relation is derived from a theoretical analysis claimed to repre-
sent the relevant situation, then its parameters are estimated by imposing
that ‘theory model’ on the data.

Theory Driven Modelling
Let yt denote the variable to be modelled by a set of n explanatory
variables zt when the theory relation is yt = f (zt),
then the parameters of the known function f (·) are estimated from
a sample of data over t = 1, . . . , T .

In what follows, we will use a simple aggregate example based on the
theory-model that monetary expansion causes inflation, reflecting Fried-
man’s claim: ‘inflation is always and everywhere amonetary phenomenon’.
While it is certainly true that sufficiently large money growth can cause
inflation (as in the Hungarian hyperinflation of 1945–1946), it need not
do so, as the vast increase in the USmonetary base fromQuantitative Eas-
ing has shown, with the Federal Reserve System balances expanding by
several $trillion. Thus, our dependent variable (yt ) is the rate of inflation,
related by a linear function ( f (·)), in the simplest setting to the growth
rate of themoney stock together with lagged values of inflation andmoney
growth (zt ) to reflect non-instantaneous adjustments. Previous research
has established that ‘narrowmoney’ (technically calledM1 for currency in
circulation plus chequing accounts) does not cause inflation in the UK, so
instead we consider the growth in ‘broad money’ (technically M4, com-
prising all bank deposits, although the long-run series used here is spliced
ex post from M2, M3 and M4 as the financial system and measurements
evolved over time).

In a data-driven approach, observations on a larger set of N > n vari-
ables (denoted {xt }) are collected to ‘explain’ yt , which here could augment
money with interest rates, growth in GDP and the National Debt, excess
demand for goods and services, inflation in wages and other costs, changes



6 The Polymath: Combining Theory and Data 87

in the exchange rate, changes in the unemployment rate, imported infla-
tion, etc. To avoid simultaneous relations, where a variable is affected
by inflation, all of these additional possible explanations will be entered
lagged. The choice of additional candidate variables is based on looser
theoretical guidelines, then some method of model selection is applied
to pick the ‘best’ relation between yt and a subset of the {xt } within a
class of functional connections (such as a linear relation with constant
parameters and small, identically-distributed errors et independent of the
{xt }). When N is very large (‘big data’, which could include micro-level
data on household characteristics or internet search data), most current
approaches have difficulties either in controlling the number of spurious
relationships that might be found (because of an actual or implicit signif-
icance level for hypothesis tests that is too loose for the magnitude of N ),
or in retaining all of the relevant explanatory variables with a high prob-
ability (because the significance level is too stringent): see e.g., Doornik
and Hendry (2015). Moreover, the selected model may be hard to inter-
pret, and if many equations have been tried (but perhaps not reported),
the statistical properties of the resulting selected model are unclear: see
Leamer (1983).

6.2 The Drawbacks of Using Each Approach
in Isolation

Many variants of theory-driven and data-driven approaches exist, often
combined with testing the properties of the et , the assumptions about
the regressors, and the constancy of the relationship f (·), but with dif-
ferent strategies for how to proceed if any of the conditions required for
viable inference are rejected. The assumption made all too often is that a
rejection occurs because that test has power under the specific alternative
for which the test is derived, although a given test can reject for many
other reasons. The classic example of such a ‘recipe’ is finding residual
autocorrelation and assuming it arose from error autocorrelation, whereas
the problem could be mis-specified dynamics, unmodelled location shifts
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as seen above, or omitted autocorrelated variables. In our inflation exam-
ple, in order to eliminate autocorrelation, annual dynamics need to be
modelled, along with shifts due to wars, crises and legislative changes.
The approach proposed in the next section instead seeks to include all
likely determinants from the outset, and would revise the initial general
formulation if any of the mis-specification tests thereof rejected.

Most observational data are affected by many influences, often outside
the relevant subject’s purview—as the 2016 Brexit vote has emphasized
for economics—and it would require a brilliant theoretical analysis to
take all the substantively important forces into account. Thus, a purely
theory-driven approach, such as a monetary theory of aggregate infla-
tion, is unlikely to deliver a complete, correct and immutable model that
forges a new ‘law’ once estimated. Rather, to capture the complexities
of real world data, features outside the theory remit almost always need
to be taken into account, especially changes resulting from unpredicted
events. Moreover, few theories include all the variables that characterize a
process, with correct dynamic reactions, and the actual non-linear connec-
tions. In addition, the data may be mis-measured for the theory variables
(revealed by revising national accounts data as new information accrues),
andmay even be incorrectly recorded relative to its own definition, leading
to outliers. Finally, shifts in relationships are all too common—there is a
distinct lack of empirical models that have stood the test of time or have
an unblemished forecasting track record: see Hendry and Pretis (2016).

Many of the same problems affect a purely data-driven approach unless
the xt provide a remarkably comprehensive specification, in which case
there will often be more candidate variables N than observations T :
see Castle and Hendry (2014) for a discussion of that setting. Because
included regressors will ‘pick up’ influences from any correlated missing
variables, omitting important factors usually entails biased parameter esti-
mates, badly behaved residuals, andmost importantly, often non-constant
models. Failing to retain relevant theory-based variables can be pernicious
and potentially distort which models are selected. Thus, an approach that
retains, but does not impose, theory-driven variables without affecting the
estimates of a correct, complete, and constant theory model, has much to
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offer, if it also allows selection over a much larger set of candidate vari-
ables, avoiding the substantial costs when relevant variables are omitted
from the initial specification.We now describe how the benefits of the two
approaches can be combined to achieve that outcome based on Hendry
and Doornik (2014) and Hendry and Johansen (2015).

6.3 A Combined Approach

Let us assume that the theory correctly specifies the set of relevant vari-
ables. This could include lags of the variables to represent an equilibrium-
correction mechanism. In the combined approach, the theory relation
is retained while selecting over an additional set of potentially relevant
candidate variables. These additional candidate variables could include
disaggregates for household characteristics (in panel data), as well as
the variables noted above. To ensure an encompassing explanation, the
additional set of variables could also include additional lags and non-
linear functions of the theory variables, other explanatory variables used
by different investigators, and indicator variables to capture outliers
and shifts.
The general unrestricted model (GUM) is formulated to nest both the

theory model and the data-driven formulation. As the theory variables
and additional variables are likely to be quite highly correlated, even if
the theory model is exactly correct the model estimates are unlikely to be
the same as those from estimating the theory model directly. However,
the theory variables can be orthogonalized with respect to the additional
variables, which means that they are uncorrelated with the other variables.
Therefore, inclusion of additional regressors will not affect the estimates of
the theory variables in the model, regardless of whether any, or all, of the
additional variables are included.The theory variables are always included
in the model, and any additional variables can be selected over to see if
they are useful in explaining the phenomona of interest. Thus, data-based
model selection can be applied to all the potentially relevant candidate
explanatory variables while retaining the theory model without selection.
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Summary of the Combined Approach
The theory variables are given by the set zt of n relevant variables
entering f (·). We use the explicit parametrization for f (·) of a
linear, constant parameter vector β, so the theory model is:
yt = β ′zt + et ,
where et ∼ IN[0, σ 2

e ] is independent of zt .
Define the additional set of M candidate variables as {wt }.

Formulate the GUM as:
yt = β ′zt + γ ′wt + vt ,
which nests both the theory model and the data-driven formu-
lation when xt = (zt ,wt), so vt will inherit the properties of et
when γ = 0.

Without loss of generality, zt can be orthogonalized with respect
to wt by projecting the latter onto the former in:
wt = �zt + ut
whereE[ztu′

t ] = 0 for estimated�. Substitute the estimated com-
ponents �zt and ut for wt in the GUM, leading to:

yt = β ′zt + γ ′(�zt + ut) + vt = (β ′ + γ ′�)zt + γ ′ut + vt .

When γ = 0, the coefficient of zt remainsβ, and because zt andut
are now orthogonal by construction, the estimate ofβ is unaffected
by whether or not any or all ut are included during selection.

To favour the incumbent theory, selection over additional variables
can be undertaken at a stringent significance level to minimize the
chances of spuriously selecting irrelevant variables. We suggest α =
min(0.001, 1/N ).However, the approach protects againstmissing impor-
tant explanatory variables, one such example of which is location shifts.
The critical value for 0.1% in a Normal distribution is c0.001 = 3.35,
so substantive regressors or shifts should still be easily retained. As
noted in Castle et al. (2011), using IIS allows near Normality to be a
reasonable approximation. However, a reduction from an integrated
to a non-integrated representation requires non-Normal critical values,
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another reason for using tight significance levels during model selection.
In practice, unless the parameters of the theorymodel have strong grounds
for being of special interest, the orthogonalization step is unnecessary since
the same outcomewill be found just by retaining the theory variables when
selecting over the additional candidates. An example of retaining a ‘per-
manent income hypothesis’ based consumption function relating the log
of aggregate consumers’ expenditure, c, to logs of income, i , and lagged
c, orthogonalized with respect to the variables in Davidson et al. (1978),
denoted DHSY, is provided in Hendry (2018).
When should an investigator reject the theory specification? As there are

M additional variables included in the combined approach (in addition
to the n theory variables which are not selected over), on average αM will
be significant by chance, so if M = 100 and α = 1% (so c0.01 = 2.6),
on average there will be one adventitiously significant selection. Thus,
finding that one of the additional variables was ‘significant’ would not be
surprising even when the theory model was correct and complete. Indeed,
the probabilities that none, one and two of the additional variables are
significant by chance are 0.37, 0.37 and 0.18, leaving a probability of 0.08
of more than two being retained. However, using α = 0.5% (c0.005 =
2.85), these probabilities become 0.61, 0.30 and 0.08 with almost no
probability of 3 or more being significant; and 0.90, 0.09 and <0.01 for
α = 0.1%, in which case retaining 2 or more of the additional variables
almost always implies an incomplete or incorrect theory model.
When the total number of theory variables and additional variables

exceeds the number of observations in the data sample (so M + n =
N > T ), our approach can still be implemented by splitting the vari-
ables into feasible sub-blocks, estimating separate projections for each
sub-block, and replacing these subsets by their residuals. The n theory
variables are retained without selection at every stage, only selecting over
the (putatively irrelevant) variables at a stringent significance level using a
multi-path block search of the form implemented in the model selection
algorithm Autometrics (see Doornik 2009; Doornik and Hendry 2018).
When the initial theory model is incomplete or incorrect—a likely pos-
sibility for the inflation illustration here—but some of the additional
variables are relevant to explaining the phenomenon of interest, then an
improved empirical model should result.
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6.4 Applying the Combined Approach to
UK Inflation Data

Interpreting regression equations
The simplest model considered below relates two variables, the
dependent variable yt and the explanatory variable xt , t =
1, . . . , T :

yt = β0 + β1xt + ut .

To conduct inference on this model, we assume that the innova-
tions u1, . . . uT are independent and Normally distributed with
a zero mean and constant variance, ut ∼ IN

[
0, σ 2

u

]
, and that the

parameter space for the parameters of interest (β0, β1, σ
2
u ) is not

restricted. These assumptions need to be checked for valid infer-
ence, which is done by tests for residual autocorrelation (Far),
non-Normality (χ2

nd), autoregressive conditional heteroskedastic-
ity (ARCH: Farch, see Engle 1982), heteroskedasticity (FHet), and
functional form (FRESET). If the assumptions for valid inference
are satisfied, then we can interpret β1 as the effect of a one unit
increase in xt on yt , or an elasticity if x and y are in logs.

We start from the simplest equation relating inflation (denoted �pt =
pt − pt−1 so � signifies a difference) to broad money growth (i.e., �mt )
where lower case letters denote logs, P is the UK price level and M is its
broad money stock:

�pt = β0 + β1�mt + et (6.1)

The two time series for annual UK data over 1874–2012 are shown in
Fig. 6.1(a) and their scatter plot with a fitted regression line and the devi-
ations therefrom in Panel (b).

At first sight, the hypothesis seems to have support: the two series are
positively related (from Panel (b)) and tend to move together over time
(from Panel (a)), although much less so after 1980. However, that leaves
open the question of why: is inflation responding to money growth, or is
more (less) money needed because the price level has risen (fallen)?
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Fig. 6.1 (a) Time series of �pt and �mt ; (b) scatter plot with the fitted regression
of �pt on �mt and the deviations thereform

The regression in (6.1) is estimated over 1877–2012 as:

�pt = − 0.005
(0.005)

+ 0.69
(0.063)

�mt (6.2)

σ̂ = 4.1% R2 = 0.47 Far(2, 132) = 30.7∗∗ FHet(2, 133) = 4.35∗

χ2
nd(2) = 36.6∗∗ Farch(1, 134) = 8.94∗∗ FRESET(2, 132) = 1.27

The residual standard deviation, σ̂ , is very large at 4%, with a 95% uncer-
tainty range of 16%, when for the last 20 years, inflation has only varied
between 1.5% and 3.5%.

Moreover, tests for residual autocorrelation (Far), non-Normality (χ2
nd),

autoregressive conditional heteroskedasticity (ARCH: Farch) and het-
eroskedasticity (FHet) all reject. Figure 6.2(a) records the fitted and actual
values of �pt ; (b) shows the residuals êt/σ̂ , (c) their density with a stan-
dard Normal for comparison; and (d) their residual correlogram.
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Fig. 6.2 (a) Fitted, �̂pt , and actual values, �pt , from (6.2); (b) scaled residuals êt/σ̂ ;
(c) their density with a standard Normal for comparison and (d) their residual
correlogram

Aglance at the test statistics in (6.2) and Fig. 6.2 shows that the equation
is badly mis-specified, and indeed recursive estimation reveals consider-
able parameter non-constancy. The simplicity of the bivariate regression
provides an opportunity to illustrateMIS, where both β0 and β1 are inter-
acted with step indicators at every observation, so there are 271 candidate
variables. Using α = 0.0001 found 7 shifts in β0 and 5 in β1, halving σ̂

to 1.9%, and revealing a far from constant relationship between money
growth and inflation.

Such a result should not come as a surprise given the large number of
major regime changes impinging on the UK economy over the period as
noted in Chapter 3, many relevant to the role of money. In particular, key
financial innovations and changes in credit rationing included the intro-
duction of personal cheques in the 1810s and the telegraph in the 1850s
both reducing the need for multiple bank accounts just before our sample;
credit cards in the 1950s; ATMs in the 1960s; deregulation of banks and
building societies (the equivalent of US Savings and Loans) in the 1980s;

http://dx.doi.org/10.1007/978-3-030-21432-6_3
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interest-bearing chequing accounts around 1984; and securitization of
mortgages; etc.

First, to offer the incumbent theory a better chance, we added lagged
values of �pt−i and �mt−i for i = 1, 2 to (6.2), but without indica-
tors, which improves the fit to σ̂ = 3.3% although three significant mis-
specification tests remain as (6.3) shows.

�pt = 0.67
(0.09)

�pt−1 − 0.19
(0.08)

�pt−2 + 0.40
(0.10)

�mt

− 0.01
(0.15)

�mt−1 − 0.02
(0.11)

�mt−2 − 0.003
(0.004)

(6.3)

σ̂ = 3.3% R2 = 0.66 Far(1, 128) = 0.20 FHet(10, 125) = 5.93∗∗

χ2
nd(2) = 76.9∗∗ Farch(1, 134) = 7.73∗∗ FRESET(2, 128) = 0.13

Neither lag of money growth is relevant given the contemporaneous value,
but both lags of inflation matter, suggesting about half of past inflation is
carried forward, so there is a moderate level of persistence. Now applying
IIS+SIS at α = 0.0025 to (6.3) yielded σ̂ = 1.6% with 4 impulse and
6 step indicators retained, but with all the coefficients of the economics
variables being much closer to zero.

As the aim of this section is to illustrate our approach, and a substantive
model of UK inflation over this period is available in Hendry (2015), we
just consider four of the rival explanations that have been proposed. Thus
to create a more general GUM for �pt , we also include the unemploy-
ment rate (Ur,t ) relating to the original Phillips curve model of inflation
(Phillips 1958); the potential output gap (measured by (gt − 0.019t)
and adjusted to give a zero mean) and growth in GDP (�gt ) to represent
excess demand for goods and services (an even older idea dating back to
Hume); wage inflation (�wt ) as a cost pushmeasure (a 1970s theme); and
changes in long-term interest rates (�RL ,t ) reflecting the cost of capital.
To avoid simultaneity, all variables are entered lagged one and two periods
(including money growth) and the 2-period lag of the potential output
gap is excluded to avoid multicollinearity between growth in GDP and
the potential output gap, making N = 14 including the intercept before
any indicators. The five additional variables are then orthogonalized with
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respect to �mt and lags of it and lags of �pt . To fully implement the
strategy, lags of regressors should also be orthogonalized, but the resulting
coefficients of the variables in common are close to those in the simpler
model. Estimation delivers σ̂ = 3.3% with an F-test on the additional
variables of F(9, 121) = 2.66∗∗, thereby rejecting the simple model, still
with the three mis-specification tests significant.

Since the baseline theory model is untenable, its coefficients are not of
interest, so we revert to the original measures of all the economic variables
to facilitate interpretation of the finalmodel.The economic variables are all
retained while we select indicators by IIS and SIS atα = 0.0025, choosing
that significance level so that only a few highly significant indicators would
be retained, with almost none likely to be significant by chance (with a
theoretical retention rate of 271 × 0.0025 = 0.68 of an indicator). Nev-
ertheless, five impulse and ten step indicators were selected, producing
σ̂ = 1.2% now with no mis-specification tests significant at 1%. Such a
plethora of highly significant indicators implies that inflation is not being
well explained even by the combination of all the theories. In fact themore
general model in Hendry (2015) still needed 7 step indicators (though for
somewhat different unexplained shifts) as well as dummies for the World
Wars: sudden major shifts in UK inflation are not well explained by eco-
nomic variables. We then selected over the 13 economic variables at the
conventional significance level of 5%, forcing the intercept to be retained.
Six were retained, with σ̂ = 1.2% to deliver (only reporting the economic
variables):

�pt = 0.17
(0.04)

�mt−2 − 0.46
(0.10)

Ur,t−1 + 0.43
(0.09)

Ur,t−2 − 0.10
(0.03)

gapt−1

+ 0.23
(0.03)

�wt−1 + 0.54
(0.24)

�RL ,t−1 + 0.02
(0.01)

(6.4)

σ̂ = 1.2%
(
R∗)2 = 0.96 Far(2, 112) = 0.14

FHet(22, 108) = 1.97∗

χ2
nd(2) = 1.63 Farch(1, 134) = 0.15

FRESET(2, 112) = 4.25∗

In contrast to the simple monetary theory of inflation, the model retains
aspects of all the theories posited above. Now there is no direct persis-
tence from past inflation, but remember that the step indicators represent
persistent location shifts, so the mean inflation rate persists at different
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levels. Interesting aspects are how many shifts were found and that these
location shifts seem to come from outside economics. The dates selected
are consistent with that: 1914, 1920 and 1922, 1936 and 1948, 1950
and 1952, 1969, 1973 and 1980, all have plausible events, although they
were not the only large unanticipated shocks over the last 150 years (e.g.,
the general strike). There is a much bigger impact from past wage growth
than money growth as proximate determinants, but we have not modelled
those to determine ‘final’ causes of what drives the shifts and evolution.
Finally, the − then + coefficients on unemployment suggest it is changes
therein rather than the levels that affect inflation.
The long-run relation after solving out the dynamics is:

�p = 0.23
(0.03)

�w + 0.17
(0.04)

�m − 0.03
(0.07)

Ur − 0.10
(0.03)

gap + 0.54
(0.24)

�RL

(6.5)
The first two signs and magnitudes are easily interpreted as higher wage
growth and faster money growth raise inflation. The negative unemploy-
ment coefficient is insignificant, consistent with its role probably being
through changes. The hard to interpret output gap could be reflecting
omitted variables and changes in the cost of capital raising inflation.

It is easy to think of other variables that could have an impact on the
UK inflation rate, including the mark-up over costs used by companies to
price their output; changes in commodity prices, especially oil; imported
inflation from changes in world prices; changes in the nominal exchange
rate; and changes in the National Debt among others, several of which are
significant in the inflation model in Hendry (2015). Moreover, there is
no strong reason to expect a constant relation between any of the putative
explanatory variables and inflation given the numerous regime shifts that
have occurred, the changing nature ofmoney, and increasing globalization.
In principle,MIS could be used where shifts aremost likely, but in practice
might be hard to implement at a reasonable significance level.

In our proposed combined theory-driven and data-driven approach,
when the theory is complete it is almost costless in statistical terms to check
the relevance of large numbers of other candidate variables, yet there is a
good chance of discovering a better empirical model when the theory is
incomplete or incorrect. Automatic model selection algorithms that allow
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retention of theory variables while selecting over many orthogonalized
candidate variables can therefore deliver high power for the most likely
explanatory variables while controlling spurious significance at a low level.
Oh for having had the current technology in the 1970s! This is only
partly anachronistic, as the theory in Hendry and Johansen (2015) could
easily have been formulated 50 years ago. Combining the theory and data
based approaches improves the chances of discovering an empirically well-
specified, theory-interpretable model.
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7
Seeing into the Future

Abstract While empirical modelling is primarily concerned with under-
standing the interactions between variables to recover the underlying
‘truth’, the aim of forecasts is to generate useful predictions about the
future regardless of the model. We explain why models must be different
in non-stationary processes from those that are optimal’ under stationarity,
and develop forecasting devices that avoid systematic failure after location
shifts.

Keywords Forecasting · Forecast failure · Forecast uncertainty ·
Hedgehog forecasts · Outliers · Location shifts · Differencing ·
Robust devices

In a stationary world, many famous theorems about how to forecast opti-
mally can be rigorously proved (summarised in Clements and Hendry
1998):

1. causal models will outperform non-causal (i.e., models without any
relevant variables);

2. the conditional expectation of the future value delivers the minimum
mean-square forecast error (MSFE);
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3. mis-specified models have higher forecast-error variances than cor-
rectly specified ones;

4. long-run interval forecasts are bounded above by the unconditional
variance of the process;

5. neither parameter estimationuncertainty nor high correlations between
variables greatly increase forecast-error variances.

Unfortunately, when the process to be forecast suffers from location
shifts and stochastic trends, and the forecasting model is mis-specified,
then:

1. non-causal models can outperform correct in-sample causal relation-
ships;

2. conditional expectations of future values can be badly biased if later
outcomes are drawn from different distributions (see Fig. 4.5);

3. the correct in-sample model need not outperform in forecasting, and
can be worse than the average of several devices;

4. long-run interval forecasts are unbounded;
5. parameter estimation uncertainty can substantively increase interval

forecasts; as can
6. changes in correlations between variables at or near the forecast origin.

The problem for empirical econometrics is not a plethora of excellent
forecasting models from which to choose, but to find any relationships
that survive long enough to be useful: as we have emphasized, the station-
arity assumptionmust be jettisoned for observable variables in economics.
Location shifts and stochastic trend non-stationarities can have pernicious
impacts on forecast accuracy and its measurement: Castle et al. (2019)
provide a general introduction.

http://dx.doi.org/10.1007/978-3-030-21432-6_4
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7.1 Forecasting Ignoring Outliers
and Location Shifts

To illustrate the issues, we return to the two data sets in Chapter 5 which
were perturbed by an outlier and a location shift respectively, then mod-
elled by IIS and SIS.The next two figures use the indicators found in those
examples. In Fig. 7.1, the 1-step forecasts with and without the indicator
show the former to be slightly closer to the outcome, and with a smaller
interval forecast.

Both features seem sensible: an outlier is a transient perturbation, and
providing it is not too large, its impact on forecasts should also be transient
and not too great. The increase in the interval forecast is due to the rise
in the estimated residual standard error from the outlier. Nevertheless,
failing to model outliers can be very detrimental as Hendry and Mizon
(2011) show when modelling an extension of the US food expenditure
data noted above, which was of course, the origin of IIS finding the very
large outliers in the 1930s, discussed in Sect. 5.1 as a robust estimation
method.

1-step forecasts no IIS ±2~σfModel fit, no IIS 
1-step forecasts with IIS ±2σ̂fContaminated data 
Model fit with IIS 
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-3  -2  -1 0 1 2 3 4

1-step forecasts no IIS ±2~σfModel fit, no IIS 
1-step forecasts with IIS ±2σ̂fContaminated data 
Model fit with IIS 

Fig. 7.1 1-step forecasts with and without the impulse indicator to model an
outlier

http://dx.doi.org/10.1007/978-3-030-21432-6_5
http://dx.doi.org/10.1007/978-3-030-21432-6_5
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1-step forecasts no SIS ±2~σfModel fit, no SIS 
SIS forecasts ±2σ̂fShifted data 
Model fit, SIS 
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Fig. 7.2 1-step forecasts with and without the step indicator

However, the effect of omitting a step indicator that matches a location
shift is far more serious as Fig. 7.2 shows. The 1-step forecast with the
indicator is much closer to the outcome, with an even smaller interval
forecast than that from themodel without.Moreover, the forecast without
the step indicator is close to the top of the interval forecast from the model
with.

In Fig. 7.2, we (the writers of this book) know that the model with SIS
matches the DGP (albeit with estimated rather than known parameters),
whereas the model that ignores the location shift is mis-specified, and
its interval forecast is hopelessly too wide—wider than the range of all
previous observations. Castle et al. (2017) demonstrate the use of SIS in
a forecasting context, where the step-indicator acts as a type of intercept
correction when there has been a change in policy resulting in a location
shift. An intercept correction changes the numerical value of the intercept
in a forecasting model by adding a recent forecast error to put the forecast
‘back on track’. SIS, along with other forms of robust device such as
a conventional intercept correction, can greatly improve forecasts when
they are subject to shifts at or near the forecast origin: see Clements and
Hendry (1996).
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7.2 Impacts of Stochastic Trends on Forecast
Uncertainty

Because I(1) processes cumulate shocks, even using the correct in-sample
model leads tomuch higher forecast uncertainty thanwould be anticipated
on I(0) data.This is exemplified in Fig. 7.3 showingmulti-period forecasts
of log(GDP) starting in 1990 till 2030: the outcomes to 2016 are shown,
but not used in the forecasts. Constant-change, or difference stationary,
forecasts (dotted) and deterministic trend forecasts (dashed) usually make
closely similar central forecasts as can be seen here. But deterministic linear
trends do not cumulate shocks, so irrespective of the data properties, and
hence even when the data are actually I(1), their uncertainty is measured
as if the data were stationary around the trend.

Although the data properties are the same for the two models in
Fig. 7.3, their estimated forecast uncertainties differ dramatically (bars
and bands respectively), increasingly so as the horizon grows, due to
the linear trend model assuming stable changes over time. Thus, model

Difference-stationary forecasts 
Trend-stationary forecasts 
Log(GDP)

1960 1970 1980 1990 2000 2010 2020 2030
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Difference stationary
95% interval forecasts →

Trend stationary
95% interval forecasts

Difference-stationary forecasts 
Trend-stationary forecasts 
Log(GDP)

Fig. 7.3 Multi-period forecasts of log(GDP) using a non-stationary stochastic-trend
model (dotted) and a trend-stationary model (dashed) with their associated 95%
interval forecasts
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choice has key implications for measuring forecast uncertainty, where mis-
specifications—such as incorrectly imposing linear trends—can lead to
understating the actual uncertainty in forecasts. Although the assumption
of a constant linear trend is rarely satisfactory, nevertheless, here almost all
the outcomes between 1990 and 2016 lie within the bars. Conversely, the
difference stationary interval forecasts are very wide. In fact, that model
has considerable residual autocorrelation which the bands do not take
into account, so over-estimate the uncertainty. However, caution is always
advisable when forecasting integrated time series for long-periods into the
future by either approach, especially from comparatively short samples.

7.3 Impacts of Location Shifts on Forecast
Uncertainty

Almost irrespective of the forecasting device used, forecast failure would
be rare in a stationary process, so episodes of forecast failure confirm
that many time series are not stationary. Conversely, forecasting in the
presence of location shifts can induce systematic forecast failure, unless
the forecasting model accounts for the shifts.

Figure 7.4 shows some recent failures in 8-quarter ahead forecasts of
US log real GDP. There are huge forecast errors (measured by the vertical
distance between the forecast and the outcome), especially at the start of
the ‘Great Recession’, which are not corrected till near the trough. We
call these ‘hedgehog’ graphs since the successively over-optimistic fore-
casts lead to spikes like the spines of a hedgehog. It can be seen that the
largest and most persistent forecast errors occur after the trend growth
of GDP slows, or falls. This is symptomatic of a fundamental problem
with many model formulations, which are equilibrium-correction mecha-
nisms (EqCMs) discussed in Sect. 4.2: they are designed to converge back
to the previous equilibrium or trajectory. Consequently, even when the
equilibrium or trajectory shifts, EqCMs will persistently revert to the old
equilibrium—as the forecasts in Fig. 7.4 reveal—until either the model is
revised or the old equilibrium returns.

Figure 7.4 illustrates the difficulties facing forecasting deriving from
wide-sense non-stationarity. However, the problem created by a location

http://dx.doi.org/10.1007/978-3-030-21432-6_4
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Fig. 7.4 US real GDP with many successive 8-quarter ahead forecasts

shift is not restricted to large forecast errors, but also affects the formation
of expectations by economic actors: in theory models, today’s expectation
of tomorrow’s outcome is often based on the ‘most likely outcome’, namely
the conditional expectation of today’s distribution of possible outcomes.
In processes that are non-stationary from location shifts, previous expecta-
tions can be poor estimates of the next period’s outcome. Figure 4.5 illus-
trated this problem, which has adverse implications for economic theories
of expectations based on so-called ‘rational’ expectations. This issue also
entails that many so-called structural econometric models constructed
using mathematics based on inter-temporal maximization behavioural
assumptions are bound to fail when the distributions involved shift as
shown in Sect. 4.4.

7.4 Differencing Away Our Troubles

Differencing a break in a trend results in a location shift, as can be seen
in Fig. 7.5, and in turn differencing a location shift produces an impulse,
and a final differencing creates a ‘blip’. All four types occur empirically.

http://dx.doi.org/10.1007/978-3-030-21432-6_4
http://dx.doi.org/10.1007/978-3-030-21432-6_4
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Fig. 7.5 Successively differencing a trend break in (a) creates a step shift in (b) an
impulse in (c) and a ‘blip’ in (d)

Failing to allow for trend breaks or location shifts when forecasting
entails extrapolating the wrong values and can lead to systematic forecast
failure as shown by the dotted trajectories in Panels (a) and (b). However,
failing to take account of an impulse or a blip just produces temporary
errors, so forecasts revert back to an appropriate level rapidly. Conse-
quently, many forecasts are reported for growth rates and often seem rea-
sonably accurate: it is wise to cumulate such forecasts to see if the entailed
levels are correctly predicted.

Figure 7.6 illustrates for artificial data: only a couple of the growth-
rate outcomes lie above the 95% interval forecasts, but the levels forecasts
are systematically downward biased from about observation 35. This is
because the growth forecasts are on average slightly too low, which cumu-
lates over time. The graphs show multi-step forecasts, but being simply a
constant growth-rate forecast, the same interval forecasts apply at all steps
ahead.
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Fig. 7.6 Top panel: growth-rate forecasts; lower panel: implied forecasts of the
levels

Constant growth-rate forecasts are of course excellent when growth
rates stay at similar levels, but otherwise are too inflexible. An alternative
is to forecast the next period’s growth rate by the current value, which
is highly flexible, but imposes a unit root even when the growth rate is
I(0). Figure 7.3 contrasted deterministic trend forecasts with those from a
stochastic trend, which had huge interval forecasts. Such intervals correctly
reflect the ever increasing uncertainty arising from cumulating unrelated
shocks when there is indeed a unit root in the DGP.

However, forecasting an I(0) process by a unit-root model also leads
to calculating uncertainty estimates like those of a stochastic trend: the
computer does not know the DGP, only the model it is fed. We must
stress that interval forecasts are based on formulae that are calculated for
the model used in forecasting. Most such formulae are derived under the
assumption that the model is the DGP, so can be wildly wrong when that
is not the case.
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Fig. 7.7 Top panel: 1-step growth-rate forecasts from a 4-period moving average;
lower panel: multi-period growth-rate forecasts with ±2 standard errors from a
random walk (bands) and a 4-period moving average of past growth rates (bars)

The top panel in Fig. 7.7 shows that 1-step growth-rate forecasts from a
4-period moving average of past growth rates with an imposed unit coef-
ficient are much more flexible than the assumed constant growth rate,
and only one outcome lies outside the 95% error bars. The two sets of
multi-period interval forecasts in the lower panel of Fig. 7.7 respectively
compare the growth rate and the 4-period moving average of past growth
rates as their sole explanatory variables, both with an imposed unit coeffi-
cient to implement a stochastic trend. The average of the four most recent
growth rates at the forecast origin, as against just one, produces a marked
reduction in the interval forecasts despite still cumulating shocks.

A potential cost is that it will take longer to adjust to a shift in the growth
rate. Here the growth rate is an I(0) variable, and it is the imposition of the
unit coefficient that creates the increasing interval forecasts, but even so,
the averaging illustrates the effects of smoothing. This idea of smoothing
applies to the robust forecasting methods noted in the next section. Care
is required in reporting interval forecasts for several steps ahead as their
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Fig. 7.8 Top panel: multi-period forecasts with ±2 standard errors from the DGP
of a random walk; lower panel: multi-period forecasts from a 2-period moving
average with ±2 calculated standard errors

calculation may reflect the properties of the model being used more than
those of the DGP.

Conversely, trying to smooth a genuine randomwalk process by using a
shortmoving average to forecast can lead to forecast failure as Fig. 7.8 illus-
trates. The DGP is the same in both panels, but the artificially smoothed
forecasts in the lower panel have too small calculated interval forecasts.

7.5 Recommendations When Forecasting
Facing Non-stationarity

Given the hazards of forecasting wide-sense non-stationary variables, what
canbe done? First, bewary of forecasting I(1)processes over long timehori-
zons. Modellers and policy makers must establish when they are dealing
with integrated series, and acknowledge that forecasts then entail increas-
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ing uncertainty. The danger is that uncertainty can be masked by using
mis-specified models which can falsely reduce the reported uncertainty.
An important case noted above is enforcing trend stationarity, as seen in
Fig. 7.3, greatly reducing the measured uncertainty without reducing the
actual, a recipe for poor policy and intermittent forecast failure. As Sir
Alex Cairncross worried in the 1960s: ‘A trend is a trend is a trend, but the
question is, will it bend? Will it alter its course through some unforeseen
force, and come to a premature end?’ Alternatively, it is said that the trend
is your friend till it doth bend.

Second, once forecast failure has been experienced, detection of location
shifts (see Sect. 4.5) can be used to correct forecasts even with only a
few observations, or alternatively it is possible to switch to more robust
forecasting devices that adjust quickly to location shifts, removing much
of any systematic forecast biases, but at the cost of wider interval forecasts
(see e.g., Clements and Hendry 1999).
Nevertheless, we have also shown that one aspect of the explosion in

interval forecasts from imposing an integrated model after a shift in an
I(0) process (i.e., one that does not have a genuine unit root) is due to
using just the forecast-origin value, and that can be reduced by using
moving averages of recent values. In turbulent times, such devices are an
example of amethod with no necessary verisimilitude that can outperform
the in-sample previously correct representation. Figure 7.9 illustrates the
substantial improvement in the 1-step ahead forecasts of the log of UK
GDP over 2008–2012 using a robust forecasting device compared to a
‘conventional’ method. The robust device has a much smaller bias and
MSFE, but as it is knowinglymis-specified, clearly does not justify selecting
it as an economic model—especially not for policy.
That last result implies that it is important to refrain from linking out-

of-sample forecast performance of models to their ‘quality’ or verisimili-
tude. When unpredictable location shifts occur, there is no necessary link
between forecast performance and how close the underlying model is to
the truth. Both good and poormodels can forecast well or badly depending
on unanticipated shifts.
Third, the huge class of equilibrium-correction models includes almost

all regression models for time series, autoregressive equations, vector
autoregressive systems, cointegrated systems, dynamic-stochastic general

http://dx.doi.org/10.1007/978-3-030-21432-6_4
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Fig. 7.9 1-step ahead forecasts of the log of UK GDP over 2008–2012 by ‘conven-
tional’ and robust methods

equilibrium (DSGE) models, and many of the popular forms of model
for autoregressive heteroskedasticity (see Engle 1982). Unfortunately, all
of these formulations suffer from systematic forecast failure after shifts
in their long-run, or equilibrium, means. Indeed, because they have in-
built constant equilibria, their forecasts tend to go up (down) when out-
comes go down (up), as they try to converge back to previous equilibria.
Consequently, while cointegration captures equilibrium correction, care
is required when using such models for genuine out-of-sample forecasts
after any forecast failure has been experienced.

Fourth, Castle et al. (2018) have found that selecting a model for fore-
casting from a general specification that embeds the DGP does not usually
entail notable costs compared to using the estimated DGP—an infeasi-
ble comparator with non-stationary observational data. Indeed when the
exogenous variables need to be forecast, selection can even have smaller
MSFEs than using a knownDGP.That result matches an earlier finding in
Castle et al. (2011) that a selected equation can have a smaller root mean
square error (RMSE) for estimated parameters than those from estimating
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the DGP when the latter has several parameters that would not be signifi-
cant on conventional criteria. Castle et al. (2018) suggest using looser than
conventional nominal significance levels for in-sample selection, specifi-
cally 10% and 16% depending on the number of non-indicator candidate
variables, and show that this choice is not greatly affected by whether or
not location shifts occur either at, or just after, the forecast origin. The
main difficulty is when an irrelevant variable that happens to be highly
significant by chance has a location shift, which by definition will not
affect the DGP but will shift the forecasts from the model, so forecast
failure results. Here rapid updating after the failure will drive that errant
coefficient towards zero in methods that minimize squared errors, so will
be a transient problem.

Fifth, Castle et al. (2018) also conclude that some forecast combina-
tion can be a good strategy for reducing the riskiness of forecasts facing
location shifts. Although no known method can protect against a shift
after a forecast has been made, averaging forecasts from an econometric
model, a robust device and a simple first-order autoregressive model fre-
quently came near the minimum MSFE for a range of forecasting models
on 1-step ahead forecasts in their simulation study. This result is consis-
tent with many findings since the original analysis of pooling forecasts in
Bates and Granger (1969), and probably reflects the benefits of ‘portfolio
diversification’ known from finance theory. Clements (2017) provides a
careful analysis of forecast combination. A caveat emphasized by Hendry
and Doornik (2014) is that some pre-selection is useful before averag-
ing to eliminate very bad forecasting devices. For example, the GUM is
rarely a good device as it usually contains a number of what transpire
to be irrelevant variables, and location shifts in these will lead to poor
forecasts. Granger and Jeon (2004) proposed ‘thick’ modelling as a route
to overcoming model uncertainty, where forecasts from all non-rejected
specifications are combined. However, Castle (2017) showed that ‘thick’
modelling by itself neither avoids the problems ofmodelmis-specification,
nor handles forecast origin location shifts. Although ‘thick’ modelling is
not formulated as a general-to-simple selection problem, it could be imple-
mented by pooling across all congruent models selected by an approach
like Autometrics.
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Conclusions: The Ever-Changing

Way Forward

Abstract In a world that is always changing, ‘conclusion’ seems an oxy-
moron. But we can summarize the story. First, that non-stationary data are
pervasive in observational disciplines. Second, there are two main sources
of non-stationarity deriving from evolutionary change leading to stochas-
tic trends that cumulate past shocks and abrupt changes, especially loca-
tion shifts, that lead to sudden shifts in distributions. Third, the resulting
‘wide sense’ non-stationarity not only radically alters empirical modelling
approaches, it can have pernicious implications for inter-temporal theory,
for forecasting and for policy. Fourth, methods for finding and neutraliz-
ing the impacts of distributional shifts from both sources are an essential
part of the modeller’s toolkit, and we proposed saturation estimation for
modelling our changing world.
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Non-stationarity has important implications for inter-temporal theory,
empirical modelling, forecasting and policy. Theory formulations need to
account for humans inevitably facing disequilibria, so needing strategies
for correcting errors after unanticipated location shifts. Empirical mod-
els must check for genuine long-run connections between variables using
cointegration techniques, detect past location shifts, and incorporate feed-
backs implementing how agents correct their previous mistakes. Forecasts
must allow for the uncertainty arising from cumulating shocks, and could
switch to robust devices after systematic failures. Tests have been formu-
lated to check for models not being invariant to location shifts, and for
policy changes even causing such shifts, potentially revealing that those
models should not be used in future policy decisions.

Policy makers must recognise the challenges of implementing policy
in non-stationary environments. Regulation of integrated processes, such
as atmospheric CO2 concentrations, is challenging due to their accumu-
lation: for example, in climate policy, net-zero emissions are required to
stabilise outcomes (see Allen 2015). Invariance of the parameters in policy
models to a policy shift is a necessary condition for that policy to be effec-
tive and consistent with anticipated outcomes. The possibility of location
shifts does not seem to have been included in risk models of financial insti-
tutions, even though such shifts will generate many apparently extremely
unlikely successive bad draws relative to the prevailing distribution, as seen
in Fig. 4.5.

Caution is advisable when acting on forecasts of integrated series or
during turbulent times, potentially leading to high forecast uncertainty
and systematic forecast failure, as seen in Figs. 7.8 and 7.9. Conversely, as
noted in Sect. 3.2, the tools described above for handling shifts in time
series enabled Statistics Norway to quickly revise their economic forecasts
after Lehmann Brothers’ bankruptcy. Demographic projections not only
face evolving birth and death rates as in Fig. 2.3, but also sudden shifts,
as happens with migration, so like economics, must tackle both forms of
non-stationarity simultaneously.

Location shifts that affect the equilibriummeans of cointegrating mod-
els initially cause systematic forecast failure, then often lead to incorrectly
predicting rapid recovery following a fall, but later under-estimating a

http://dx.doi.org/10.1007/978-3-030-21432-6_4
http://dx.doi.org/10.1007/978-3-030-21432-6_7
http://dx.doi.org/10.1007/978-3-030-21432-6_7
http://dx.doi.org/10.1007/978-3-030-21432-6_3
http://dx.doi.org/10.1007/978-3-030-21432-6_2
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subsequent recovery. Using robust forecasting devices like those recorded
in Fig. 7.9 after a shift or forecast failure can help alleviate both problems.
While this book has mainly considered time series data, similar princi-

ples apply to cross section and panel observational data. Panel data poses
an additional problem of dependence. Time series data has the advantage
of historical ordering, enabling sequential factorization to remove tem-
poral dependence. Panel data requires a suitable exogenous ordering to
apply sequential factorization which may not be obvious to the modeller.
Methods to detect and model outliers and structural breaks may be partic-
ularly important in panel data, where individual heterogeneity accounts
for much of the data variability. See Pretis et al. (2018) for an example
of IIS applied to a fixed-effects panel model looking at the impacts of
climate change on economic growth. IIS is equivalent to allowing for a
‘fixed effect’ for every observation in the panel, and accounting for these
country-year individual effects proved invaluable in isolating the effects
of climate variation on economic growth.
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