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Preface

Nowadays, the increment of international maritime trade decelerates by the influ-
ence of the global downside economy, and the even stricter environmental policies
further intensify the competition between different sectors in maritime transporta-
tion systems, which motivates the electrification of all the attached sub-systems for
higher energy efficiency, such as the all-electric ships, electrified ports, and various
electrified ocean platforms. Different equipment and technologies have been inte-
grated into those sub-systems, such as fuel cell, energy storage, gas capture system,
alternative fuel, multi-energy management, and cold-ironing facilities, which gives
birth to the maritime grids.

A typical maritime grid consists of generation, storage, and critical loads, and
can operate either in grid-connected or in islanded modes, and operate under both
the constraints of the energy system and the maritime transportation system, and
formulates as multi-energy maritime grids. The energy management of this special
system will shape the energy efficiency of the future maritime transportation system,
and this is the main focus of this book.

This book mainly focuses on the energy management of the multi-energy maritime
grids. With various practical cases, this book provides a cross-disciplinary view on
green and sustainable shipping via the electrification of maritime grids.

Chapter 1 illustrates the background and motivation of the multi-energy maritime
grids, and then the electrification trend of maritime grids is described; after that,
different types of new technologies which are about to integrate are depicted and
the concepts of multi-energy maritime grids are proposed after a comprehensive
literature survey.

Chapter 2 briefly introduces the mathematical basics of optimization techniques
used in this book, including the general optimization model, stochastic optimization
model, robust optimization model, interval optimization model, convex optimiza-
tion, and two optimization frameworks, i.e., two-stage optimization and bi-level
optimization.

Chapter 3 illustrates the main management targets of multi-energy maritime grids
under the background of extensive electrification. The targets include navigation
tasks, energy consumption, gas emission, reliability under failures, lifecycle cost,
and quality of service.

vii



viii Preface

Chapter 4 introduces the formulation and solution of maritime grid optimization.
At first, the classification is illustrated as (1) Synthesis optimization, (2) Design opti-
mization, and (3) Operation optimization. Then different practical cases are given.
At last, a compact formulation is proposed and a solution method is described.

Chapters 5-8 propose energy management models for maritime grids under
different scenarios, i.e., under operating uncertainties (Chap. 5), energy storage
integration (Chap. 6), multi-energy management (Chap. 7), and multi-source
management (Chap. 8).

Chapter 9 concludes this book and gives the ways ahead. The key challenges are
summarized and three promising problems are given: (1) data-driven technologies,
(2) siting and sizing problems, and (3) energy management problems.

The intended audience of this book include

e Faculty, students, and researchers active in maritime transportation and interested
in the environmental dimension of shipping.

e Carriers, shippers, infrastructure managers, and other logistics providers who aim
at improving their environmental performance while staying in business.
Technology designers and providers.

Policy-makers at the national and international levels.
Other stakeholders, environmental or other.

Hong Kong, China Sidun Fang
October 2020
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Chapter 1 ®)
Introduction to the Multi-energy oo
Maritime Grids

1.1 Background and Motivation

1.1.1 Economy Growth and the Demand for Maritime
Transport

After achieving a 3.1% growth in 2017, the growth rate of global economy declines
to 3.0% in 2018 and further declines to 2.3% in 2019 [1]. In 2020 and afterward,
a range of downside risks may further intensify the economy growth, such as the
tariff between US—China, the decision by the United Kingdom to leave the European
Union (“Brexit”), and the global New Coronavirus spread. In this background, a
new normal is about to take hold, reflecting a continuous moderate growth of the
global economy. This trend will significantly influence all the attached subsystems or
sectors in the maritime transportation system, including infrastructure requirements,
ship carrying capacity needs, ship design and technology, port developments and
performance, and so on.

The primary impact of the slowing-down economy puts on the demand of maritime
transport. In 2017-2019, the international maritime trade shares similar moderate
growths with the global economy. According to the “Review of Maritime Transport
2019” by UNCTAD [1], although the global maritime trade reaches a new milestone
of 11 billion tons in 2019, the growth is only 2.7%, not only lower than 4.1% in 2017,
but also lower than 3.0% average from 1970 to 2017 [1]. Figure 1.1 and Table 1.1
respectively show the total cargo volumes of specific types in ton-miles and tons.

The moderate growth of maritime transport demand shall introduce more compe-
tition between different players, i.e., shipowners or port administrators and other
stakeholders. This trend may re-shape the market structure since many less-efficient
sectors in the maritime transportation system will fall into the brutal struggle between
embracing the technology evolutions or being eliminated.

© The Author(s) 2021 1
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Fig. 1.1 Development of international maritime trade (Unit: billion ton-miles), reprinted from [1],
open access

Table 1.1 Specific types of international maritime trade (Unit: million ton) reprinted from [1],
open access

Year Tanker trade Main bulk Other dry cargo Total (all cargos)
2000 2163 1186 2635 5984
2005 2422 1579 3108 7109
2006 2698 1676 3328 7702
2007 2747 1811 3478 7702
2008 2742 1911 3578 8231
2009 2641 1998 3218 7857
2010 2752 2232 3423 8408
2011 2785 2364 3626 8775
2012 2840 2564 3791 9195
2013 2828 2734 3951 9513
2014 2825 2964 4054 9842
2015 2932 2930 4161 10,023
2016 3058 3009 4228 10,295
2017 3146 3151 4419 10,716
2018 3194 3210 4601 11,005

1.1.2  Ship Supply Capacity and Market Structure

The new trend of moderate growth also defines the recent supply-side development
of the maritime transportation. In 2019, the world’s commercial fleet consists of
95,402 ships, with a combined tonnage of 1.97 billion dwt [1]. The share of each
principal vessel type is shown in the following Table 1.2.
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Tgble. 12 World fleet b¥ Principal types 2018 2019 Increments
principal vessel type (Unit:
dwt), reprinted from [1], open Oil tankers 562,035 567,533 0.98%
access 29.2% 28.7%
Bulk carriers 818,921 842,438 2.87%
42.5% 42.6%
General cargo ships | 73,951 74,000 0.07%
3.8% 3.7%
Containers 253,275 265,668 4.89%
13.1% 13.4%
Other types 218,002 226,854 4.06%
11.3% 11.5%
Gas carriers 64,407 69,078 7.25%
3.3% 3.5%
Chemical tanker 44,457 46,297 4.14%
2.3% 2.3%
Offshore vessels 78,629 80,453 2.79%
4.1% 4.1%
Passenger vessels 6922 7097 2.53%
0.4% 0.4%
Other 23,946 23,929 —-0.07
1.2% 1.2%
World total 1,926,183 | 1,976,491 2.61

From the Table 1.2, the oversupply of ship capacity remains a prominent charac-
teristic for most of shipping sectors. Among all sectors, the gas carriers experience
the highest growth rate at 7.25%, which is driven by the significant expansion of the
liquefied natural gas (LNG) trade [2]. Then the container fleet follows at 5% incre-
ment. On the contrary, the chemical-tanker and dry-bulk-carrier segments both only
experience moderate growths, and the oil tanker segment even suffers a downward
trend.

In summary, the oversupply of the ship capacity will further reduce the average
freight fare and cut down the profits. Some new technologies are therefore motivated
to integrate into the maritime transportation system to gain efficiency improvement
and competitional advantage.

1.1.3 Shipping Services and Ports

One effect of the market re-shaping is to enlarge the average sizes of ships since mega-
ships generally have cheaper transportation costs than smaller ships. This trend is
suggested in Table 1.3 by the increasing of average vessel size in recent years.

The increasing trend of vessel size has great impacts on the port terminals, as
well as the shipyards and the inland logistics. The resulted-in influences come from
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Table 1.3 Vessel size distribution to service years (Unit: dwt), reprinted from [1], open access

Types Service years
04 5-9 10-14 15-19 20+

Bulk carriers 81,482 77,757 71,592 64,156 52,622
Container ships 83,362 66,050 43,565 38,031 19,579
General cargo 8770 7507 5255 6360 2725
Oil tanker 82,577 78,314 73,092 90,578 8241
Others 10,461 6548 8839 8136 4214
All ships 44,370 39,985 30,696 30,946 6342

two aspects: (1) mega-ships generally have limited access to many ports since draft
restrictions or berth-length requirements, which makes the mega-ships can only call
for services in some ports; (2) larger ships normally call at fewer ports than smaller
ships during one voyage, and less calls with greater cargo volumes will create greater
pressure on the operation of ports.

From above, as ships become larger, the ports and terminals that can accommodate
the service-calls become limited, which means the main ports around the world, such
as Singapore, Shanghai, Istanbul, Houston, Genoa, Hamburg, and so on, will face
more competitions and challenges in the future. New equipment and technologies
are required for the future large ports to efficiently provide at least three types of
services to the berthed-in ships.

(1) Logistic services, including loading/unloading cargos from the onboard to the
stacking areas, the restacking of cargos in the stackyard, the transportation to
the inland logistic systems, and so on. This type of service is conventional but in
current situations, large ports are required to further enhance the cargo handling
efficiency and reduce the dwell-time in berth to strengthen their competitiveness.

(2) Electrical services, namely the on-shore power supply, or cold-ironing tech-
nology. For the future efficient ports, cold-ironing technology is necessary since
it can greatly reduce the gas emission of the berthed-in ships in the harbor
territory. According to [3], cold-ironing technology will become a mandatory
requirement for large ports in the future.

(3) Heating/cooling services. For specialized cargo such as refrigerated goods, large
ports need providing reefer slots, and for future cruise ships, large ports may
also provide on-shore heating/cooling services to the onboard passengers [3].

To efficiently and economically provide the above services, the future ports are
need to be significantly upgraded in both infrastructure planning and management
framework. It should be noted that the ports not only include the mainland ones,
but also include those in islands, or “general ports” in various ocean platforms, i.e.,
ocean oilfields, ocean wind farms, or drilling platforms.
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1.1.4 The Path to the Green Shipping

Besides the above motivations, the entry into force of several global environmental
policies and the adoption of some voluntary standards also have some fundamental
impacts on the maritime transportation system and set the following two main targets
to achieve the future green shipping.

(1) Relieving the heavy reliance on oil for propulsion.

Generally, more than 50% of the oil demand around the world is concentrated in the
transport sector [4], and the global oil demand for maritime transportation is more
than 300 million tonnes and accounts for 86% of the transport sector in 2012 [5].
According to [6], more than half of the fuel consumption increment in transportation
is from maritime usage before 2040 if no further actions.

Additionally, the oil used for maritime transportation often has lower quality than
other types of oil in the transport sector, i.e., denser and higher carbon-hydrogen
ratio, as well as having more “polluted elements”. For example, the IFO380 is a
frequently used oil type for large container ships, which has more than 3.8% sulfur,
much higher than the light-oil used in land-based transportation.

As a result, the great consumption and low quality of maritime oil make the
maritime transportation system emit diversified gas emissions, and the heavy reliance
on oil for propulsion, therefore, becomes the main obstacle to limit the development
of green shipping. The research on alternative fuels or energy sources should raise
global concerns, such as hydrogen fuel and ammonia fuel, fuel cell technologies, and
energy storage [4, 7-9].

(2) Reducing greenhouse and polluting gas emissions.

The gas emission of maritime transportation usually has three types: carbon dioxide,
sulfoxide, and nitrogen oxide. The carbon dioxide is regarded as the main culprit for
the greenhouse effect and has been raised as a global concern since the subscription
of the Kyoto Protocol in 1997 [10]. As for the sulfoxide and nitrogen oxide, they are
viewed as two main types of polluted gas emissions, which are responsible for the
acid rains and the ozone hole, respectively [11].

For global sustainable development, those three types of gases are all under strict
surveillance, and for the future green shipping, multiple policies have been raised to
address different types of gas emissions.

For the carbon dioxide, the International Maritime Organization (IMO) has
announced an ambitious target to reduce 70% greenhouse gas (GHG) emission in
2050 compared with 2008 [12], shown as Fig. 1.2.

For better controlling the minimum required level of energy efficiency, the Energy
Efficiency Design Index (EEDI) and Energy Efficiency Operating Index (EEOI) were
established as the IMO’s strategies. Specifically, EEDI is a ship designing index
proposed by the Marine Environment Protection Committee (MEPC 62) in 2011
[13]. Then in MEPC 63, four guidelines are amended in MARPOL Annex VI to
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Fig. 1.2 Reduction target of GHG emission from maritime transportation, reprinted from [12],
open access

further implement the EEDI as a mandatory regulation [14—17]. As for the EEOI,
it is recommended by the Ship Energy Efficiency Management Plan (SEEMP) to
manage the efficiency performance of ships and fleets over time using [18]. Both of
EEDI and EEOI have been adopted by various ship companies.

For the sulfoxide, IMO has set certain limits since the year of 2000, shown as
Fig. 1.3. From Ist, January 2020, the “ever strictest sulfur limit in history” has
entered into force for the compulsory usage of low-sulfur fuel (0.5%), or the gas
scrubber integration, or the alternative fuels.

The first sulfur limit was introduced in the revised MARPOL Annex VI (Preven-
tion of Air Pollution from Ships) and the concept of designated sulfur emission
control area (SECA) was created correspondingly [12]. The Baltic Sea, North Sea,
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Fig. 1.3 Fuel sulfur limits in ECA and globe, reprinted from [12], open access
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Table 1.4 NOx emission limits (MARPOL Annex VI)

Tier Year NOx limit (g/kWh)
Rated engine speed (r/min)
<130 1302000 >2000
I 2000 17 45.p702 9.8
Il 2011 14.4 45.p7023 7.7
I 2016 3.4 45.p702 1.96

and North America have been designated as SECAs since 1997, 2005, and 2010,
respectively. In 2011, the Caribbean Sea of United States has been designated as
SECA. In October 2016, the regulation was confirmed at the MEPC 70, which
dictates that from 2020 onward, the global limit of sulfur content will be 0.50%
(outside SECAs), referring to the “ever strictest sulfur limit” [19].

For the nitrogen oxide, MARPOL has set tier I-III emission standards based on
the speed of main engines and the ship-ages, shown as Table 1.4 [12]. Tier I is for the
old ships built before 2000, and tier-1II is the current NOx limit standard, and tier I1I
is for the ships built after 2016 and sailing in nitrogen ECAs (NECAs). When outside
the NECAs, the ships should follow tier II. It should be noted that the SECAs in the
United States have been already set as NECAs. For the European SECAs (North and
Baltic Sea), the NOx limits will be enforced from 2021.

Accordingly, to fulfill the above ambitious targets on gas emission reduction,
considerable investments should be going into the research and development for
new technologies, such as better hydrodynamics in ships, more energy-efficient
engines, efficient ships with new configurations, lower carbon or carbon-free fuels,
the renewable integrations and more advanced energy management systems.

1.2 Promising Technologies
1.2.1 Overview

To achieve future green and efficient shipping, many technologies have been already
or about to implement in maritime transportation. They are mainly classified as (1)
the technical designs and (2) the alternative fuel or energy sources. The details are
shown in the following Table 1.5.

In the following context, the promising technologies related to the electrification
of maritime transportation (in the bold context above) are illustrated in detail to show
their usages.
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technologies for the future
green shipping
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Technical designs for energy
efficiency improvement

Alternative fuel or energy
sources

Light construction material

Hydrogen fuel cells

Ship-hull optimization

Hydrogen as fuel

Propulsion-improvement
devices

Shipboard energy storage

Air lubrication system

Ammonia fuel cells

Ballast-water system design

Ammonia as fuel

Engine and auxiliary system

Synthetic methane

Energy-efficiency measures

Synthetic diesel

All-electric ship

Renewable power
integration

Gas capture system

Advanced biofuels

Multi-energy management

1.2.2  Selected Technical Designs for Energy Efficiency

Improvement

1.2.2.1 All-Electric Ship (AES)

Long before gaining global concerns, the emergence of AES is quite early. In 1922,
the first aircraft carrier of the United States named as “Langly (CV-1)" was converted
from a coal carrier named as “Jupiter”, shown in Fig. 1.4a.

This ship uses the configuration of “steamer-generator-electric machine” to drive
the propeller and can be viewed as an embryo of AES. However, due to the technical
limits at that time, the reliability of the power network in “Langly” was much lower
than other similar mechanically-driven ships. Therefore, after the technical break-
through in large-scale gearbox, the configuration of “Langly” has been hung on, and
the mechanically-driven ships, which directly drive the propeller by the prime mover,
have come to their golden age and dominate the configuration designs of ships until
now and even the near future.

(a) Langly (CV-1)

(b) Zumwalt-class destroyer (c) America-class amphibious assault ship

Fig. 1.4 Main representatives of all-electric ships
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Fig. 1.5 Development of all-electric ships, reprinted from [20], with permission from IEEE

In the last decades, the advances in electrical engineering represented by the power
electronic technologies have greatly improved the reliability of power systems, which
progressively promote the development of microgrids. Nowadays, various types of
microgrids have been utilized in different scenarios and applications. The bottleneck
of AES has therefore been relieved.

With this great development, AES has gained the concerns from the shipping
industry once again since higher energy efficiency and better controling ability.
Currently, the configuration of AES has been already applied in warships, such as
the Zumwalt-class destroyer and the America-class amphibious assault ship, which
are shown in Fig. 1.4b and c, respectively.

The main advantage of AESs compared with conventional mechanically-driven
ships is the usage of an “integrated power system” to dispatch energy, which can be
shown as Fig. 1.5 [20].

In Fig. 1.5a, the propellers of conventional ships are directly driven by the prime
mover via a gearbox. This configuration limits the speed of prime mover and therefore
limits the energy efficiency improvement. Additionally, another system of “prime
mover-generator-service load” is necessary for the mechanically-driven ships to
supply power to the onboard electrical equipment, which leads to great unnecessary
redundancy.

In an AES (Fig. 1.5b), electricity is the only secondary energy form onboard. All
the shipboard loads, including the propulsion load and various types of service loads,
are supplied by the “integrated power system”. The energy flow can be precisely
controlled to achieve the optimal energy efficiency, and the energy supply can be
from multiple sources to improve the system reliability.

Due to the advantages above, AES has raised global concerns in recent years and
has been viewed as the future direction of ship designs. Nowadays, this configuration
begins to expand from the military applications to the commercial applications, such
as the “ampere” ferry from Denmark [21], “puffer” cargo ship from China [22], and
“Viking lady” off-shore support vessel (OSV) [23] and so on, which are shown in
Fig. 1.6, respectively.
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(a) “Ampere” ferry (b) “Puffer” cargo ship (c) “Viking lady” off-shore support vessel

Fig. 1.6 Some commercial all-electric ships

1.2.2.2 Cold-Ironing Technology

The propulsion systems of most ships consist of the main engines and the auxiliary
engines, and when berthed in a port, the main engines will be kept off and the
auxiliary engines are used to support the onboard load demand, such as lighting,
refrigeration, kitchen, entertainment and so on. The auxiliary engines burn fuel to
generate electricity and emit various types of gas emissions in the harbor territory,
such as CO,, SOx, and NOx, which brings a great amount of pollution.

Cold-ironing technology, or on-shore power supply, or shoreside power, is to
supply the onboard hoteling load for the berthed-in ships by the port-side electricity,
and the auxiliary engines onboard are all kept off, shown as Fig. 1.7 [24]. The
electricity can be from the main grid, or port-side renewables and other clean fuels
[24]. In the future, the cold-ironing technology will become a mandatory service
from ports similar to the conventional logistic services.

Conventional Logistic services

a— Cold-ironing
' Technology

Fig. 1.7 Cold-ironing technology and conventional logistic services, reprinted from [24], with
permission from IEEE

————————— 1 o 7 ]
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The first benefit of cold-ironing technology is the reduction of harbor gas emission.
It is reported that the global harbor gas emission can have a 10% reduction by the
integration of cold-ironing technology [25]. In UK ports, the cold-ironing technology
can reduce 2% SOx emission. According to [26], cold-ironing technology reduces
more than 57% of harbor gas emission in the Kaohsiung port in Taiwan. Secondly,
cold-ironing technology may bring economic benefits to both the shipowners and
the port authorities. Kenan et al. [27] shows in the regions of which the electricity
price are lower than 0.19USD/kWh, the cold-ironing may reduce the operating cost
of the berthed-in ships. In [25], the cold-ironing brings extra profits for the port with
higher average handling time.

Cold-ironing technology is very suitable for the cruise ports, since when berthed-
in, the cruise ships require a huge amount of power since many passengers staying
on board [28, 29]. According to [30], an average of 29.3% of GHG emissions can
be reduced in three different regional cruise ship cases when using cold-ironing. In
other regions, the cruise ship ports can reduce 99.5% (Oslo, Norway), 85% (France)
GHG emission by the cold-ironing technology, respectively.

Although the above outstanding advantages, the expansion of cold-ironing tech-
nology is still a challenging task. The main barriers include power quality [28], system
stability [28], reliability and security [3], and synchronization problems [24]. Tsek-
ouras and Kanellos [31] used a port-side reserved generator to improve the power
quality of cold-ironing, and [32] proposed smart electrical interfaces to improve the
performance of the cold-ironing facility. In [24], the synchronization problem of cold-
ironing was investigated, and a control strategy is proposed to mitigate the voltage
fluctuation when the ship plugged into the cold-ironing state, which is demonstrated
by an OPAL-RT experiment.

1.2.2.3 The Electrification of Ports

The ports are need to provide adequate logistic services to the berthed-in ships by
many different types of equipment. The main equipment includes quay crane (QC),
rail-mounted gantry crane (RMG), rubber-tire gantry crane (RTG), reach stacker
(RC), straddle carrier (SC), and lift trunk (LT), which are shown in the following
Fig. 1.8.

QC is used for loading/unloading cargo or containers from the ship-side. RMG
and RTG are used to stack containers in the stackyard, and the main difference is that
the RMG moves on the rail and the RTG moves on rubber tires. RS is used to reach
a container in the stackyard. SC and LT are used to transport the containers within
the stackyard. Conventionally, the above equipment are almost manually-driven, and
in recent years, highly automated port equipment, such as automated RTG, RMG,
LT, SC, begins in usage to improve the efficiency and reduce labor usage [33].
The energy sources of those equipment also become diversified. Table 1.6 gives the
possible energy sources of the above equipment.

From the Table 1.6, diesel and LNG are commonly used fuel types in port-side
operation, which can power various port-side equipment. In addition from above,
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(d) reach stacker (e) straddle carrier (f) lift truck

Fig. 1.8 Main port-side logistic equipment

Table 1.6 Energy sources of different port-side equipment (data from [34])

QC RMG RTG RS SC LT
Diesel Yes No Yes Yes Yes Yes
Electricity Yes Yes Yes Yes Yes Yes
LNG No No Yes Yes Yes No

electricity is the most general energy source and can power all the main port-side
equipment, and is also energy-efficient, easy to control, and convenient to fulfill
automation, which makes the electrification of large ports as an irreversible trend in
both shore-side operation and yard-side operation.

During the shore-side operation, the QCs can recover tremendous energy from
the hoist-down movement [35]. In this way, the electrification and the integration of
energy storage can shift the peak load of QCs and improve energy efficiency. In [35,
36], the peak load of QC can be reduced from 1211 to 330 kW with a supercapacitor
integration. In [37], the peak load of QC is reduced from 1500 to 150 kW by the
integration of energy storage. The shift of peak load not only represents higher energy
efficiency but also can mitigate the influences on the port-side power system.

In yard-side operation, RMGs generally have higher energy efficiency than
conventional RTGs since it is electrically-driven, but the advantage of RTG is the
higher operating flexibility since its operation is not limited to the rails. In this sense,
the electrification of RTG (E-RTG) can combine both advantages on energy effi-
ciency and operating flexibility, which makes it a hot topic now and has reported
gaining an 86.6% reduction in energy costs and 67% on GHG emission reduction
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Table 1'7_ Energy . Energy Energy cost/year | GHG emission
CbZ?\iigpg({%}cgﬁpEarEi/I[l G consumption (k USD) (kg/container)
(data from [34]) RTG 2.21 L/move 64048 5.96

E-RTG | 3.02 kWh/move | 8621 1.92

[38]. The energy consumption comparison between RTG and E-RTG is shown in
Table 1.7, and the results clearly show the energy saving ability of E-RTG. The
energy cost of E-RTG is only 13% of RTG, and the GHG emission is only 1/3 of
RTG. Similarly, for other yard-side equipment, such as RS, SC, and LT, the hybrid
diesel-electric engine system has already been integrated. In literature, the hybrid SC
has gained 27.1% fuel efficiency improvement, and the traveling motion, hoisting
motion and lowering motion consume 52, 31 and 11% less energy [39]. As above,
with the development of electrical engineering technologies, especially the energy
storage technology, all-electric RS, SC, and LT will soon become reality and achieve
the zero-emission target.

1.2.2.4 Multi-energy Management

In recent years, with the development of global cold-chain supply, the refrigeration
power demand grows very fast. In various studies, the energy consumption of refrig-
eration energy is now between 20 and 45% of the total energy consumption of ports
[38, 40]. This suggests the need to improve the energy efficiency of reefer areas,
such as determining the number of reefers, locations, and power plans. Additionally,
due to the large scale of heating/cooling power demand on board, future cruise ships
may also require heating/cooling power from the port-side. In summary, the above
refrigeration power demand and the onboard heating/cooling power demand are both
supplied by the heating/cooling flow, and can be viewed as “temperature-controled
power demand” [40].

With the integration of heating/cooling flows, there will be at least three energy
flows coordinated to each other in maritime grids, i.e., fossil fuel, electricity, and
heating/cooling power, which makes the future maritime grid as multi-energy systems
(MESs), and proper multi-energy management is essential for this special MESs.

Multi-energy management is a newly proposed management framework to coordi-
nate multiple energy flows, shown in Fig. 1.9 [41-43], which shows different energy
forms can convert to each other in MES to shift the peak load to fill up the valley,
thus gaining higher energy efficiency compared with the single-energy system, such
as the conventional power system. This management framework has been used in
many land-based applications. In Jiangsu and Guangdong provinces of China, there
are already system-scale projects of MESs.

In an MES, the main power sources are the upper electric network (UEN) and the
upper gas network (UGN). The main power demands are the electricity demand, gas
demand, heating demand, and cooling demand, which are supplied by the electrical
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Fig. 1.9 Energy flows in a conventional multi-energy system

bus, gas bus, heating bus, and cooling bus, respectively. Among different energy
forms, the gas turbine can generate electricity by burning gas. The by-produced heat
can supply the heat load or the cooling load after the absorption chiller. The electricity
also can be converted to gas by the power to gas equipment (P2G). In the future, the
municipal water supply may also implement into MES since the expansion of the
electric water pump.

However, the ships and ports have quite different operating scenarios compared
with conventional land-based applications, such as extra electrical and logistic
constraints, which makes current multi-energy management methods cannot be
directly used, and further research efforts should be put into this field.

1.2.2.5 Gas Capture Systems

In Sect. 1.4, the main targets of the gas emission control have been discussed. The
alternative fuel and electrification technologies are generally viewed as promising
routes to resolve this energy efficiency problem. However, before the maturity of
above technologies, the integration of gas capture system can be viewed as an effec-
tive transitional approach. With its integration, the gas emission can be captured and
stored in a location and permanently away from the atmosphere, thus the energy
efficiency (gas emission per unit task) can be improved with continuously using the
conventional fossil fuel. Nowadays, the capture systems of CO,, SOx, NOx are all
mature technologies and ready to integrate into maritime grids.
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Generally, the gas capture systems have three main working frameworks, which
are shown in Fig. 1.10a—c, i.e., the pre-combustion, oxygen-fuel and post-combustion
methods [44].

Among the above three working frameworks, the post-combustion method is
the most frequently used (Fig. 1.10c) since a relatively simpler process, and the
gas capture systems manufactured by the Wasilla and Mann are mostly using the
framework of post-combustion.

Inrecent years, driven by the “ever strictest sulfur limit” planned to enter into force
from 1st, January 2020 [19], many shipowners have planned to invest the shipboard
gas capture systems to act as the transitional approach. With the gas capture system
installed, the ships can continue to sail on the heavy oil (IFO380, 3.8% sulfur) with a
lower price (cheaper than MGO, 0.5% sulfur) meanwhile meeting the environmental
requirements. The initial cost-benefit analysis shows this investment can be refunded
in 4-5 years under current oil prices [45, 46].

A typical illustration of gas capture system into ships is shown in Fig. 1.11 [47].
The emitted gas from the main and auxiliary engines are first absorbed and then
stored in a storage. With sufficient energy supply, the gas capture system can reduce
more than 70% gas emission [44].

However, most of the ships are not designed with the gas capture system, thus
the onboard engines may not have enough capacities to supply the power demand
after the installation, and this is one of the main obstacle to limit the gas capture
system integration in the views of energy management. In [44], an extra generator is
invested to supply the power demand of gas capture system, and in [47], the energy
storage and onboard generators are coordinated to meet the power demand of the gas
capture system, and the capturing rate is more than 90%.

1.2.3 Selected Alternative Fuels or Energy Sources

1.2.3.1 Renewable Power Generation

Generally, the renewable power generation integration into ships and ports is the
fundamental approach to resolve the energy efficiency problem of maritime grids,
i.e., when the penetration rate of renewable power generation increases, the usage
of conventional fossil fuel will reduce. Until now, the integration of renewable
power generation into maritime grids already has many practical cases, shown as
Fig. 1.12a—.

Figure 1.12a shows the “Zhongyuan Tengfei” photovoltaic (PV) integration
project in 2016. The total PV module has 143.1 kW capacity and can provide power
for lighting in 12 decks [48]. Figure 1.12b shows a conceptual hybrid renewable
energy ship proposed by Sauter Carbon Offset company, Germany [49] in 2010.
This ship uses wind and PV energy to sustain 16 knot speed with zero-emission.
Figure 1.13c is the “Shangde Guosheng” ferry in Shanghai Expo, 2010, which has a
length of 31.85 m, a breath of 9.8 meters, and a height of 7 m. Now, this ship serves
as a tourist ship in Huangpu River, Shanghai [50].
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Fig. 1.12 Practical renewable integrated ships

However, since the low energy density and limited installment area, renewable
energy integration into ships can only supply a small part of total energy demand
now, and due to the uncertainties, the shipboard energy management system needs
to be upgraded to mitigate their influences [51].

On the port-side, the capacity of renewable energy is much higher since larger
installment area. In the Jurong port (Singapore), the installed PV can generate more
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Fig. 1.13 Classification of energy storage

than 12 million kWh electricity per year [3]. In Houston port (US), the Spilman’s
island is planned for PV modules, and the potential PV capacity can be more than
4 MW [52]. In Hamburg port (Germany), the installed wind turbines scale up
to 25.4 MW [53]. The above cases have demonstrated that the renewable power
generation has a very promising future in the port-side applications.

1.2.3.2 Energy Storage and Fuel Cell Integration

Generally, electrical energy can be converted to many different forms for storage,
which are shown as following Fig. 1.13 [54]. Among all the technologies in Fig. 1.13,
pumped hydro storage, compressed air storage and flow battery are not suitable
for maritime applications since the limits in locations and operating conditions.
The superconductivity storage has very limited energy capacity, which is also not
practical nowadays. The most promising energy storage technologies currently in
maritime applications include flywheel, battery, ultra-capacitor, and thermal tank.
Strictly speaking, fuel cell is a power source technology rather than a type of energy
storage technology. But it has similar characteristics and operating conditions with
conventional energy storage systems, i.e., no combustion process, small installment
area, directly outputting electricity, no spinning components. In this section, the fuel
cell is discussed together with the other conventional energy storage systems (ESSs).

In maritime applications, ESSs are used for (1) peak load shifting by the high
energy density ESS; and (2) resolving power quality issues by the high power density
ESS. In long-term timescale, the peak load shifting can mitigate the burdens of
main power sources (generators) and the energy efficiency can be improved [55-62].
Then the high power density ESS can respond to the load fluctuations in short-term
timescale to resolve the power quality problems [63—65].
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Since no combustion process, fuel cells have higher generation efficiency and
smaller unit-sizes than the traditional internal combustion engines, which is the
promising power source technology for maritime applications in the future. At
present, the hydrogen fuel cell based on proton exchange membradune technology is
a relatively mature technology and has been used in the energy supply of submarine
[66], but the production and storage of hydrogen are still expensive, which limits the
further commercial applications of hydrogen fuel cells. On the other side, liquefied
natural gas (LNG) and Maritime Diesel Oil (MDO) are currently the main fuel types
in commercial ships, and the corresponding Molten Carbonate Fuel Cells (MCFC)
and Solid Oxide Fuel Cells (SOFC) on these two types of fuels, therefore, have higher
commercial values.

Currently, fuel cell acts as an auxiliary power source in ships, an illustration in
all-electric ships can be shown as Fig. 1.14 [67].

Inthe Fig. 1.14, fuel cell is installed at one bus to supply the low-voltage hotel load
and the propulsion load. Besides, there are two cases in Fig. 1.14, and the first case is
the “Viking lady” offshore supporting vessel (OSV) has already installed a 330 kW
fuel cell compared with the total generation system of 8040 kW [23]. The other case
is, in 2019, the 712 ship institute of China has invented a 500 kW shipboard fuel cell.

All around the world, the fuel cell applications in ships are shown in Table 1.8,
which includes both military and commercial applications. With the development
of fuel cells, the capacity of the fuel cell will further increase to replace the current
onboard spinning prime mover. However, there is still a long way to go before the
fully replacement of internal combustion engine to fuel cell. Many obstacles, such
as the energy management problems, the lifetime management problems, are still

pending.

Vinking lady OSV: First 500kW ship fuel cell in
330kW/8040kW China, 712 institute
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Fig. 1.14 Integration of fuel cell into all-electric ships
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Table 1.8 Projects of some selected fuel cell based ships

Ship Power Fuel References
Viking Lady 330 kW LNG [23]
SF-Breeze 100 kW Hydrogen [68]
PA-X-ELL 30 kW Methanol [69]
MYV Undine 250 kW Methanol [70]
US SSFC 2.5 MW Diesel [71]
MC-WAP 500 kW Diesel [72]
MS Forester 100 kW Diesel [73]
212 submarine U31 330 kW Hydrogen/Methanol [74]
212 submarine U32 240 kW Hydrogen/Methanol [75]
S-80 Submarine 300 kW Ethanol [76]

1.2.3.3 Low-Carbon and Carbon-Free Fuel

Current maritime transportation highly relies on fossil oil for propulsion, especially
the usage of heavy oil (IFO380). The replacement of heavy oil to low-carbon and even
carbon-free fuel is the fundamental approach to resolve the energy efficiency problem
of maritime transportation. Generally, alternative fuels are classified as low-carbon
fuels, i.e., LNG, methanol, ethanol, and carbon-free fuels, i.e., hydrogen, ammonia.

Among the low-carbon fuels, LNG is the alternative fuel for heavy oil which
gained the highest concerns [4]. It is estimated that the shipping sector can reduce
more than 30% GHG emission by using LNG [4]. In 2018, the LNG transport ships
have expanded by 7.25%, which represents the prosperous development of this sector
[1]. Among the carbon-free fuels, hydrogen has been regarded as the future green
fuel for a long time, since the only product after burning is water. The ship using
hydrogen for propulsion can achieve zero gas emission [4]. Ammonia is a newly
proposed carbon-free fuel in recent years, with the products of nitrogen and water [7].

Despite of the above great achievements, there are still many limits on the appli-
cation of low-carbon and carbon-free fuels. The gaps come from the following four
aspects, and a promising and practical alternative fuel should resolve all the below
problems before it can replace the heavy oil for propulsion.

(1) Mass production

To become a practical alternative fuel, the primary problem is the mass production
problem. Although Hydrogen, Methanol, and Ethanol are all vital raw materials in
chemical industry, the global production of those fuels is still hard to sustain global
shipping [7]. Among current fuels, LNG and ammonia are only two fuels with enough
production capacity to sustain global shipping. LNG is for its great amount of natural
resource reserves, and the ammonia is for its great production ability as a widely used
chemical fertilizer [7].



1.2 Promising Technologies 21
(2) Commercial power source technologies

Current engines in ships are mostly designed for heavy oil. When changing to other
fuels, the burning chambers should be reformulated or re-designed to keep the burning
stability of fuels. However, except for the LNG, there still lacks large-scale commer-
cial power source technologies for other alternative fuels to sustain long-distance of
navigation [7]. Furthermore, some alternative fuels, like ammonia, are very hard to
burn in conventional conditions. In this way, the fuel cell can be a very promising
way for maritime applications since it has no burning process.

(3) Mass storage

The heavy oil usually has much higher energy density and less volatileness than the
low-carbon and carbon-free fuels. When changing to alternative fuels, the storage
conditions need to be adjusted, i.e., larger volume to sustain the navigation distance,
proper sealing conditions to reduce the volatilization of fuels, and so on. For example,
the volatilization loss of LNG transport in a week is about 5% by current technology.
In this way, the mass storage technology of LNG, such as re-liquefaction, is needed
urgently in this field.

(4) Global supply chain

Since the shipping fuel is used all around the world, the transport cost will greatly
influence the expansions and usages of alternative fuel, which means the candidate
alternative fuels should have a mature and complete global supply chain to reduce
its transport cost. In fact, LNG and ammonia are the only two fuels with a complete
and mature global supply chain [7].

1.3 Next-Generation Maritime Grids

From the above illustrations, the main characteristic of the next-generation maritime
grids is the trend of electrification and the involvement of multiple energy flows, and
current green shipping technologies are convenient to implement into the maritime
grids. With various new technologies integrated, the next-generation maritime grids
are defined as those local energy networks (combined with electrical, fossil fuel
and heating/cooling energy networks) installed in harbor ports, ships, ferries, or
vessels, which consists of generation, storage and critical loads, and can operate
either in grid-connected or in islanded modes and operate under both the constraints
of power system and maritime transportation system. In the following context, two
main representatives of the next-generation maritime grids, i.e., shipboard microgrid,
seaport microgrid, are illustrated and then the coordination between them is shown.
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1.3.1 Shipboard Microgrid

With full electrification, the integrated power system of ships formulates a microgrid,
and the ship is referred as “AES”, which is illustrated in Fig. 1.15.

From above, the shipboard microgrid consists of both an energy network (blue
lines and arrows) and a communication network (green lines and arrows). The gener-
ators and battery deliver power via the energy network to meet the propulsion and
service loads. The propulsion load is used to drive the ship. The service load supplies
electricity to various onboard equipment, including the onboard radar, navigation
system, air conditioning, as well as the gas capture system in Sect. 1.2.2.5. In the
future, fuel cells may further replace the generators to act as the main power sources.
To further improve the energy efficiency of AES, renewable energy can be integrated,
like the photovoltaic modules in Fig. 1.15. As for the communication network, the
shipboard energy management system (EMS) can optimally calculate the generators
and battery outputs and then send the dispatch signals to each component by it.

A special case is the cruise ship since the large scale of thermal load demand
onboard. In fact, the shipboard microgrid of cruise ship can be viewed as an MES
[77], shown as Fig. 1.16.

The main differences between Figs. 1.15 and 1.16 are the involvement of heat
flow. In a cruise ship, the combined cooling/heating power generator (CCHP) and
power to cooling/heating (PTC) equipment are installed to act as the heating sources,
and the electrical flow and heating flow should be coordinated to achieve a better
economic and environmental behaviors.

Communication and
control signal flow

— - = Energy flow

¥

Propulsion

Photovoltaic
modules

EEEY TR
'

A

Fig. 1.15 Typical topology of future all-electric ships, reprinted from [24], with permission from
IEEE
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Fig. 1.16 Topology of a multi-energy cruise ship, reprinted from [77], with permission from IEEE

1.3.2  Seaport Microgrid

Seaport microgrid is a newly proposed concept for seaport management, which
is depicted by [24]. The incentive of the seaport microgrid is to make it as an
energy district to improve renewable energy penetration and enhance the grid storage
capacity by selling the electricity to the market through the main grid. There are
already many practical cases around the world of seaport microgrid. In [78], the
author advocated the harbor area as a unique territory that should have new business
models with its energy plan. In [79], two practical projects of seaport microgrids in
Hamburg (German) and Genoa (Italy), are manifested in detail, and the operating
data proves the validity of seaport microgrid.

A typical seaport microgrid is illustrated in Fig. 1.17. Generally, the seaport
is connected with the main grid and various renewable energy are integrated, i.e.,
seaport wind farms and PV farms. All the port-side equipment, including the quay
cranes, gantry cranes, transferring trunks, are electrical-driven.

The seaport provides four types of services to the berthed-in ships: (1) logistic
service. The berth allocation and quay crane scheduling for loading/unloading cargo;
(2) fuel transportation. Unloading or refilling fuel for the berthed-in ships; (3) cold-
ironing. Providing electricity to the berthed-in ships; and (4) refrigeration reefer for
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Fig. 1.17 Typical topology of future port microgrid

the cold-chain supply. With the above multiple energy flows involved, the future
seaport microgrid is a “maritime multi-energy system” [24], and the port central
control should give both the energy and logistic control signals to each sub-system
in the seaport [24].

1.3.3 Coordination Between Shipboard and Seaport
Microgrids

In the future, the connection between the ship and the port is no longer limited in the
logistic-side, and will be also expanded to the electrical-side. Figure 1.18 shows the
coordination between the ships and ports. When the ship berthed in, the seaport will
allocate a berth position and some corresponding port cranes for loading/unloading
onboard cargos. In the electric-side, the berthed-in ship is directly connected to the
seaport by the AC/DC converters, and all the load demands are met by the on-shore
side. The seaport becomes a coordinated electric-logistic multi-microgrid system.
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Fig. 1.18 Coordination between the seaport microgrid and shipboard microgrid, reprinted from
[24], with permission from IEEE
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1.4 Summary

In this chapter, we have concluded that the maritime grids are those local energy
networks installed in harbor ports, ships, ferries, or vessels, which consists of gener-
ation, storage and critical loads, and are able to operate either in grid-connected
or in islanded modes and operate under both the constraints of power system and
maritime transportation system. After the illustration of various promising technolo-
gies which are about to integrate, the implementation of next-generation maritime
grids is suggested to be a promising approach to resolve the energy efficiency problem
of the maritime transportation system, and may have the ability to re-shape the future
relationship between the ocean and inland.

Using full-electrification as the backbone, the future maritime grids, i.e., all-
electric ships, seaport microgrids, and various electrified ocean platforms, become
the “maritime multi-energy system”, which requires an advanced energy manage-
ment system to achieve the economic and environmental targets. From the aspect
of electrical engineering, the future maritime grids are a special type of power
systems. In land-based applications, the optimization-based power system opera-
tion has been extensively studied and should be expanded to the maritime grids for
future usages. This is also the main goal of this book, i.e., the optimization-based
energy management for the next-generation maritime grids.
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Chapter 2 ®)
Basics for Optimization Problem oo

2.1 Overview of Optimization Problems

2.1.1 General Forms

In different engineering scenarios, the maximizing or minimizing of some functions
relative to some sets are common problems. The corresponding set often represents
arange of choices available in a certain situation, and the “solution” infers the “best”
or “optimal” choices in this scenario. Some common applications include “minimal
cost, maximal profit, minimal error, optimal design, and optimal management”. This
type of problem has a general form as follows.

min / max f(x)
s.t.h(x) <0 2.1
gx)=0,vx e S

In (2.1), f(x) is the objective function, and represents the management tasks;
“min” and “max” represent the minimizing and maximizing of f(x), respectively;
x is the decision variables, and represents the choices of administrator; h(x) <
0 and g(x) = O are the inequality and equality constraints to limit the decision
variables, which represents the limitations on the choices of administrator by different
operating scenarios; S is the original set for the decision variables, such as continuous
variables, binary variables, integer variables, and so on. In this problem, the model
expects to find the “best” or “optimal” solution “x*” which meets the minimization
or maximization of f(x), and in reality, this may represent the minimization of costs
or the maximization of profits. Here we give a simple case, Example 2.1, for the
optimization problems.
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Example 2.1: Knapsack Problem

Assuming we have n types of goods and indexed by i € 1,2,3..., n. Each good
values W; and the size is S;, and we have a knapsack with the capacity of C. The
problem is how we can pack the goods with the highest value? The model of this
problem is shown as follows.

n
max Y W; - x;
i=1

n

S.t. Z S;i-x; <C 2.2)
i=1

x; € {0, 1}

In (2.2), x; is the “decision variables”, and represents the choice of the ith good or
not. If choosing the ith good into the knapsack, x; = 1 and if not, x; = 0. x; € {0, 1}
is the original set of “decision variables™. Y _, W; - x; is the “objective function”,
and represents the total values of the selected goods, and Y &, S; - x; < C is the
“constraint”, represents the total sizes of goods that should be smaller or equal to the
capacity of the knapsack. The “best” or “optimal” solution “{xl.*, iel,2,3...,n }”
can achieve the maximization of »;_, W; - x;.

Case Study for Example 2.1
Here we test a simple case, and the parameters are shown as follows: n = 5,
(Wili =1,2,...,5}=1(2,3,1,4,7],and {S;|li = 1,2, ...,5} =[2,2, 1, 2, 3], and
C = 6. The simulation results are shown in Fig. 2.1.

From the Fig. 2.1, the best solution for Example 2.1 is to select the 3rd, 4th and
5th goods, and the maximal total value is 12, and the total size of goods is 6.

Fig. 2.1 Simulation results of Example 2.1
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2.1.2 Classifications of Optimization Problems

(1) Classifications by decision variables

The decision variable x may consist of different number types, such as continuous
variables, binary variables, and integer variables, and the combination of different
number types produces different optimization problems. For example, if x only
consists of continuous variables, then problem (2.1) is “continuous optimization”,
and if x only consists of binary variables or integer variables, then problem (2.1) is
“binary optimization” or “integer optimization”. If x simultaneously has continuous
variables and integer variables, then problem (2.1) is “mixed-integer optimization”.

(2) Classifications by the objective function

Generally, objective function f (x) can be a scalar or vector and based on it, problem
(2.1) is “single-objective optimization” when f(x) is a scalar and “multi-objective
optimization” or “vector optimization” when f(x) is a vector.

(3) Linear optimization and non-linear optimization

In practical cases, f(x), h(x) and g(x) may have different mathematical charac-
teristics. If f(x), h(x) and g(x) are all linear functions, problem (2.1) is “linear
optimization (LP)”, and is “non-linear optimization (NLP)” if anyone in f(x), h(x)
and g(x) is non-linear. Specifically, if f(x) is non-linear, and i(x) and g(x) are
both linear, then problem (2.1) is “linear constrained and non-linear objective opti-
mization (LCNLP)”, and if f(x) is linear, and A(x) and g(x) are both non-linear,
then problem (2.1) is “non-linear constrained and linear objective optimization”.
Here we give some typical cases, if f(x), h(x) and g(x) are all polynomials and the
largest power is two, then problem (2.1) is “quadratic optimization (QP)”. Similarly,
we can define the “quadratic-objective quadratic-constrained optimization (QCQP)”,
“quadratic-objective linear-constrained optimization (LCQP)”, and so on.

(4) Convex optimization and non-convex optimization

Before introducing the convex optimization and non-convex optimization, the convex
function and convex set should be described in the first place. Firstly, convex functions
should meet (2.3) for any x; and x; in the domain of f(x) [1].

flao-x+-a)-x)<a- fx)+d—-a) fx) Yo el0,1] (2.3)

Then the convex set S should meet: for any two points in S, denoted as s; and
7, their linear combination « - s1 + (1 — @) - s, is still within S [1]. Illustrations for
convex function and convex set are shown in Fig. 2.2a and b, respectively.

FromFig.2.2a,x3 = a-x1+ (1 —a)-xpand f3(x3) < - f3(x1)+(1 —a)- f3(x2),
thus f3(x) is a convex function. Similarly, f}(x) is a concave function, and f,(x) isa
convex function and also a concave function. From Fig. 2.2b, any linear combination
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Fig. 2.2 Tllustrations of convex functions and convex sets

of 51 and s, belongs to the same set, which represents the convexity. For the non-
convex set, at least one combination of s; and s, is outside the same set, shown in
Fig. 2.2b.

With the above definitions, (2.1) is a convex optimization problem when the
following two conditions satisfied: (1) f(x) is convex in case of minimization and
concave in case of maximization; (2) § = {x|h(x) <0,g(x) =0,Vx € S} is a
convex set. The main characteristic of the convex optimization compared with non-
convex optimization is, a local optimal solution of the convex optimization is also the
global optimal solution of this convex optimization [1]. This characteristic greatly
benefits the applications of convex optimization, and in reality, if we can model or
reformulate the problems as convex optimization, then the global optimal solution
can be obtained after resolving any local optimal ones. This is one of the main reasons
for “the main watershed in optimization problem is not between the linear ones and
non-linear ones, but the convex ones and non-convex ones” [1].

In summary, the classification methods can be combined to characterize different

LEINT3

optimization problems, such as “mixed-integer linear optimization (MILP)”, “mixed-

integer non-linear optimization (MINLP)”, “mixed-integer quadratic optimization
(MIQCP)”, and so on.

2.2 Optimization Problems with Uncertainties

Uncertainties are inevitable in reality since the measurement and control both have
errors. To ensure safety and reliability, considering uncertainties in optimization
problems is necessary, and stochastic optimization, robust optimization, and interval
optimization are three main types.
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2.2.1 Stochastic Optimization

A general form of stochastic optimization is shown as (2.4) [2].

I)}lei)l(lg(x) + E< min f(y)) 2.4)

YEY (x.8)

In stochastic optimization (Eq. 2.4), x is the first stage decision variables which
are not determined by uncertainties; X is the feasible region of x; g(x) is the objective
function of the first stage; £ is the uncertain variables, and Y (x, &) is the feasible
region of y determined by x and &; f (y) is the objective function of the second stage;
E() is the expectation. In this model, the uncertain variable £ is depicted by the
probability distribution, such as the probability distribution of equipment failure, or
the probability distribution of renewable energy output, and so on. Then stochastic
optimization seeks the optimal solution within the feasible region defined by the
probability distributions. To clearly show the stochastic optimization, Example 2.2
is reformulated as follows.

Example 2.2: Stochastic Knapsack Problem

Based on all the assumptions of Example 2.1, we further assume that for Vi €
{1.2,....n/}, Wiisaconstant,andforVi € {ns,n; +1,....n}, W; = W.+AW,,
where W, is a constant and A W; follows a pre-given distribution 1. Then the original
knapsack problem becomes (2.5).

ny n n
max( Wi-xi+ Y Wc~xi)+E<max<Z AW,w)C,))
i=1 i=nf i=nf

n
S.t. ZS, -x; <C
i=1

x €{0, 1}, AW, ey

2.5)

where (Z?:fl Wi xi+ 30, We -x,-) is “—g(x)”, and the “—" is to transform the
maximization of (2.5) to the minimization of (2.4), and this term is not influenced by

the uncertainties; Z?:nf AW; - x; is f(y) which is influenced by the uncertainties;
and x = {xi|i = 1,2,...,nf},andy = {xili =nf,nf+1,...,n}.

Case Study for Example 2.2 Here we test a simple case, and the parameters are
shown as follows: n = 5, {W;|i =1,2,3} =[2,3,1], and {W,.|i =4,5} = [4,7],
and {AW;|i = 4, 5} is normally distributed as N'(0, 1), and {S;|i = 1,2,...,5} =
[2,2,1,2,3],and C = 6. The simulation results are shown in Fig. 2.3a and b.

From the Fig. 2.3a, the best solution for Example 2.2 is also to select the 3rd, 4th
and 5th goods, and the expected maximal total value is 12.23, and the total size of
goods is 6. The main difference between the stochastic optimization (2.5) and the
conventional deterministic problem (2.2) is the uncertainties of AW; will cause the
uncertainties of objective function, which is shown as Fig. 2.3 (b).
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Fig. 2.3 Simulation results of Example 2.2
2.2.2 Robust Optimization
A general form of robust optimization is shown as (2.6) [3].
min g(x) + max|( min 2.6
min ¢ (x) + may (yem, 5 f(y)) (26)

In robust optimization (Eq. 2.6), the main difference is the uncertain variable
& is described by the uncertainty set U, including the upper/lower limits and the
uncertainty budget. Then robust optimization seeks the optimal solution in the worst
case in the defined uncertainty set and therefore brings conservatism. With above,
the primary problem of the uncertainty modeling is how to determine the feasible
regions, such as the probability distributions in stochastic optimization and the
uncertainty set in robust optimization. Similarly, we can give a robust knapsack
problem as Example 2.3.
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Fig. 2.4 Simulation results of Example 2.3

Example 2.3: Robust Knapsack Problem

Based on all the assumptions of Examples 2.1 and 2.2, we further assume AW; is
within a range denoted as [W,, Wy ], and the robust knapsack problem can be shown
as (2.7). The meaning of each part is similar to the stochastic model of (2.5).

ny n n
max( Wi-xi+ Y Wc-xi)—krglvi‘p(max(z AWi~x,-)>
i=1 i=ny i i=ny

S.t. ZS,' x; <C
i=1
x; €{0,1}, AW; e [W,, Wy]

2.7)

Case Study for Example 2.3

Here we test a simple case, and the parameters are shown as follows: n = 5,
{(Wili =1,2,3} = [2,3,1], and {W,|i =4,5} = [4,7], and {AW;|i =4,5} €
[—2,1],and {S;|i = 1,2,...,5} =[2,2, 1, 2, 3],and C = 6. The simulation results
are shown in Fig. 2.4.

From the Fig. 2.4, the best solution for Example 2.3 in robust optimization
becomes the 2nd, 3rd and 5th goods, and the value of the objective function is
9. This change is due to the risk of the 4th good, since in the worst case, its value
becomes 2, and it is not worthy to select. From the above results, we can find the
results of robust optimization is conserve.

2.2.3 Interval Optimization

Interval optimization can be viewed as an enhancement of robust optimization and
consisted of a lower sub-problem and an upper sub-problem, shown as (2.8) [4],
and the upper sub-problem is similar with the robust optimization of (2.6). It should
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be noted that, for the maximization problem, the lower sub-problem is a robust
optimization problem. The main advantage of interval optimization is the interval
obtained can be used to analyze the influences of uncertainties on the system. A case
is given as Example 2.4.

. . . mi . )3
min g (x) +§é‘5‘(y§?(1£§)f (y)> min g(x) +rgneag(y€r;1(1£§)f (y)) (2.8)

Lower sub—problem Upper sub—problem

Example 2.4:Interval Knapsack Problem

ny n n
Lower:max Z W; - x; + Z We-xi | + Igl‘}vlll max Z AW, x; 2.9)
i=1 i=ny i=ny
ng n n
: it Xi ¢ Xi AW;x; 2.10
Upper:max X;W X -I—ZW X +IIAI%/)i( max Z Wix ( )
= 1=ny 1=ny

Case Study for Example 2.4

The parameters of Example 2.4 is the same as Example 2.3, and the decision variables
keep the same as Example 2.3, shown as Fig. 2.5, and the range of objective function
is [9, 12]. From this, we can see the interval optimization can give both pessimistic
and optimistic scenarios.

In summary, how to get the range of uncertain variables, i.e., the probability distri-
bution function or the uncertainty set of &, is the basic problem of the optimization
model. Nowadays, with the development of measurement and communication tech-
nology, more operating data can be transmitted and stored in the control center in

Fig. 2.5 Simulation results of Example 2.4
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real-time. How to use this type of massive data to model the feasible region of uncer-
tainty has become a hot topic, and various methods have been proposed. This topic
will discuss in Chap. 4.

2.3 Convex Optimization

The importance of convex optimization has been emphasized in the former context,
and in practical cases, we always want to model or reformulate a complex problem as
convex ones, and the semi-definite programming (SDP) and the second-order cone
programming (SOCP) are two classic types and have been well studied, which has
gained the concerns from both academic and industry.

2.3.1 Semi-definite Programming

The general form of SDP is given as (2.11) [5].

min Ag - X
st. A, X=by, (p=12,.,m) (2.11)
00X e s

where Ag, A, are all coefficient matrixes; X is the decision matrix which should
be semi-definite; b, is a coefficient vector; S” is the real space with n dimensions.
Conventional linear optimization (LP) and quadratic optimization (QP) can be both
formulated as SDP by defining X = x - x” [6], then many commercial solvers can
be used to solve the reformulated SDP for the global optimal solution, like Sedumi.

2.3.2 Second-Order Cone Programming

The general form of SOCP is given as (2.12) [7].

min f7 - x
st A x+ bl <cf x+di,i=1,2,...,n (2.12)
F-x=g¢g

where f T A;,b;, C[T, d;, F, g are all coefficient vectors or matrixes; x is the decision
variables. It should be noted that the objective function is no need to be linear, and
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quadratic objective function can also be solved like conventional SOCP. Similarly,
many types of optimization problems can be reformulated as SOCP, and several cases
are given below to show the usages of SOCP.

(1) Quadratic terms
For quadratic terms like x2, it can be relaxed by the following (2.13) [8].

W RW,y —xlh <y +q (2.13)
(2) Bilinear terms

For bilinear terms like x - y, it can be relaxed by the following (2.14) [8].

x-y=z (2.14)

1 1
S = 50 =2

1 1
SO +yY) - S+t (2.15)

In (2.15), —%()c2 + y2) and —%(x + y)? are concave, and the following convex-
concave procedure can be used to convexify them [9].

1 1
5<x+y)2—5(x2+y2)—wx—@—y-(y—y>5z

%(x“ryz)—%(f+§)2—(i+ﬁ)(x—i+y—&)5z (2.16)

where (X, y) is a constant reference point.

(3) Exponential terms
For bilinear terms like e¥, it can be relaxed by the following (2.17).
y=e", log(y) > x,log(y) < x (2.17)

Then at a reference point y, (2.17) can be reformulated as (2.18) similarly by the
convex-concave procedure [9].

1
log(y) + 5 y—y=<x (2.18)
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2.4 Optimization Frameworks

2.4.1 Two-Stage Optimization

In reality, there are many cases that the decision variables cannot be determined in the
same time, and this is the main motivation of two-stage optimization. The stochastic
and robust optimization models in (2.4) and (2.6) are both two-stage optimization.
Here we give a general form of two-stage optimization as (2.19) [10].

min g(x) + min f(y)
xeX yeY

s.t. l(x) <0,h(y) <0 (2.19)
G(x,y) =0

In the above formulation, g(x) and f(y) are the objective functions of the first
stage and the second stage, respectively; and x, y are the corresponding decision
variables; /(x) < 0, h(y) < O are the corresponding constraints and G(x,y) < 0
is the coupling constraints. It should be noted that, two-stage means x, y cannot be
determined in the same time. To clarify this problem, Example 2.5 is given below.

Example 2.5: Two-stage Knapsack problem

Based on all the assumptions of Example 2.1, we assume that the ith good when i
= 1,2,...,n; is available now and the ith good when i = n,, ..., n will be available
after some times, and n, < n;. The objective is still the maximization of the total
values, but each good can only be selected one time. Then the optimization problem
becomes (2.20).

mmZW o Z Wi -y;

xXeX ; j=n,

ZS 5 <C Y Sy = Cox e (0, 1)y, € (0,1) (2:20)

—112

xi+y;<lien,...,n

In the above formulation, ) /L, W;-x; and Z” W;-y; are the objective functions
of the first stage and the second stage, respectlvely, and Y ' S;-x; <C, Z _nz
y; < C are their corresponding constraints, and x; +y; < 1,i € ny,...,nyis the
coupling constraints.

Case study for Example 2.5
Here we test a simple case, and the parameters are shown as follows: n = 5, n; = 3
andn; = 2,and {(W;]i =1,2,...,5} =1[2,3,1,4,7],and {S;]i = 1,2,...,5} =
[2,2,1,2,3],and C = 6. The simulation results are shown in Fig. 2.6.

From Fig. 2.6, the final objective function is 13 by the final selections of the 1st,
2nd, 3rd, and 5th goods. In the first stage, the capacity of the knapsack is 4, and
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Fig. 2.6 Simulation results of Example 2.5

the 1st and 2nd goods are selected, then in the second stage, the 3rd and 5th goods
are selected, and no good has been selected for twice. If the coupling constraint
xi+y; <1,i €ny,...,nyis eliminated and the value of the 3rd good comes to 2,
then the final selections are the 2nd good, and 3rd good for twice and the 5th good,
and the objective function comes to 14.

In summary, the coupling constraint in two-stage optimization is essential which
could influence the final results. Which is proved by many practical cases, the
modifications on the coupling constraints benefit the objective function [10, 11].

2.4.2 Bi-level Optimization

Bi-level optimization is a special type of two-stage optimization and has a general
formulation as following (2.21) [12]. In the following formulation, F' (x, y) represents
the upper-level objective function and f(x, z) represents the lower-level objective
function. Similarly, x represents the upper-level decision vector and y represents the
lower-level decision vector. G; (x, ¥) and g(x, z) represents the inequality constraint
functions at the upper and lower levels respectively. We can find that y is the decision
variable of F(x, y) and also the optimal decision variable to minimize f(x, z). The
upper and lower levels are coupled to achieve the overall optimum. Here we also
give Example 2.6.
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min  F(x,y)

xeX,yeY
st.Gi(x,y)<0,iel,2,...,1 (2.21)
y€arg Héip{f(x, 7): gx,2) <0}
Z

Example 2.6: Bi-level Knapsack problem

Based on all the assumptions of Example 2.1, we assume inside the outer knapsack
with the capacity of C,, there is a small bag which holds the most valuable goods,
and the capacity is Cy, and the objective is to maximize the total values and also in
the small bag. Then the optimization problem becomes (2.22).

i=1 i=ny

nf n
max(Z Wi-xi+ Y W 'Xi)

ny
st > 8 -x; <C,—Cy,x; €{0,1) (2.22)

i=1

{xi|i :nf,nf+l,...,n} :argmax{ S Wiexi| D Six SCS}

i=ng i=ny

In the above formulation, Z:Z:f  Wiexi + Zf:nf W; - x; and Z?:n,- W; - x; are the

objective functions of the upper level and lower level, respectively. Z:Z 1 Siex <
C, — C,; and Z?:nf S; - x; < Cj are their constraints, respectively.

Case study for Example 2.6

Here we test a simple case, and the parameters are shown as follows: n = 5,n = 2,
and {W;li =1,2,...,5} =12,3,1,4,7],and {S;]i = 1,2,...,5} =[2,2,1,2,3],
and C; = 3, and C, = 6. The simulation results are shown in Fig. 2.7. From the
results, the lower level selects the 5th good in the first place and then in the upper
level, the 2nd and 3rd goods are selected, and the final objective function comes to 11.

2.5 Summary

This chapter has briefly introduced the frequently used optimization models in engi-
neering, and listed several important literature in the references for the readers.
Simple testcases are also given to show different types of optimization models, and
the models above will be used in the rest chapters of this book.
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Chapter 3 ®)
Mathematical Formulation oo
of Management Targets

3.1 Overview of the Management Tasks

Generally, maritime grids are designed to fulfil different missions, and during the
missions, different management tasks should be achieved, which can be mainly clas-
sified as five types: (1) thermodynamic tasks; (2) environmental tasks; (3) economic
tasks; (4) logistic tasks; (5) service tasks. Five types are grouped in Table 3.1.
Chapter 1 has clarified the focus of this book: the long-term energy management
of maritime grids, therefore the thermodynamic tasks are beyond the scope. In this
chapter, six tasks are selected for their deep relationsip with the maritime grids.

3.2 Navigation Tasks

3.2.1 Typical Cases

As we all know, the ocean area covers more than 70 percent of our planet. In the
following Fig. 3.1, we can see the main maritime shipping routes have connected
the whole world. With the help of this meshed route grid and the main junctions,
the bulk cargos, containers, and passengers are freely traveling by ships. Therefore,
the primary management tasks for the maritime grids are the navigation tasks, which
require the ships to arrive at the destination on time.

There are many different types of navigation tasks, and in this section, three
representative cases are to show the navigation tasks for ships: (1) ferry routes for a
short two-way trips; (2) cruise routes for along-distance traveling; (3) cargo/container
ship route for inland/oversea trading.
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Table :,;'1 Management tasks Management tasks Article
and articles
Thermodynamic Exergetic efficiency [1]
Exergy destruction [2]
Net power output [3-5]
Power output [6]
Maximum temperature [7]
Voltage fluctuation [8]
Environmental EEOI [9]
Gas emission [10]
Economic Operation cost [9, 10]
Fuel consumption [9, 10]
Investment cost [10]
Logistic tasks On-time rate [11]
Weather routing [12]
Cargo handling [13]
Service tasks Customer satisfaction [14]

3.2.1.1 Ferry Route

In many rivers, lakes, or straits, it is neither economic nor environmental to build
bridges above the water, and in those areas, ferries can usually act as one of the main
transport vehicles. In the following Fig. 3.2, two ferry routes are shown.

Figure 3.2a shows the ferry routes between Singapore to Batam. The current ferries
connect two ports in Singapore with five ports in Batam. There is a combination of
100 ferry-crossings each day across seven ferry routes, and seven routes are operated
by four ferry companies, including Sindo Ferry, Horizon Fast Ferry, Batam Fast
Ferry, and Majestic Fast Ferry, with the shortest crossing taking around 50 min
(HarbourFront Centre to Sekupang) [16].

Figure 3.2b shows the ferry route between the banks of the Yangtze River in
Chongqing, China, which connects the downtown of Chongqging “Chaotianmen
Square” with the Nanbin Road. This route is a famous tourism route in China which
has very nice urban views of the downtown and therefore it is not suitable to build
a bridge. This ferry line has been operated for more than 30 years and the entire
voyage consumes about 30 min.

Besides the above two cases, ferries are widely used in many other places in the
world. Especially in north Europe, ferries can convey both the passengers and cars
to pass many strait georges which are not suitable to build bridges.

Generally, the voyage of ferries is usually much shorter than other ships like the
cruises or cargo ships, and the ferry routes are often located near cities or towns.
Therefore the ferries are the pioneers of electrified ships for environmental concerns.
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3.2 Navigation Tasks
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Fig. 3.2 Two cases of ferry routes

The practical cases include the first all-electric ferry “ampere” in Denmark, which is
navigated only on batteries and can provide services with ZERO emission, and other
cruise ships in Norled company.

3.2.1.2 Cruise Route

Cruise ships are mostly used for commercial purposes. Different from the short trips
of ferries, cruise ships need to navigate for weeks with thousands of passengers and
staff. Before the widespread of airlines, cruise ships were the only way for inter-
continent traveling. Nowadays, cruise routes are mostly for tourism. Figure 3.3 gives
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Fig. 3.3 Two cases of cruise routes
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two examples of cruise routes.

Figure 3.3a shows a cruise route from Jakarta-Singapore-Penang, which is oper-
ated by the “Genting Dream” since 2016 [17]. The “Genting Dream” weights 151,300
dwt, and has 335 meters length, which can accommodate 4000 passengers and 2000
staff. The entire voyage lasts three days.

Figure 3.3b shows a cruise route from Shanghai-Naha-Kagoshima-Shanghai,
which is operated by the “Norwegian Joy” since 2017 [18]. The “Norwegian Joy”
weights 167,725 dwt, and has 333 meters length, which can accommodate 3800
passengers and 1800 staff. The entire voyage lasts six days.

In other places of the world, such as the Baltic Sea, the North Sea, the Caribbean
Sea, and the Mediterranean Sea, there exist many types of cruise routes, and with
the demand explosion of tourism, traveling by cruise ships will be more popular in
the future.

3.2.1.3 Cargo/Container Ship Route

Nowadays, most of the oversea trading and a certain part of inland trading are
based on maritime transportation, i.e., the cargo/container ships. Figure 3.4 shows a
cargo/container ship route from Dalian, China to Aden, Yemen.

The total navigation time in Fig. 3.4 from Dalian to Aden takes 20 days. The oil
tanker sails four times annually. Typical schedules are, the ship sets sail at 8:00 am on
January 1st, April 1st, July 1st, and October st from Dalian, and returns on January
25th, April 25th, July 25th, and October 25th respectively from Aden [19].

' Dalian in
Axecbelien Navigation Route China
Tajikist 1
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Fig. 3.4 A case of cargo-container ship route, reprinted from [19], with permission from Elsevier
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3.2.2 Mathematical Model

Three main types of navigation routes have been described above. There exist many
modeling methods for navigation tasks. In the following, a general complete model
will be described in the first place, and a simplified model is then depicted in detail.

3.2.2.1 Time-Space Network Modeling

Generally, the decision variables during different navigation routes include: (1) the
calls for the ports, i.e., choosing which port to berth in; (2) the navigation speed
during each time-period; and (3) the total navigation time, i.e., determining the total
navigation time to meet the requirements of customers. With the decision variables
above, the mathematical model of navigation tasks can be shown by the following
time-space network as Fig. 3.5, which is also shown in Refs. [20-22] as the navigation
routing problems.

Assuming 7 is the total navigation time-period and is divided into Nis,

time-intervals. Then the navigation task is modeled in a directed graph G
NS . .. . .

(U2f=‘1l)) S, A,), where S, is the navigation point set (ports) which can be selected

in the t-th time interval, and A, is the arc set which connects two concessive

time-intervals, i.e., t and ¢ + 1. Each element is denoted as a = (f,1) € A, =
(5{,s§+]|\7’51; €8, Vs, €81, € [I,N‘g‘ — 1]) For the #-th time-interval, the
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Fig. 3.5 Time-space network modeling of the navigation tasks
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ship can choose an arc a = (sf st ) as the navigation route and x{ = 1 corre-

t+1

spondingly, and in other cases, x{ = 0. The distance of (sf 5;41) is denoted as /,.
The cruising speed is denoted as v{ in each navigation route. Then the navigation
model can be shown as follows.

yin < e <ymin e 7, 7] 3.1)
T, =T+ T, t€Ns (3.2)
T[Na =At, = thcl a’ t e N\$| (3.3)
Vi
" < T, <T"",t € N, 3.4)
Nis|
Z X — Z X _bk,VkeUS, (3.5)
slest (k) si,1€87 (k)

where v/ | v are the minimum and maximum navigation speed during time-

periodt € [T,_l , T,] ; TtN“ is the consumed time of the navigation between (s):fl, sﬁ);

T,’””’, T;"** are the minimum and maximum consumed time when arriving at the port;
81 (k) (resp. 8~ (k)) denotes the set of arcs with the tail (resp. head) k; and b g = 1,
by, = —1and b, = 0 for other cases.

Equation (3.1) represents the navigation speed should be within the upper and
lower limits when navigation; Eq. (3.2) calculates the total consumed navigation
time; Eq. (3.3) calculates the navigation time between two ports; Eq. (3.4) limits the
total navigation time; Eq. (3.5) ensures the connectivity of the navigation scheme.

3.2.2.2 Simplified Modeling Method

In most cases, the navigation route is pre-determined and there is no need to re-
schedule the route, and in those scenarios, the only action for determining an energy
dispatch scheme is to adjust the navigation speed, and the above model in Sect. 3.2.2.1
can be simplified as Fig. 3.6. This simplification has been utilized in many research
works [9, 10, 14, 23, 24].

Mlustrated in Fig. 3.6, the voyage is divided into several time-intervals, and the
duration of each time-interval is denoted as At. In each interval, the cruising speeds
should be within the upper and lower bounds. Those time-intervals can be classified
into two categories: (1) when the ship berths in the port (berthed intervals, denoted
as Tp); (2) when the ship cruises within speed bounds (cruising intervals, denoted as
T.). During most time of T, the ship cruises around its nominal speed, while during
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Fig. 3.6 Simplified navigation task model with a fixed route, reprinted from [9], with permission
from IEEE

the time-intervals right approaching the port (partial-speed interval, denoted as T,),
it cruises at a slower speed. The relation between T}, T, is T = T + T, while the
entire voyage horizon is [K|T, and || is the number of ports.

As indicated in Fig. 3.6, the voyage distance between two consecutive time-
intervals, i.e. #-th and #-1-th time-interval, is the accumulation of cruising speed with
voyage duration At, which is represented as (3.6). Other constraints are shown in
Egs. (3.7)-(3.9).

Dist; = Dist,_y + v; - At (3.6)
(1 —8p%) - Distf < Dist, < (14 83%) - Distf, t € Ty, t # |KIT 3.7)
Distfi.; < Distycir < (1 + 8p%) - Disty. (3.8)
(1= sma)ym <ve < (1+8m)W" Ve,
mp(1 = 8m )W < ve < (14 8" )W Vi € T, (3.9
ve=0 VieT,

where Dist, is the traveling distance at 7-th time interval; 557 is the maximum
tolerance for traveling distance deviation; 8,'“* is the range of navigation speed; 7,
is speed ratio when berthing out. This model is under the assumption of a fixed
navigation route, which is suitable for energy dispatch analysis in many practical
cases.
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3.3 Energy Consumption

There are many energy sources in the maritime grids, such as diesel engine/generators
(DGs), fuel cells (FCs), energy storage systems (ESSs), renewable energy generation,
and so on. To achieve better environmental benefits, the minimization of energy
consumption is an important management task.

3.3.1 Diesel Engines/Generators

DG acts as the main energy source for most of the commercial ships and the auxiliary
energy sources of ports. DG can scale from several kilowatt to tens of megawatt in
different application scenarios. Generally, DGs can be classified as three main types
by their rotating speed: (1) slow-speed two-stroke DG; (2) medium-speed four-stroke
DG; and (3) high-speed four-stroke DG. A general case of diesel engines in ship is
shown as Fig. 3.7a [25].

The main differences between the above types of DGs are the rotating speed. The
slow-speed two-stroke diesel engines are typically defined as the one with its rotating
speed less than 400 rpm. The rotating speed of the medium-speed four-stroke diesel
engines usually is limited within 400~1400 rpm, and the high-speed four-stroke
diesel engine has more than 1400 rpm. In addition, the slow-speed two-stroke diesel
engine only has two strokes in a full operation cycle, which leads to greater ability
to export power than the other two types, meanwhile the size and capacity are also
larger.

Currently, the efficiency of the slow-speed two-stroke diesel engine can achieve
52%, compared with 42% for common land-based vehicles. Typical specific fuel-oil
consumption (SFOC) curves of different diesel engines are shown in Fig. 3.8.

(b) Direct propulsion

Fig. 3.7 Typical structure of diesel engines [25]
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Fig. 3.8 Typical specific fuel-oil consumption (SFOC) curves

From Fig. 3.8, different diesel engines have their highest efficiency at 60~80%
of rated power, and the energy consumptions under different power levels can be
modeled as quadratic polynomial equations, shown as follows.

FCP% = 1? - (rpg)” + ' - rpg + 1’ (3.10)

where FCPC is the fuel consumption of the diesel engine; rp¢ is the loading factor
. . . . _ Pt 1 R
of the diesel engines, which is defined as rpg = DG/ ch’ and Pj;, Pp; are the

current power and rated power of the diesel engine; h?, h', h are the coefficients,
which can be derived from the experimental curves like Fig. 3.8.

In conventional cases, the slow-speed two-stroke diesel engines are mostly used
as the primary energy sources in traditional ships for propulsion. The main reason
for this wide usage is the ability to coordinate with various types of propellers. In
traditional ships, the propulsion system is directly connected with the main diesel
engine, shown as Fig. 3.7b. As we all known, the speed of propeller is low, only
around 100 rpm. The low-speed diesel engines can therefore well accommodate
various types of propellers. But for the medium and high-speed diesel engines, an
extra speed reduction transmission system should be installed and brings 3~5%
energy loss. However, in AESs, the propulsion system has no necessity to directly
connect with the diesel engines, then the medium and high-speed diesel engines can
be served as the main energy sources with convenience. In port-side applications,
diesel engines usually act as the prime movers of power generators, and are the power
backups for emergency usages, or sharing the power demand in peak hours.
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3.3.2 Fuel Cell

Generally, fuel cell is a power source technology like diesel engines, but fuel cell
directly transforms the chemical energy of fuel into electricity, thus in operating
characteristics, the fuel cell is similar to the energy storage. For illustration, the fuel
cell structure and its integration into ships are shown as Fig. 3.9a and b, respectively.

Since no spinning parts and no combustion process, fuel cells combine the charac-
teristics of diesel engines and energy storages, i.e., the ability to continuously ouput
power like diesel engines and the high efficiency like energy storages. In addition
to the advantages of installment space and scalable capacity, fuel cells are viewed
as a promising alternative energy source for the maritime grids, especially for the
ships. In this field, fuel cell based on polymer exchange membrane (PEM) is the
most mature technology, and has been already applied in ship applications [26, 27].
Additionally, fuel cells using conventional hydrocarbon fuels also have gained great
concerns, such as Molten Carbonate Fuel Cell (MCFC) and Solid Oxide Fuel Cell
(SOFC). Figure 3.10 gives the power characteristics of a methanol fuel cell [28].

FromFig. 3.10, we take the voltage curve when the fuel flow rate equals 12 mL/min
as an example. The curve can be divided into phase I~III: (1) Phase I, electrochemical
polarization zone; (2) Phase II, Ohm polarization zone; and (3) Phase III, concentra-
tion polarization zone. Phase I happens when the current is small, and in this phase,
the electrochemical polarization effect enlarges the internal resistance of fuel cell.
The voltage curve therefore has a deep drop. Then in phase II, the internal resistance
is kept as a constant and the voltage characteristic follows Ohm’s law. At last, in
phase III, the concentration polarization effect dominates the process and further
enlarges the internal resistance, meanwhile, the voltage suffers a deep drop. From
the above Fig. 3.10, we can also find that the change of fuel flow rate has a significant
effect on Phase III but smaller effects on Phase I and II, respectively.

In the power curves, the power of fuel cell will firstly increase with the current,
then the power becomes saturated, at last in phase III, the power suffers a dramatic
drop. For a well-designed fuel cell, the Maximum-Power-Point-Tracking Method

EMS

Fuel Oxygen H Propellers
i Fuel :

h», L

Electrolyte N
—T =3 ; -
\_[ Waste | Oxygen Converter

Waste

—_
Anode Cathode

Battery
(a) Fuel cell structure (b) Fuel cell integration

Fig. 3.9 Illustration of fuel cell
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Fig. 3.10 Power characteristic curves of fuel cell [28]

(MPPT) will keep the fuel cell in the state of maximum power [29]. The fitting of the
maximum power in each curve with the fuel flow rate, shown as the brown curve in
Fig. 3.10, can represent the energy consumption model of a fuel cell. The formulation
is shown as follows.

PFC =g (rpc)* + 8" - rec + g° (3.11)
FcFC =pr-Trc- At ’
where PFC is the power of fuel cell; rpc is the fuel flow rate of fuel cell; g2, g', g°
are coefficients; FCFC is the fuel consumption of fuel cell; py is the unit price of fuel;
At is the length of time period.

3.3.3 Energy Storage

Generally, the operation of maritime grids includes the grid-connected and islanded
modes, and most of maritime grids need to work in the shifting between two modes.
For example, when the ship berths in a port and connects on cold-ironing equipment,
the ship operates in grid-connected mode, and when the ship berths out, it works
in islanded mode. For other ocean platforms, i.e., drilling platforms, offshore wind
farms, they may work in different modes by cases. For example, when the offshore
wind farms are connected with the main-land power system, they work in grid-
connected mode and when they are connected with the islands, they work in islanded
mode.

To keep the reliability in the above two modes, ESS is an important component for
all types of maritime grids to act as an energy/power buffer between the generation-
side and demand-side. In long-term timescale, an important application of ESS in
maritime grids is to shave the peak load, which is shown in Fig. 3.11. When in peak
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Fig. 3.11 Effects of energy 4
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load, ESS can discharge to share the power demand and in valley load, the ESS
can charge and the load demand increases. Then the peak load can be viewed as
“shaving” to other time periods and the maximum power demand can be reduced.
This “load shaving” ability is very important to the maritime grids since most of the
ships or ports don’t have much power reserve, and the proper operation of ESS is
essential to the reliability, security and stability of maritime grids.

The energy output of ESS is actually from other time-period, and the energy
consumption of ESS is for the energy losses in the charging and discharging process,
which is shown as follows.

o | EP, =P ny . AtVie T\1,PESS <0
EP = 5 PESS ESS
Et—l_m'At VIET\lth—l ZO

(3.12)

where EZ is the energy stored in the #-th time period; PZS is the power of ESS; At
is the length of time-period; 1., n4; are the charging/discharging efficiency of ESS.

3.3.4 Renewable Energy Generation

Renewable energy generation has been viewed as the solution to global fossil fuel
depletion. Similar in maritime grids, renewable energy generation has also been
gradually integrated. In Chap. 1, we have described many practical cases of renewable
integration into ships. Here we give several cases to illustrate the development of
renewable energy generation in ports.

The first case is from the Valencia port, Spain. This port plans to construct a
breakwater dam and install tidal energy generation on it, shown as Fig. 3.12. The
total capacity of the tidal energy generation can be 2.5 MW. A more detailed plan is
proposed by the Houston port [13], which is shown in Fig. 3.13.

In Fig. 3.13, Spilman’s island (area 6) is planned for the photovoltaic (PV) inte-
gration, and the PV power can be used to share the power demand of Houston port,
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Fig. 3.13 Future development of Houston port, reprinted from [13], with permission from Elsevier

such as cold-ironing, various port cranes and electric transportation. In the future,
renewable energy generation will play an even more significant role in maritime
grids.

The renewable energy generation harvests different types of energy and transforms
them into electricity. Its integration will reduce the usage of fossil fuel, which can
be viewed as “negative fuel consumption”. Its model can be shown as follow.

RE __ _ERE
FC™ = nEc (3.13)
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where FCRE is the fuel consumption reduction by renewable energy generation; EXE
is the total energy generated by the renewable energy generation; npc is the average
efficiency of fossil fuel to electricity.

3.3.5 Main Grid

As above, the main grid is also an important energy source for maritime grids,
especially for the ports. When the ship berths in a port and connects to the cold-
ironing equipment, the main energy source also becomes the main grid. Generally,
maritime grids will purchase electricity from the main grid according to the negotiated
price, and the energy amount is measured at the substation. The model is shown as
follows.

FCyc = p: - Emc (3.14)

where FC)yc is the price paid for electricity purchase; p; is the electricity price in
t-th time period; Ey¢ is the purchased electricity amount.

3.4 Gas Emission

As we all know, the great concern for gas emission in the maritime industry is the
main motivation of maritime electrification, including the electrification of ships and
ports. In the last decade, various energy regulations have progressively stimulated the
innovations and targeted technology of all components that influencing the system
performance from their design phases. As two main representatives of maritime
grids, the management tasks of gas emission for the ships and ports are described as
follows.

3.4.1 Gas Emission from Ships

3.4.1.1 Greenhouse Emission and Energy Efficiency Indexes

Currently, the plans of Energy Efficiency Design Index (EEDI) and the Energy Effi-
ciency Operational Index (EEOI) are one part of the IMO’s strategies to control the
greenhouse emission from ships, which have two main roles: (1) providing a bench-
mark for comparing the energy efficiency of vessels; (2) setting a minimum required
efficiency level for different ship types, size segments or cargo volumes.

The EEDI plan was first announced at the 62nd session of IMO’s Marine Envi-
ronment Protection Committee (MEPC 62) with the adoption of amendments to
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MARPOL Annex VI, IMO [31]. After that, four important guidelines from IMO
were enforced in the MEPC 63 in 2012 [32-35]. However, EEDI is used to measure
greenhouse emission in the design phase for new ships. To implement this index for
ships which have already been in service, EEOI is proposed as an amendment of
EEDI in 2013 [36]. The general simplified formulas of EEDI and EEOI are shown
as follows.

(Engine power) - SFC - CF

EEDI = (3.15)
DWT - speed

(Engine power) - SFC - CF
EEOI = - (3.16)
(Cargoweight) - speed

where SFC is the specific fuel consumption of engine (g/kW); CF is the conversion
factor of unit fuel to greenhouse emission; DWT is the deadweight of the ship;
speed is the navigation speed of ship. The difference between EEDI and EEOI is
the deadweight to replace the cargo weight. Both the EEDI and EEOI can measure
the greenhouse emission per unit transportation task.

From the above definitions, the ship which has higher energy efficiency will have
lower values of EEOI and EEDI. A detailed description of EEDI and the meaning of
each parts are shown as Fig. 3.14.

IMO also sets many reference lines for various ship types, and each type of ship
should attain smaller EEDI than the reference line. The reference lines for some ship
types are shown in Table 3.2.

IMO also sets many reduction targets in different time-period, i.e., (1) phase 0,
2013-2015; (2) phase 1, 2015-2020; (3) phase 2, 2020-2025; (4) phase 3, 2025 and
later. Phase 1 requires a 10% reduction in the reference lines compared with phase
0, and phase 2 requires a 15~20% reduction in the reference lines compared with
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Fig. 3.14 The EEDI calculation formula
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Table 3.2 Energy sources of different port-side equipment (data from [37])

Ship type Reference line
Bulk carrier 961.79 x DWT 0477
Gas carrier 1120 x DWT 0436
Tanker 1218.8 x DWT 0488
Container ship 174.22 x DWT 0201
General cargo ship 107.48 x DWT 0216
Refrigerated cargo carrier 227.01 x DWT0-24
Combination carrier 1219 x DWT 0438
Ro-Ro ship (Vehicle) DWT/GT < 0.3 (DWT/GT)*OJ % 780 x DWT 0471
DWT/GT > 0.3 1812.63 x DWT 0471
Ro-Ro cargo ship 1405.15 x DWT 0498
Ro-Ro passenger ship 752.16 x DWT 0381
LNG carrier 2253.7 x DWT 0474
Cruise passenger ship 170.84 x DWT 0214

phase 0, and phase 3 requires a 30% reduction in the reference lines compared with
phase 0. As we can see, the regulation for the greenhouse emission from ships will
be even stricter in the future, and gradually becomes the primary management task
for maritime grids.

34.1.2 NOx and SOx Emission from Ships

The concerns for both the NOx and SOx emission and some corresponding regu-
lations are depicted in Sect. 1.4. Figure 3.15a and b respectively gives the typical
emission characteristic of diesel engines for NOx and SOx [38].

From Fig. 3.15, the unit emission of both NOx and SOx will fall at first and then
stabilize when the loading factor increased. In this sense, quadratic models can be
formulated to represent the NOx and SOx emission from ships.

GEN = g3 - (rpe)” + 81" - oG + &' 3.17)

GE™ = g3" - (rpg)” + &" - roG + 8" (3.18)

where GEM, GES* are the NOx emission and SOx emission; g5, g\, gl are the
coefficients for NOx emission; g5, g7“, g5* are the coefficients for SOx emission;
rpc 1s the loading factor of diesel engine.
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Fig. 3.15 NOx and SOx emission characteristics (data from [38])

3.4.2 Gas Emission from Ports

Generally, the gas emission from ports can be from three aspects, (1) maritime
operation, including the approaching, hoteling and berthing-out of ships; (2) yard
operation, including the operation of port-side logistic equipment, such as quay
cranes, transferring vehicles and gantries; (3) generated hinterland logistic system
operation, including the railways or land-based transportation system to transfer the
cargo from the ports to the inland.

On the other side, the gas emission from ports has diversified types. Figures 3.16
and 3.17 respectively gives the breakdowns of different gas emissions in Taranto port
[39] and Los Angel port [40].

From Fig. 3.16, CO2 contributes to the majority of the total gas emission, and
NOx, SOx, and particle mass (PM) are the other three main types of polluted gas
emission. From Fig. 3.17, Ocean Going Vessels (OGV) are the main contributors
for most of the gas emission, except the carbon monoxide (CO). Especially for
the SOx emission, OGVs have contributed a 93.5% share. On the other hand, the
cargo handling equipment is the highest contributor for CO emission, mainly for
the incomplete combustion in the diesel engines of port cranes. At last, heavy-duty
vehicles are also important CO2 contributors, as well as a major NOx contributor.

To measure the gas emission from ports, CO2, SOx and NOx are selected as the
main representatives, and their calculations are similar and can be shown as Fig. 3.18.

Where GE is the total gas emission, i.e., CO2, SOx, and NOx;
SFOC4in, SFOCgy,SFOC,, are the specific fuel oil consumptions (SFOCs) for the
main engines, auxiliary engines, and the cargo handling equipment, respectively;
ELyin, ELuyy, EL,, are the average loading factors for the main engines, auxiliary
engines, and the cargo handling equipment, respectively; EPqin, EP gy, EP,4 are the
capacities of the main engines, auxiliary engines, and the cargo handling equipment,
respectively; D is the radius of the emission control area (ECA); V; is the speed of
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Breakdown of gas emission
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Fig. 3.17 Gas emission breakdown of Los Angeles port, US, reprinted from [40], open access
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Fig. 3.18 Calculation of gas emission from ports

ship when approaching the port. It should be noted that, Fig. 3.18 gives a general
formula to calculate the gas emission of ports. The detailed model can be formulated
after proposing the energy models of all the attached equipment.

3.5 Reliability Under Multiple Failures

During operation periods, maritime grids will face many types of failures, including
equipment outages, short-circuit failures, and so on. In some severe scenarios, the
failures may happen simultaneously and cause some serious consequences. To ensure
the security of maritime grids, the reliability under multiple failures is an important
management task. To simplify the modeling of multiple failures, only N-2 failures
are considered in this book.

3.5.1 Multiple Failures in Ships

Different from the land-based maritime grids, such as ports, the ships are gener-
ally “islanded grids” when navigation. To ensure reliability, the ships are generally
designed with two parallel buses. Some warships may even have four parallel buses
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Fig. 3.19 Multiple failure types in ships, reprinted from [41], permission from IEEE

to increase the survivity. Figure 3.19 gives a typical topology with two parallel buses,
i.e., PB and SB. Each load, i.e., Pyy,; ~ Py, Pys.1 ~ Pys.4, can receive electricity
from two buses, which means any one-bus failure will not cause any loss of load.
Currently, the topology as Fig. 3.19 with two parallel buses is a common design for
commercial ships.

The multiple failures in the ship power system can be classified into two types:
(1) the semi-island mode. This mode has coupled zones between the island parts. For
example, in Fig. 3.19, when in semi-island mode, the P, » can still receive electricity
from ATG by SB via the switch Ss », S, ». (2) island mode. This mode has no coupling
zones at all, and the total system is divided into two islands, which is shown as the
red failures in Fig. 3.19. In the above two severe multiple failure types, the island
mode is more serious than the semi-island mode. Some of the loads have to be cut
off if necessary.

3.5.2 Multiple Failures in Ports

The port grids are similar to conventional land-based distribution networks, which
will supply various types of service to the berthed-in ships. A typical case is shown
in Fig. 3.20, which has an electrical network, a water network, and a heat network.
Three networks are coupled together since the water pump is driven by electricity
and the combined heat power (CHP) generator is the source of the heat network.

As we can see, the networks in Fig. 3.20 are all radial ones, and any failure of
equipment or branch will cause the loss of load demand (electricity, water, or heat).
Then the network should be reconfigured to restore service. For example, when
W3 is in failure, W4, W5 will have no water supply, then W2 and W5 should be
reconfigured, then the water supply of W3~W5 can be restored.
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Fig. 3.20 A distribution network with multiple services (representing a port)

For multiple failures, there are two main types: (1) heterogeneous failures in
different networks, such as one failure in electrical network and one failure in the
water network; (2) homogeneous failures in the same network, such as two failures
are both in the electrical network, or in water network. The latter failure mode has
been well studied to improve network reliability [42, 43]. The former one involves
different types of networks, which is not well studied at present.

3.5.3 Reliability Indexes

Reliability is the ability of the network to provide services in different operating
conditions. Until now, there are many indexes to measure the reliability of different
types of systems or networks. Table 3.3 gives some examples of reliability indexes,

Table 3.3 Conventional reliability indexes

Indexes | Explanations Samples | Defintions

Pepsr.i | The component failure probability in the i-th system Pg;zSFi Knax p®)
U | Pepsri= Y ot
Prprc.i | The probability of load shaving in the i-th system Pg;,)LC ; Kmax p®)
© | Peprci= Y et

— max
Pepns.i | The expected loss of load demand in the i-th system P(EkD)NS i kmax p®)
’ PEDNS i= Z EDNS.i

’ k=1 Kimax
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including the component failure probability, the probability of load shaving, and the
expected loss of load demand.

The conventional calculation method for the reliability indexes is the Monte-Carlo
simulation [44], which generate a set of scenarios and calculate the samples in each
scenario. Then the reliability indexes are obtained by the average of samples. There
are also plenty of analytical methods based on system approximation [45], which
can calculate the reliability indexes more efficiently.

3.6 Lifecycle Cost

After the electrification of maritime grids, fuel cell and energy storage are both
important equipment to improve the overall energy efficiency. Many research has
investigated their applications and prove their benefits to the maritime grids. Due
to the limits of current technologies, the fuel cell and energy storage cannot fully
replace current power resources in the maritime grids. Therefore the fuel cell and
energy storage need to operate coordinately with the other energy resources to supply
the load demand. Additionally, the investment costs of fuel cell and energy storage
are still high, and to reduce their overall operating cost, certain operating strategies
should be implemented to extend their lifetime, and their lifetime model should be
formulated in the first place.

3.6.1 Fuel Cell Lifetime Degradation Model

According to current research, there are many factors to influence the lifetime of fuel
cell, including the operating temperature, humidity, and load profiles. Generally, fuel
cells are installed in places with an advanced environmental control system, and the
temperature and humidity can be sustained within a proper range [46]. Therefore the
load profiles are the main factors that influence the lifetime of a fuel cell.

The load profiles which have influences on the fuel cell lifetime include (1) load
changing; (2) start-up and shut-down; (3) idling; and (4) high load demand [47].
Then an empirical model for fuel cell lifetime can be shown as:

ADepc =K -p((ky - t1 +ky -ny + k3 - 1) + B) (3.19)

where ADepc is the degradation percentage of fuel cell; K is the degradation coeffi-
cient, which can be obtained by the degradation experiment; ¢, n;, t, are the idle time,
start-stop counts, and heavily loading time, respectively; S represents the natural
decay rate. After defining the ADegc, the lifetime of fuel cell can be given by
Eq. (3.20), and the operating cost of fuel cell can be given by Eq. (3.21).
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1 — EOLc

Lpc = ——2=r¢ 3.20

FC ADerc (3.20)
E

Costpe = PFC ZFC 3.21)
Lrc

where Lpc is the lifetime of fuel cell; and EOLg¢ is the end-of-life rate, generally
10%; Costgc is the operating cost of fuel cell; prc, Erc are the unit price and energy
capacity of fuel cell, respectively.

3.6.2 Energy Storage Lifetime Degradation Model

Among all the energy storage technologies, battery is the most frequently used energy
storage technologies for long-term energy management [48]. Furthermore, compared
with other energy storage technologies, such as supercapacitors, flywheels, battery
is more vulnerable and its lifetime is easier to be influenced by various operating
conditions.

Similar to the fuel cell, there are also many factors to influence the lifetime of
battery, such as temperature, humidity, and load profiles. Due to the installation
of environmental control system, the load profiles are also the main factor on the
battery lifetime. Among all the load profiles, the frequent discharging/charging events
contribute to significant battery lifetime degradation, which is shown in Fig. 3.21.

In Fig. 3.21, the Depth of charge (DoD) is defined as dj, in a discharging or
charging event, which is illustrated in Fig. 3.21a. The discharging or charging event
is defined as the process between two concessive state-switching points (charging to
discharging or vice versa), i.e., the continuous discharging or charging periods, in
which the ESS maintains the single charging or discharging state and lasts for ATg¢
with the average power Py " AT During each charging or discharging event, d, is
defined as the difference between the SOCs before and after the event, which can be
expressed as Eq. (3.22), where E?@ is the energy capacity of the battery. The relation

Maximum SOC

SOCs before and after
discharging
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I 2

£ =—bhattery lifetime
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(a) Definitions of the depth of charge(DoD) (b) Relation between DoD and the battery cycle life

Fig. 3.21 Depth of charge and the battery lifetime, reprinted from [9], permission from IEEE



3.6 Lifecycle Cost 71

between the DoD and the battery lifetime, denoted as L, is shown in Fig. 3.21b and
the mathematical form in Eq. (3.23), where a, b, ¢ > 0 are the fitting coefficients
in Fig. 3.21b. At last, the operating cost of battery can be formulated as Eq. (3.24),
where Costg,, is the operating cost of battery, and pggs is the unit investment of battery.

dy(ATsc) = Pra * ATsc/ pa (3.22)
Lydy) =a-d;" e (3.23)
. EBaz
Costgy = P = (3.24)
Ly

3.7 Quality of Service

Besides the economic benefits and allocated tasks, the quality of service (QoS) is
also a vital management task for the maritime grids. There are many types of QoS,
including the on-time rate of ships, the satisfactory level of passengers and ships. The
on-time rate can be controlled by the management of navigation task in Sect. 3.2.1 and
is not discussed here. The satisfactory levels of passengers and ships are described
as below.

3.7.1 Comfort Level of Passengers

A cruise ship should provide heating load and hot water supply to the passengers.
Equations (3.25) and (3.26) define the QoS of the above two services in a cruise ship.
T is the total time period.

Trirvio = Tairvioa Y Tairvio2
_[TIN IN,RE
Tairvior =T = T,.:
TIN < TIN,RE

min

3.25
TAir,vi0.2 = ( )

Twavio = {VHY < (1 + 8pw)VSE}

|: fleTAir,vinA] (| TIN - T}ZZJVRE )D 1

IN _ IN ,RE
+ ‘/‘tETAinvtoZ ( T T

min
IN ,RE IN ,RE
.fzéTA,-,. vio (T”“K —Toin

[VAY — (1485 w) VE|

QoS4ir = (3.26)
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where TV and VAW represent the indoor temperature and hot water supply;
TINRE !M-RE are the maximal and minimal limits of the indoor temperature; V% is
the required hot water demand; Ty; i, and Ty, i, are defined as the time intervals
or sub-intervals which violate the indoor temperature and hot water supply service
requirement (tighter than the constraints). Equation (3.26) defines the QoS of indoor
temperature and hot water supply, respectively. From the above definitions, the cruise
ship with a lower QoS index will better satisfy the thermal load demand of the tourists.

When the QoS index equals 0, the thermal load demand is met all the time.

3.7.2 Satisfaction Degree of Berthed-in Ships

For the berthed-in ships, the cold-ironing power and cargo handling are two main
services provided by the port. Similar to the QoS of Eq. (3.27), the QoS for berthed-in
ships can be defined as follow. 7 is the total time period.

TCP vio — {PCP = PCP
Litepn P ~PEE])
00Ser = e T (3:27)

f'ETCP 1o

QoScy = T

max

where Tcp i, 18 the time intervals or sub-intervals which violates the cold-ironing
power requirement; P<* is the actual cold-ironing power; PS? is the minimal required
cold-ironing power QoScp is the QoS of cold-ironing power; T is the actual cargo
handling time; 7,57 is the maximal cargo handling time; QoScy is the QoS of cargo
handling.
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Chapter 4 ®
Formulation and Solution of Maritime G
Grids Optimization

4.1 Synthesis-Design-Operation (SDO) Optimization

As a special energy system, the optimization of maritime grids can be considered as
three levels similar to conventional land-based energy systems [1-3].

ey

@

3

Synthesis optimization. Synthesis is defined as the components used in the
maritime grids and their connections. Via synthesis optimization, the optimal
configuration of the maritime grids can be determined. For example, the ship
hull design, electrical layout, and whether to integrate a component or not. Since
the synthesis optimization answers the “Yes-or-No” questions and therefore
involves certain binary decision variables.

Design optimization or planning optimization. Design optimization is to deter-
mine the technical characteristics of components which are determined in
synthesis optimization, such as the capacity and rated power. The difference
between synthesis optimization and design optimization can be given by the
well-known “siting and sizing” problems. The “siting problem” determines
which type of components can be used and where to install them, which belongs
to the synthesis optimization. Then the “sizing problem” determines the capac-
ities of the installed components, which belongs to the design optimization.
In power system research, design optimization is often named as planning
optimization.

Operation optimization. After the synthesis optimization and design optimiza-
tion, the operation optimization determines the optimal operating states of
each component under specified conditions. Taken the navigation speed as an
example. The synthesis optimization determines the type of main engine and
the design optimization determines the capacity of the main engine, then oper-
ation optimization determines the optimal loading levels to address different
navigation scenarios, such as different wave and wind scenarios.
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Three optimization problems are the basic problems for a maritime grid. They
are abbreviated as Synthesis-Design-Operation (SDO) optimization [4]. It should be
noted that only energy management optimization is within the scope of this book.

Many efforts have been devoted to this field to achieve the overall optimum
of maritime grids. In this Chapter, the SDO optimization of maritime grids will
be comprehensively reviewed in the following, (1) topologies of maritime grids;
(2) typical SDO optimization problems; (3) compact form and solution methods.
Compared with other review works, this Chapter firstly points out the significance
of coordination between different maritime grids in SDO optimization.

4.2 Coordination Between Maritime Grids

Maritime grids are the offspring of extensive maritime electrification, and widely
existing in ships, seaports, and various ocean platforms. Conventionally, maritime
grids have very limited capacities and their optimizations also have limited influences
on the overall system characteristics. For example, in conventional ships, the propul-
sion is directly driven by the main engines and the capacity of the corresponding
ship power system is much smaller than the propulsion system. However, when a
ship is fully electrified, the propulsion system becomes the electric load under the
ship power system, and the energy management of ship power system can determine
the economic and environmental characteristics of ship. Similarly, when a seaport is
fully electrified, the energy management of seaport can coordinate both the logistic
and electric systems to achieve better economic and environmental benefits. In this
sense, with the development of maritime electrification, the energy management of
maritime grids will play an even significant role in the future.

Generally, all the electric networks installed within harbor territory can be viewed
as maritime grids, which act as the interface between ocean and land. To clarify the
relationship between different maritime grids, we give Fig. 4.1 to show their operating
framework. There are five types of maritime grids in Fig. 4.1, (1) wind farms, and
(2) island microgrids, and (3) offshore platforms, and (4) seaport microgrids and (5)
ship power systems. This illustration shows that the future maritime grids will be
coupled with each other, and the coordinated optimization is necessary for future
maritime grids.

(1) Offshore wind farms, can supply power to island microgrids, harbor city,
offshore platforms, and seaport microgrid.

(2) Island microgrids, are islanded microgrids that are away from the main grid,
which uses renewable energy and generators to supply the load.

(3) Seaport microgrid, is a grid-connected microgrid in an electrified seaport, which
uses electricity to drive the port cranes and providing cold-ironing power to the
berthed-in ships. Various renewable energy sources can be integrated into a
seaport and excess electricity can sell to the main grid of harbor city.
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Fig. 4.1 Coordination between different maritime grids

(4) Offshore platforms, are islanded microgrids with many types of construction
missions, such as fuel drilling, or underground cable construction. It should be
noted that, offshore platforms may be connected with the islands and harbor

city by underground pipes.

(5) Ship power systems. The ships can navigate between the islands, offshore
platforms, and seaport to transfer fuel or other cargos. For example, the fuel
produced by the offshore platform can be supplied to seaport by ships. It should
be noted that, ships have different types, such the containers, cargo ships and

the ferries for passenagers.

4.3 Topologies of Maritime Grids

Different types of maritime grids work in different conditions. For example, the
notation of “CCO-HR(TEMP)+” in the American Bureau of Shipping (ABS) is for
the ships which are working under low-temperature environment. “HR” is the emer-
gency operating hours in the low-temperature environment (18 or 36 h). “TEMP”
is the design service temperature, and “+” means that there is additional equipment
for the crew for training in low-temperature [5]. The notation of “DPS” is for the
dynamic position system of ships, which represents the ship has an automatic control
system to maintain the position and heading at sea without external aid under speci-
fied conditions [5]. For the seaports, various equipment should be invested to serve
the containers, cargo ships, or cruise ships, and so on, such as the port cranes to serve
the containers, and the cold-ironing equipment for the berthed-in ships. The above

designs are all determined by the synthesis optimization of ships.
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With full electrification, maritime grids are multi-energy networks that use the
electrical network as the backbone to supply various service networks, such as fuel
flow network, thermal flow network, and water flow network [6]. In this sense, the
synthesis optimization of maritime grids is mainly determining the topologies to
achieve better performance. As two main representatives, the ship power system and
the seaport microgrid are described in detail in this section.

4.3.1 Topologies of Ship Power Systems

For the ship power system, ABS has “R1”, “R1-S”, “R2”, “R2-S” standards [5]. “R”
is shorted for redundancy, “1” or “2” indicates the single/multiple sets of propellers
and steering systems. “S” means the propulsion machines are located in separate
compartments for emergency cases. Therefore, “R2-S” represents the ships that
have multiple sets of propeller and steering system, and the propulsion machines
are located in separate compartments. Among the above standards, “ABS-R2” is a
conventional standard for the commercial ships under ABS, which means the ship
power system can fully restore the serviceability when single failure. Figures 4.2,
4.3,4.4,4.5,4.6 and 4.7 give some examples which follow the “ABS-R2” standard
or above.

Ferries are small or medium-sized ships for passenager transportation, often using
AC power supply with 690 V, which can carry hundreds to thousands of people,
with a round-trip distance of tens of kilometers. For example, the world’s first all-
electric ferry, named as “Ampere”, has been equipped with 2.6 MWh power batteries,
reducing the use of 1 million liters diesel every year [7]. A typical illustration is shown
in Fig. 4.2.

Cruise ships are large tourist ships that can carry thousands or even tens of thou-
sands of people for several weeks, shown in Fig. 4.3. It usually uses the 11 kV
AC power supply and is equipped with 4 or 6 generators. The cruise ship has many
restaurants, playgrounds, cinemas, casinos, etc., which uses 440 V low-voltage power
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Fig. 4.2 All-electric ferry
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supply. Due to the huge volume of cruise ships, the rated power of a single thruster
can reach 20 MW. The total propulsion power of the Royal Caribbean’s “Ocean
Charm” is 97 MW [8].

Offshore construction ships are usually used for ocean-going operations, such as
dredgers, oil-drilling, and fiber optic cable laying ships. Such ships require good
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maneuverability, so they need propulsion systems with huge capacities, especially
for the thrusters to meet ship steering and U-turn. A typical illustration is shown in
Fig. 4.4.

Cold chain transportation ships usually transfer refrigerated containers and store
all kinds of fresh food. This type of ship needs to provide a large amount of refrig-
eration load during navigation [9]. In Fig. 4.5, the refrigeration load is supplied by
440 V AC power.

LNG ships are mainly used to transport LNG. Unlike the cold chain transportation
ships in Fig. 4.5, LNG ships do not directly supply refrigeration load, but mainly
use the vaporization process of LNG to maintain Temperature (—163 °C), and the
vaporized natural gas is recovered through a reliquefaction device. This type of ship
usually uses the 11 kV AC power supply [10]. Generally, this type of ships usually
has a displacement of more than 100,000 tons, and the propellers need to be driven
by several motors at the same time to ensure the maneuverability of the ship.

The last case is the warship which has multiple parallel buses (4 buses in Fig. 4.7)
[9]. Four buses are backups to each other to ensure the survivability of warships on
the battlefield.



4.3 Topologies of Maritime Grids 83

In the future, with the development of all-electric ship, there will be more advanced
topology designs for ship power systems, and the AC ship power system will be
gradually replaced by the DC ship power system, which has larger capacities and
more functionalities.

4.3.2 Topologies of Seaport Microgrids

Typically, the structure of seaport microgrid is similar to a land-based distribution
network, which has (1) the main loop primary distribution network; (2) secondary
loop-islands distribution network; and (3) tertiary distribution systems at specified
voltage levels [11]. Figure 4.8 shows the structure of a seaport microgrid [12]. The
main difference is the seaport has multiple redundant switches to ensure the power
supply to critical loads, such as various port cranes and refrigeration.

With the electrification of seaport, seaport is required to provide more services
to the berthed-in ships, such as the cold-ironing power. Additionally, the electrifica-
tion of transferring vehicles is also another trend, which requires seaport to provide
adequate charging facilities. Furthermore, harbor territory usually has much more
plentiful renewable energy resources compared with inland, and the renewable gener-
ation integration into seaport to improve the energy efficiency is therefore a promising
trend in the synthesis optimization of seaport microgrid. In this sense, the synthesis
optimization of seaport microgrid can be viewed as an expansion planning problem.
Ref. [13] analyzes the impact of cold-ironing power on the seaport and Ref. [14]
analyzes the impact of renewable generation integration.
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In the future, the seaport microgrid will become a multi-energy microgrid that
involves electricity, thermal power, fossil fuel, and even water flow supply [6]. To
clearly show the future operating framework, we re-draw Figs. 1.17 as 4.9. Different
energy systems should be coordinately planned for an overall optimum.

4.3.3 Topologies of Other Maritime Grids

Besides the above two main representatives of maritime grids, i.e., ship power system
and seaport microgrid, there still exist many other types of maritime grids, such as
the island power system, drilling platform, or offshore oilfield. In this section, an
island power system is shown in Fig. 4.10 as a representative [15].

At first, a power plant acts as the main power source of an island power system,
and various renewable energy sources are integrated into this system, such as wind
power and photovoltaic power. Additionally, several energy storage stations are used
to improve the reliability.
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4.4 Synthesis-Design-Operation Optimization of Maritime
Grids

4.4.1 Synthesis Optimization for Maritime Grids

There are currently lots of research on the synthesis optimization of maritime grids.
Here we give three cases to show their effects.

(1) Graph theory-based ship power system expansion

Nowadays, full electrification of ships is first implemented in Warships [16, 17]
and may further expand to commercial applications [9]. As we know, ships may
face various failures when navigation, such as malicious attacks on warships and
component failures. To improve the resilience of a ship power system, Ref. [18] has
proposed a graph theory-based ship power system expansion method to determine
the optimal transmission line expansion strategy. The process is briefly described as
follows.

Figure 4.11 gives a graph topology of an all-electric ship [19]. There are 22 buses
and 29 lines in this graph. 4 generators are employed as the main power sources. 8
loads are classified as weapon load, propulsion load, radar load, control center, and
hotel load according to the significance. The proposed model is to determine which
lines should be installed for better resilience.
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The proposed model has two objectives, (1) the weighted maximum flow from the
generations to the loads, which is defined as (4.1), (2) Graph algebraic connectivity
represented by the second smallest eigenvalue of Laplacian matrix.

WSMF =Y ", - > MPFyn 4.1)

In gn

where WSMF is the defined weighted maximum flow index; gn, [n are the index
set for generations and loads; M F,, ;, is the maximum flow from the generations
to the loads. The defined WSMF represents the maximum transmission capacity to
the loads and can be acting as an important index to measure the resilience of ship
power system.

In the case study, the proposed method is compared with the method of minimizing
adding lines cost (MCR) [20]. The comparing results are shown in Table 4.1, and
the simulation results bring two conclusions, (1) proper transmission line expansion
can improve the resilience of ship power system; (2) the max-flow index is a useful
index to measure the resilience of ship power system. From Table 4.1, the proposed
model can reduce around 50% attacking scenarios which lead to load shedding.

Table 4.1 Load shedding results of different methods [18]

1 Attacked line 2 Attacked lines

Attacking scenarios Total attack Attacking scenarios Total attack

causing load shedding | scenarios causing load shedding | scenarios
Original 10 27 233 351
MCR 6 29 167 406
Proposed 5 29 138 406
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(2) Renewable generation expansion for Houston port

As the main interfaces between the ocean and inland, the environmental behaviors of
seaports are always the concerns of the maritime industry [6]. With the electrification
of seaports, massive renewable generation expansion in seaport has become reality.
Ref. [14] proposes a model for the renewable generation planning and defines (1)
smart energy index and (2) smart environmental index to measure the behaviors of
seaports. The relevant parts with renewable energy integration are shown as follows.

RSgpc =Y. PrrG + RSuc - D (1 — Prousage) - Puc

SEglrpc = RSmas 4.2)
T
EM - P
SEnlgpc = —% 4.3)
T

where SEgIgrpc and SEnlgp¢ are the relevant parts of renewable power generation
in smart energy index and smart environmental index; RSgpg, RSy are the energy
consumption ratios from renewable power generation and the main grid; Pgps and
Py are the power from renewable power generation and the main grid; Pro,qg, 1S
the outage percentage of the main grid; RS7" is the goal value of total renewable
power generation within the seaport; EM is the average gas emission of unit power;
E M7 is the goal value of total gas emission.

With the above two defined indexes, seaport can select a proper capacity of renew-
able power generation to achieve various economic and environmental management
targets. The case study has shown that the gas mission of seaport can reduce more
than 50% by the optimization of the proposed method, which can be a reference for
future research.

(3) Structural optimization of an offshore oilfield power system

The ship power system and seaport microgrid are two main types of maritime grids,
and there also exist various other maritime grids. The offshore oilfield power system
is one representative that is studied by Ref. [15]. An offshore oilfield power system
to be optimized is shown in Fig. 4.12a.

An offshore oilfield power system generally consists of an island and many drilling
platforms. The island acting as the power source and a proper network structure
should be planned to achieve (1) acceptable economic cost; (2) acceptable environ-
mental behavior; and (3) acceptable reliability level. After solving the formulated
model, the optimized structure is shown as Fig. 4.12b.

Practically, the drilling platforms may be away from an island. Therefore a more
general case is the island is replaced by the mobile power plant. The mobile power
system can move with the drilling platform when the mission is finished.
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4.4.2 Design and Operation Optimization for Maritime Grids

In this section, two cases are given to show the effects of design and operation
optimization for maritime grids.

(1) Multi-agent energy management for a large port

Reference [21] proposes an energy management method based on a multi-agent
system for a large electrified port. The agents in a port are shown in Fig. 4.13. The
energy management process is simplified as follows.

Port Manager Agent (PM/A) Shore-side power

Plugged-in EV agent (SSP/A)

agent (PEV/A)

i

" Reefers agent |
(R/A)

Upper grid

Shore-side power
agent (SSP/A)

Fig. 4.13 Multiple agents in a large electrified port
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The overall port is under the control of the port manager agent (PM/A). PM/A
aggregates the load demand within the port and communicates with the upper grid
to determine the electricity price. The other agents include the plugged-in EV agent
(PEV/A), which determines the charging/discharging of transferring vehicles, and
the reefers agent (R/A), which determines the load demand of reefer containers, and
shore-side power agent (SSP/A), which determines the cold-ironing power for each
berthed-in ship. PEV/A, R/A, and SSP/A optimally dispatch the load demand of local
agents (each component, such as one EV, or one reefer container) and then update
with the PM/A. The overall process can be shown in the following Fig. 4.14.

PM/A sends electricity price to each agent (PEV/A, R/A, SSP/A), then each agent
calculates its own optimal power demand plan and sends signals to each local agent
of components. Each local agent determines if the load demand plan can be achieved.
Then the “Yes/No” signals are sent back to PEV/A, R/A, and SSP/A. If all the local
agents can achieve the optimal load demand, the total load demand under this agent
will be sent to the PM/A. If not, the agent, i.e., PEV/A, R/A, SSP/A, will re-calculate
the optimal load demand based on updated system conditions. This process will be
repeated until convergence. This method has proved to be efficient and accurate in a
real-world large electrified port. However, as an important part, the energy consumed
by the port cranes are not considered in this research.

(2) Sizing of the shipboard gas capture system

We have mentioned the gas capture system in Chap. 1. Here we re-draw Fig. 1.11 to
show the process of Ref. [22]. When the gas capture system is integrated into ships,
the gas emission will be absorbed into storage and not emitted to the atmosphere.
Before the wide usage of clean fuel, the gas capture technologies are viewed as
feasible transition routes to control the gas emission.
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Currently, the sulfur emission capture is the most mature technology among all the
available technologies [23]. Lots of commercial applications have been implemented
to meet the “2020 sulfur limit” [24]. The capture of carbon emission is a mature
technology in land-based applications, but it still has many obstacles to be used in
ships, such as the installment space, energy requirement, and so on. Other gas capture
technologies, such as nitrogen capture and particle capture are all under investigation
to find feasible implementations (Fig. 4.15).

The gas capture system integration will bring two problems, (1) what is the
capacity of the gas capture system? and (2) what is the capacity of additional power
sources to supply the gas capture system?

The first question is influenced by the environmental policies. For example, in
2020, IMO has launched the ever strictest sulfur limit policy, which requires to use
0.5% sulfur fuel. Then the installed gas capture system should have enough capacity
to make the emitted gas has no more than 0.5% sulfur. In the future, the installed
carbon capture system should also meet the global and regional carbon reduction
goals. The second question is a design optimization for the ship power system. Since
the original configuration of the ship does not have the gas capture system, the original
generation system may not have enough capacity to supply the gas capture system.
So extra power source, i.e., extra generator or energy storage, should be installed
onboard. Ref. [22] formulates a sizing model to determine the above two questions.
Its process is shown as the following Fig. 4.16.
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4.5 Formulation and Solution of SDO Optimization

4.5.1 The Compact Form of SDO Optimization

In general terms, the compact form of SDO optimization for maritime grids can be
shown as follow.

min f (v, w, z) 4.4

where f(v,w,z) is the management objective for SDO optimization, which is
described in detail in Chap. 2; v is the set of decision variables for operation optimiza-
tion, i.e., load factors of generators or engines, mass flow rates, pressure/temperature
of streams, etc.; w is the set of decision variables for design optimization, i.e., nominal
capacities of generators or engines, transmission limits of pipes or lines, etc.; z is
the set of decision variables for synthesis optimization, which are generally binary
variables to indicate the investment or non-investment of each component, i.e., with
1 value for investment and with O for non-investment.

For a complete SDO problem, Eq. (4.4) is under a set of constraints, including both
equality and inequality constraints, to represent various limits in different scenarios.

hiv,w,2)=0,i=1,2,3...,1 (4.5)

giv,w,2) <0,j=1,23...,J (4.6)
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A typical problem can involve one type, two types, or even three types of variables.
For example, Refs. [1-3] involves three types of variable v, w, z, and Ref. [22] only
involves two types. Generally, the SDO problems are non-linear and non-convex and
very hard to be solved. Various methods have been proposed in this field to solve the
SDO problems. In the following, the solution methods are classified into groups and
then a decomposition-based method is described in detail for its usage in Chaps 4-7.

4.5.2 Classification of the Solution Method

The main classifications for solving the SDO problems are shown in Table 4.2
with some representative references, i.e., (1) mixed-integer linear programming,
and (2) constrained non-linear programming, and (3) dynamic programming, and
(4) evolutionary algorithm.

Table 4.2 Classifications for

Models Algorithms Ref
the solution methods of SDO ocens gonms cerences
problems Mixed-integer linear Branch and [25, 26]
programming bound
Constrained non-linear Generalized [27, 28]
programming reduced gradient
method
Sequential [26,29-31]
quadratic
programming
Mixed-integer [22, 32-36]
non-linear

programming

Dynamic programming Sequential direct | [3, 37]
method
Deterministic [38]
dynamic
programming
Evolutionary algorithm Genetic [39]
algorithm
Particle swarm [40, 41]
optimization
Ant colony [42]
algorithm
Whale [43]

optimization
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4.5.3 Decomposition-Based Solution Method

In the following Chaps. 4-7, a decomposition-based solution method is proposed to
solve a certain type of SDO problem, which is used in Refs. [22, 32-36] and belongs
to the type of constrained non-linear programming. This type of SDO problem is
shown in the following compact form.

Ivllllvlg fvi,v) 4.7
s1.giv) <0,j=1,2,....7J (4.8)
hi(vi) = ha(v2) 4.9)

g(n) <0,i=1,2,...,1 (4.10)

This problem belongs to the operation optimization, and vy, v, are two types of
operation variables, and usually belong to two different systems. For example in
the navigation optimization of all-electric ships, v represents the energy-related
variables and v, related to the speed variables.

In the above formulation, Egs. (4.8), (4.10) are the constraints in two different
systems. For example in the navigation optimization of all-electric ships, Eq. (4.8)
is the constraint set for energy and Eq. (4.10) is the constraint set for speed, and they
are related by Eq. (4.9). This is a special type of maritime grid optimization problems
since the couple between two systems only lies on Eq. (4.9).

In this book, this type of problem can be solved by a decomposition-based method
and divided the original model into two levels as Eqgs. (4.11) and (4.12).

min f (vy, v})
Vi
s.tgtm) £0,j=1,2,....J @.11)
hi() = ha(v3)

min fy,, (VT vz)
v

(4.12)
s.t.giz(vz) <0,i=12,...,1

Equation (4.11) refers to the upper level, and in this level, decision variables v, are
viewed as constant variables, which are updated in the lower level, i.e., Eq. (4.12). In
Eq. (4.12), f,.. is an auxiliary objective function, which represents a management
target, such as minimization of voyage deviation, or minimization of voyage period,
and so on. With the above decomposition, the original problem is decomposed into
two simplified sub-problems.

In literature, Refs. [22, 32-36] solve the energy management problem for all-
electric ships. Equation (4.8) is the energy-related constraints and Eq. (4.10) is the
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speed-related constraints, and Eq. (4.9) is the speed-energy relationship, i.e., a cubic
polynomial constraint. With the above decomposition, a non-linear and non-convex
original problem is reformulated as a quadratic and linear programming problems,
respectively, and therefore can be solved efficiently. In the following Chapters, this
method will be used to solve various practical problems. Ref. [44] give a general
method to select the parameters of this solution method.
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Chapter 5
Energy Management of Maritime Grids e
Under Uncertainties

5.1 Introductions of Uncertainties in Maritime Grids

5.1.1 Different Types of Uncertainties

There are many types of uncertainties during the operation of maritime grids, i.e.,
demand-side uncertainties, generation-side uncertainties, and failure uncertainties,
which are shown in Fig. 5.1.

Generally, navigation uncertainties are the main sources of demand-side uncer-
tainties, such as the uncertain wave and wind and the adverse weather conditions.
As we have illustrated in former Chap. 2, there are different management tasks
of maritime grids, and the navigation uncertainties therefore can bring uncertain-
ties to the demand, such as the propulsion load in ships and the corresponding
calls-for-service delay for berthing.

For the propulsion load, conventional uncertain wave and wind will add navigation
resistance and cause speed loss. To ensure the on-time rates, the power generation
system requires a certain power reserve, noted as “sea margin” [1]. Table 5.1 shows
the “sea margins” in the main navigation route around this world.

From the above table, the “sea margins” are generally within the range of “20%—
30%”, which represents a general ship design should at least have 30% power reserve
[2]. This power reserve range has provided the flexibility for the maritime grids to
accommodate navigation uncertainties towards economic and environmental objec-
tives, and also gives the necessity of optimal energy management. When the navi-
gation uncertainties continuously increasing, the route may become not suitable
for navigation, and this type of navigation uncertainties is the “adverse weather
conditions”, the ships need to change another route for safety, which refers to the
“weather routing” problems [3-5]. Additionally, navigation uncertainties will bring
calls-for-service delays, which means the ships cannot arrive at the mission point at
the scheduling time, and the service will be delayed. For example, the pre-scheduled
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Fig. 5.1 Classification of uncertainties in maritime grids

Table 5‘1 “Sea margins for Navigation route Sea margin

the main navigation route [2]
North Atlantic, heading west 25%-35%
North Atlantic, heading east 20%-25%
Europe-Australia 20%-25%
Europe-East Asia 20%—-25%
Pacific 20%-30%

berth position for a delayed ship may stay idle state till the ship arrives, and the
electric and logistic service will also be postponed, which brings uncertainties to the
operation of the seaport.

The energy source uncertainties are the main sources of generation-side uncer-
tainties. In conventional operating scenarios, the uncertainties of energy sources are
quite limited since the main energy sources, such as diesel engines or gas turbines are
highly controllable. However, in recent years, various types of renewable energy are
integrated into maritime grids, and the inherent intermittency brings lots of operating
uncertainties to the maritime grids, such as the photovoltaic energy in ships, and the
offshore wind farms for island microgrid. Those types of uncertainties should be
addressed to reduce the operating risks of maritime grids. Another type of energy
source uncertainties is the main grid uncertainties from the uncertain electricity price
and the main grid failures.

The equipment uncertainties generally include two types, the first one is for
the failure and the second one is for the scheduled maintenance or replacement.
Their difference is the failure occurs unexpectedly and the system needs to act for
correction, and the scheduled uncertainties give much longer time for the system to
re-schedule the operating plan.

The main classifications of uncertainties in maritime grids are illustrated above,
and the uncertainties bring enormous operating risk to the maritime grids, and proper
operating strategies should be promoted to mitigate their influence.
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5.1.2 Effects of Electrification for Uncertainties

The above uncertainties have perplexed the maritime industry for a long time. For
example, the adverse weather conditions have been viewed as one of the main reason
for ocean accidents, for example, the accident of Svendborg Maersk in 2014 [6]. The
equipment failures are also viewed as the enemy to the system reliability [7, 8].
Lots of control strategies have been studied to prevent their harmful effects, such
as spare parts optimization [9] and system reconfiguration [8]. With the extensive
electrification, the maritime grids become a highly coupled multi-energy system, and
all the system resources can be used to mitigate one type of uncertainty. Here we
give two examples to show the effects of electrification for uncertainties.

In conventional ships, the propulsion system is directly driven by the main engine
by a gearbox, and the other onboard components are supplied by the shipboard power
system, shown as Fig. 5.2.

The main engines cannot freely adjust their outputs, and only several gear posi-
tions can be selected, such as 1/2 full power or 1/3 full power. As a result, this type of
adjustment is coarse and lacks flexibility for conventional navigation uncertainties,
since, for most cases, the speed loss by navigation uncertainties is only 10%~15%
of the total speed [2]. With extensive electrification, the propulsion system can be
quickly responding to the navigation uncertainties due to the superior rotation regu-
lation performance of electric machines [10, 11]. In this sense, the electrification can
make ships navigate in a more steady speed range.

For conventional seaports, the logistic equipment consumes most of the energy
consumption and they may be not driven by electricity, such as the rubber-tire gantry
may be driven by diesel engines [12]. In some cases, the rest system may not consume
all renewable energy integration. For example, the Jurong port of Singapore has
9.5 MW photovoltaic energy integration in 2016 [13], but some of them may be
wasted in some time periods. However, with fully electrified, the maritime grids will
have a larger capacity to accommodate the energy source uncertainties. Furthermore,

Oil tanker Prime mover gearbox Propeller

Generator

Serviceload

Fig. 5.2 Topology of conventional ships
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the auxiliary equipment brought by electrification, such as batteries, combined heat-
cooling power generators, can further enhance the reliability under main grid failures.

In summary, with full electrification, the maritime grids will have larger capacity
and more resources to withstand different types of uncertainties, and with proper
energy management, the economy, environment, and reliability objectives can be
better achieved.

5.2 Navigation Uncertainties

5.2.1 Uncertain Wave and Wind

Generally in calm water, the propulsion load of ship has a cubic relationship with
the cruising speed, shown as Fig. 5.3. The propulsion load will gradually increase
with the speed and finally hits the “wave wall”, and the maximum cruising speed
achieves. When a ship sails on the sea, the wave and wind will add extra resistance
and bring speed losses [2], and the wave wall will be moved to the left.

From Fig. 5.3, when considering the wave and wind, the cruising speed under the
same propulsion load will decrease, and this refers to the “speed loss”. To mitigate
this speed loss, the main engine of ships should have adequate “sea margin”, usually
more than 15% by different navigation routes and seasons, as shown in Table 5.1.
For example, in the route between Japan-Canada, the added resistance may scale up
to 220% in some seasons, and the average is about 100% [14], and for most cases,
the resistance in summer increases about 50%, and in winter, the resistance increases
about 100% [14]. That added resistance will introduce more speed losses, and those
speed losses may even accumulate and cause a severe delay in the destination. There-
fore, energy management considering speed losses in uncertain wave and wind is
essential for the maritime industry.

Fig. 5.3 Relationship
between the propulsion load A
and the cruising speed

Wave wall

Propulsion
load

—&— Calm water

With wave

® and wind

Speed
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The performance of ships in wave and wind has been studied for a long time,
and an empirical model is formulated in [15] by various CFD simulations, which are
shown as follows.

R = RC + ARY™ + AR"™" (5.1)
wave 1 2 2 D.wat
AR = 7 Pwater - 8- hi - B;,, - C (T, 0r) (5.2)
; 1 ; (v” +yind cos6 )2
ARIWMd = = Pair * Sint * CD.azr : ! ! 2 ' (53)
2 —(vf)
RC¢
Vr = 2 R_[T . V[L (54)

where RtT is the total resistance; R€ is the resistance of calm water; A Ry, A R;””d
are the added resistances of wave and wind; £ is the ship length; p,,4s., is the density
of water; g is the acceleration of gravity; A, is the wave height; B;,, is the breath of ship
intersection; CP"% (z,, §,) is the added resistance coefficient, which is determined
by wave-length 7, and weather direction 6;; p,;, is the density of air; S;,, is the area
of ship intersection; C?'" is the air drag coefficient; v)'"? is the wind speed; v¢ and
v, are the cruising speed in calm water and wave/wind, respectively.

From the above Egs. (5.1)—(5.4), there are four main decision variables to calculate
the speed loss, i.e., wave height denoted as /,, wavelength denoted as 7;, wind speed
vwind and the weather direction 6,. It should be noted that the weather direction
is defined as the angle between the wind and the ship sailing direction. Since the
wave has a similar direction with the wind, weather direction is used to indicate the
influence of wave and wind.

Reference [15] has comprehensively studied the speed performance in wave and
wind, and gives some fitting curves to calculate C ?*** under different weather direc-
tion (under B.N. 6), shown as Fig. 5.4. We can see this coefficient differs from each
other when the weather direction changes.

With the above model, the speed loss under uncertain waves and wind can be
predicted. Then in the energy management model, the speed loss can be considered
in the voyage scheduling, and the propulsion system can response to the speed loss
and ensures the punctuality of the ship’s navigation.

5.2.2 Adverse Weather Conditions

Adverse weather conditions are those scenarios or areas which are not suitable for
navigation [16, 17], and the ships should avoid this type of area for safety. Adverse
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Fig. 5.4 Fitting curves to calculate added resistance of wave. Reprinted from [15], with permission
from Elsevier

weather conditions generally include the typhoon or strong ocean current and the
following Fig. 5.5 shows the influence of adverse weather conditions on the ship’s
navigation.

In Fig. 5.5, the primary navigation route is from Singapore to Inchon. The red
dash line is the conventional navigation route from Singapore to Inchon due to the
shortest distance. However, under pre-voyage weather forecasting, this navigation
route is under the influence of a typhoon. Based on this information, the first stage
chooses another navigation route (blue dash line) to keep away from the typhoon.
In real-time navigation (second stage), the forecasting trajectory of typhoons may
change to the black line, and the navigation route obtained in the first stage may
still under the influences of typhoons. In this case, the second stage will modify the
navigation route and the corresponding cruising speeds as the purple dash line for
safe sailing.

From above, the uncertainties of adverse weather conditions come from the
weather forecasting error, and the navigation route changes led by the adverse weather
conditions will have different energy requirements on the ship power system.
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Fig. 5.5 Adverse weather conditions and the two-stage adjustment

5.2.3 Calls-for-Service Uncertainties

The former two types of uncertainties mainly influence the operation of ships and
will bring delays to the destination, which brings calls-for service uncertainties to
the seaport or other service facilities, such as islands or ocean platforms.

Generally, the services provided to the ships are classified as (1) the logistic
services, i.e., cargo handling, and (2) the electric service, i.e., cold-ironing. Since the
ships may not arrive on time for different reasons, as stated above, all the services
may be delayed. Figure 5.6 shows the influences of calls-for-service uncertainties.

From above, the calls-for-service delays led to different power demand curves,
which require different energy schemes. There are two main types of power demand
changes, i.e., service delay and service accumulation. The service delay will not
change the shape of power demand but only delays them, like the cold ironing power.
The other type is the service accumulation, like cargo handling. This type of service
has a constant total service workload, and if the service is delayed and the service
will accumulate to increase the maximal power demand.
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Fig. 5.6 Influences of calls-for-service

5.3 Energy Source Uncertainties

5.3.1 Renewable Energy Uncertainties

Nowadays, environmental issues have been the major concern from the globe, and
renewable energy is gradually widely spread in the maritime grids, as we have
stated in Chap. 1. However, renewable energy generally has high intermittency and
a specified energy management method should accommodate this uncertainty. The
following Fig. 5.7 gives a typical wind speed pattern.

The wind speed pattern can be depicted as a spectrum, and a high value indicates
a high variation in that timescale [18]. In Fig. 5.7, the first peak is in the timescale of
minutes, and the sites with high average wind speed tend to have a lower peak. This
variation, referred to as the short-term variation, has been mitigated by many control
strategies [19-21]. In the timescale of more than one day (Macro-meteorological
range), there are three peaks, (1) Diurnal pattern, or named as the day-night pattern,
which is led by the temperature difference between day and night; (2) depressions



5.3 Energy Source Uncertainties 105

Wind Speed

F enc
TRGUEnCY Macro-metecrological Range Spectral Gap Micro-meteorological Range

T - T T T T i T —, T T

1 T
10t ! 10 1w 10 10t | 10 100 10! 1 0.1

. F - 3 Time Period
1year 4days 1day 1 hour 1 min [seconds)

Fig. 5.7 Wind speed patterns. Reprinted from [18], open access

and anti-cyclones, and this phenomenon is more distinct in oceanic than continental
regions.; (3) annual pattern, varies with the degree of latitude and vanishes close to
the equator. In the following Fig. 5.8a, b, the power outputs of different wind turbines
in a day and different seasons are shown.

From the above figure, we can see significant variations by different wind turbines
and different seasons. As for the photovoltaic energy, the variations by different
modules and different seasons are shown in the following Fig. 5.9a, b.

As above, the power outputs of the wind farm and photovoltaic farm are highly
fluctuating, and even after deliberate forecasting, the error is still inevitable. Table 5.2
gives the forecasting error of renewable energy through various methods. The root-
mean-square error (RMSE) are around 1-5%, which should be considered in the
energy management of maritime grids.

5.3.2 Main Grid Uncertainties

The maritime grids can be mainly operated in (1) grid-connected mode; and (2)
isolated mode. Two modes are shiftable for most of the maritime grids. For example,
the ships are in isolated mode when sailing, and are in grid-connected mode when
receiving the cold-ironing power from the seaport. For a seaport, it can also operate
in isolated mode when having enough generators or renewable energy integration.
When in grid-connected mode, the main grid is generally the main energy source
of maritime grids. However, there will be many uncertain failures that happened in
the main grid and even cause a loss of power. The maritime grids generally don’t
have a strong network structure, and therefore an energy management method with
considering the main grid failure is essential for the safety of maritime grids [26].
Besides, the main grid and the maritime grid maybe not under the same admin-
istrator, and the maritime grid should purchase electricity from the main grid, and



106 5 Energy Management of Maritime Grids Under Uncertainties

1 T T
—— Wind turbine 1
—— Wind turbine 2
0.8 Wind turbine 3 )

0.6 - /\¥/\/ d

04+ b

Power outputs (p.u.)

02 L L L L
0 5 10 15 20 25

Time (h)
(a) Power outputs by different wind turbines

0.8 b

—— Winter
Summer

Power outputs (p.u.)

0 | | | |
0 5 10 15 20 25

Time

(b) Power outputs in different seasons

Fig. 5.8 Power outputs of different wind turbines and in different seasons

the electricity prices also have uncertainties. The maritime grid should aggregate the
total power demand and negotiate the price with the main grid. The price may change
in every round of negotiation [27], which also brings the main grid uncertainties.

5.3.3 Equipment Uncertainties

The equipment uncertainties in maritime grids come from two aspects: (1) the equip-
ment failure; and (2) the scheduled maintenance. Their difference is the equipment
failure may happen unattended but the latter one is planned.

For the equipment failure, the energy management system of maritime grids has
to make enough power reserve for each severe scenario [8]. In [28, 29], to avoid
the influence of the onboard generator’s failure, the generation system have reserved
a certain part of capacity, which are the same in ships and seaports. For a seaport,
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Fig. 5.9 Power outputs of different photovoltaic modules and in different seasons

Table 5.2 Forecasting error by different methods

Methods Renewable energy Timescale Error (%) References
f-ARIMA Wind Day-ahead 5.35 [22]
ANN Wind Day-ahead 1.32-1.56 [23]
SVM PV 120h 1.21 [24]
ARIMA PV 1~39h 21 [25]

the power reserve ratio can be lower since the main grid can provide enough power
with high reliability, but the within generators still need to be standby for uncertain
failure.

For the scheduled maintenance, the equipment out of service is known in advance,
and the energy management system can make necessary adjustments. For example,
when a generator in a seaport is planned to be in maintenance, the administrator of
the seaport will give a new energy plan to the upper main grid to purchase more
electricity [27].
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5.4 Data-Driven Optimization with Uncertainties

5.4.1 General Model

The main types of uncertainties in the operation of maritime grids are illustrated as
above. To ensure the safety and reliability of maritime grids, considering the above
uncertainties in energy management is necessary. Nowadays, stochastic optimiza-
tion [30-32] and robust optimization [32-34] are two main types to address the
uncertainties, which are shown as following Eqgs. (5.5) and (5.6), respectively.

min g(x) + E(yg‘?(i&) f (y)) (5.5)
glei;g g(x) + max <y§}1(i£g) f (y)> (5.6)

In stochastic optimization (Eq. (5.5)), x is the first stage decision variables which
are not determined by uncertainties; X is the feasible region of x; g(x) is the objective
function of the first stage; £ is the uncertain variables, and Y (x, £) is the feasible
region of y determined by x and &; f(y) is the objective function of the second
stage; E(-) is the expectation. In this model, the uncertain variable & is depicted
by the probability distribution, such as the probability distribution of equipment
failure, or the probability distribution of renewable energy output, and so on. Then
stochastic optimization seeks the optimal solution within the feasible region defined
by the probability distributions.

In robust optimization (Eq. (5.6)), the main difference is the uncertain variable
& is described by the uncertainty set U, including the upper/lower limits and the
uncertainty budget, which mainly has polyhedral models [35] and ellipsoid models
[36]. Then robust optimization seeks the optimal solution in the worst case in the
defined uncertainty set and brings conservatism. With above, the primary problem
of the uncertainty modeling is how to determine the feasible regions, such as the
probability distributions in stochastic optimization and the uncertainty set in robust
optimization.

As above, how to get the range of uncertain variables, i.e., the probability distri-
bution function or the uncertainty set of &, is the basic problem of the optimization
model. Nowadays, with the development of measurement and communication tech-
nology, more operating data can be transmitted and stored in the control center in
real-time. How to use this type of massive data to model the feasible region of
uncertainty has become a hot topic, and various methods have been proposed.
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5.4.2 Data-Driven Stochastic Modeling

Stochastic modeling is to get the probability distribution functions of uncertain
variables, and there are three types in general, (1) the non-parametric probability
modeling; and (2) stochastic process modeling and (3) artificial intelligence methods.

The non-parametric probability modeling method directly extracts features from
the original dataset and doesn’t limit the probabilistic distribution prototype [37], thus
may have higher accuracy when having limited knowledge on the dataset character-
istics. Based on the diffusion-based density method, [38] proposes a non-parametric
probabilistic model for wind speed. Later on, [39] proposes a model for wind speed
combined the non-parametric probability modeling and auto-regression modeling.
Then based on the non-parametric probability modeling, [40] formulates a proba-
bilistic optimal economy dispatch model for a renewable integrated microgrid, and
the case study proves the proposed method can improve the economic behaviors
during uncertainties.

The basic idea of stochastic process modeling is to use a series of simple
kernel functions to fit the complex function [41]. Based on different basis func-
tions, stochastic process modeling has many representatives. The autoregression and
moving average (ARMA) method is one of them and has been utilized in renewable
power prediction, and power demand prediction [22, 25]. To reduce the dimension of
the dataset, many reduction algorithms are implemented. Based on Karhunen-Loeve
expansion, a time-space modeling method for renewable energy is proposed in [42,
43]. Then [44] proposes a solution method for this uncertainty modeling, and shows
a lower computational burden with acceptable accuracy.

Compared with the above two types, the methods based on artificial intelligence
has stronger data mining ability. The uncertain set can be directly modeled and no
necessary to follow the conventional process of “probability distribution formulation-
sampling-scenario reduction”. Until now, various methods, such as the generative
adversarial network (GAN) [45], recurrent neural network (RNN) [46], extreme
learning machine (ELM) [47], are implemented to provide uncertain set by massive
original dataset.

5.4.3 Data-Driven Robust Modeling

Robust modeling is to get the set of uncertain variables, and there are also three types
in general, (1) the polyhedral set; and (2) the ellipsoid set and (3) the uncertain set
based on scenarios.

The polyhedral set is the most commonly used uncertainty set for robust modeling,
which is based on a series of upper and lower limits, shown as Eq. (5.7).

v={alg <5 <Evier) (57
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where § and £ are the lower and upper limits of &,. If the uncertainty series follows the
Markov law, the lower and upper limits may become § = 5 . (&_1) and § = é, & _1).
To limit the range of uncertain variables, uncertainty budget constraints may be
added, shown as Eq. (5.8).

IEDIYINIEY (5:8)

where w is the expectation of £; and 5, 7 are the lower and upper budgets of uncertain
variable £. The uncertainty budget is used to limit the dramatic changes and reduce
the conservatism of the robust model.

The second type is the ellipsoid set, which aims to solve the inconsistent
characteristic at the boundary of the uncertain set. A general form is shown in Eqn.

UZ{Sz

where p is the expectation of &; and )_ is the correlation matrix of &. Li et al.
[48] use the ellipsoid set to model the uncertainties, and find the ellipsoid set can
better represent the uncertainty when approaching the boundary. Kumar and Yildirim
[49] proposes the minimum volume enclosing ellipsoid (MVEE) method to limit the
uncertainty in the smallest ellipsoid and reduce the conservatism. Based on MVEE,
[50] studies the robust optimization based on the ellipsoid set, and proposes an invalid
constraint reduction method to simplify the solution method.

Besides the above two modeling methods, there is a modeling method based on
extreme conditions. In [51], an ellipsoid set of uncertainty is first formulated and
then several extreme points are selected to form a convex set. The formulated robust
model is shown as follows.

-1
E-w" Y (E-—w=< r} (5.9)

max (min f(x, yu, 5n)>

En€Un \ XY
s.[.A(.X, Yns gn) =0n = 1, 2, ooy N
B(xayn»%-n) SOH: 1,2,...,N

(5.10)

where &, is the uncertain variable in the n-th extreme scenarios, and y, is the corre-
sponding second stage decision variables; A and B are the equality and inequality
constraints, respectively.

Another robust modeling formulates the uncertain set as a convex envelope to
contain all the pre-given extreme points and can be shown as Eq. (5.11). «, is the
ratio for the n-th extreme scenario.

U=15E=D on-8n) on=10a,20 (5.11)
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5.5 Typical Problems

5.5.1 Energy Management for Photovoltaic (PV)
Uncertainties in AES

As the main representative of maritime grids, AESs face many uncertainties during
navigation. This Chapter focuses on the uncertainties of onboard photovoltaic (PV)
integration. This research is illustrated in detail in [52].

(1) Onboard PV power forecasting

In land-based PV power forecasting, the PV power is determined by three factors,
i.e., the irradiation density, denoted as 1¢", and the angle between solar rays
and the PV modules, denoted as 6, and the generation efficiency, usually deter-
mined by the ambient temperature [53], denoted as nP V. However, some differences
compared with the load-based applications should be incorporated into the onboard
PV forecasting.

The first difference is that the ship will constantly move along the navigation route.
As shown in Fig. 5.10, the ship has different locations when ¢, and f,, meanwhile
the direction of solar rays, as well as the ambient temperature along the navigation
route, are also changed. Therefore, it is sensible to utilize the measured data along
the route, rather than the data in a stationary place to predict the PV generation.

The second difference is that the shipboard deck will constantly swing when
cruising and change the angle between solar rays and the PV modules [53], shown
in Fig. 5.11. The angles between solar rays and ship decks become (6 & ¢), which
further affects the PV generation outputs. In general, the swinging direction of ships

Fig. 5.10 An illustration on the moving of ships
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Fig.5.11 Definition of the angle of solar ray and the tilt angle. Reprinted from [52], with permission
from IEEE

is the same with the wind direction and the tilt angle is determined by the wind speed.
So, it is necessary to incorporate wind speed along the navigation route to forecast
the tilt angle range of ships.

(2) Two-stage robust modeling framework

The above two characteristics are both considered, and this Chapter proposes a
data-driven PV generation uncertainty characterization method, shown as the below
Fig. 5.12a. The general framework of the two-stage robust modeling is shown as
Fig. 5.12b.

In Fig. 5.12a, owing to the high scalability and fast computational speed, the
Extreme Learning Machine (ELM) is regarded as a useful learning technique for
training a single hidden-stage feed-forward neural network [54]. In Fig. 5.12b, the
forecasting values and error of irradiation density, wind speed, and temperature
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Fig. 5.12 Overall framework of proposed model. Reprinted from [52], with permission from IEEE
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are obtained by ELM. Then three intervals, i.e., the irradiation density intervals
[I Gh  [Gh ] the tilt angle intervals [qb}"”‘, ¢’"‘”] and the PV generation efficiency

min,t’ “max,t t

intervals [nFY  nPV | are obtained by two different ways, i.e., [1S"  IG" ] is

calculated by the forecasting values and error, and [¢}"", ¢"**], [nLY , nhY. ] are
calculated by the forecasting wind speed intervals and temperature intervals, since
higher wind speed and temperature will lead to larger rolling effect and generation

efficiency, respectively.

0\2
PPV = gV Apy - 160 cos 6, + C¢.l (00522) (5.12)
+Cy, (sin &)

Based on the obtained uncertain PV generation as (5.12), the proposed two-
stage multi-timescale coordinated operation framework aims to coordinate different
controllable resources in different timescales according to their different response
characteristics considering the uncertain PV outputs, which is shown in Fig. 5.12b.
In the day-ahead time-window, i.e., the first stage, the DGs’ on/off states and the
cruising speed, which cannot instantly respond to the uncertainties, are optimized
based on day-ahead interval predictions of the PV generation. This stage aims to
dispatch the DGs and ESS on a large time horizon to fulfill propulsion and service
loads in the worst case of PV generation.

During the half-hour-ahead online operation time-window, i.e., the second stage,
the loading factor of DGs and ESS are re-dispatched based on half-hour-ahead predic-
tions of the PV generation. The half-hour-ahead predictions tend to be more accurate
and they can be regarded as the uncertainty realization. Thus, the second-stage oper-
ation aims to compensate for the first-stage operation when the uncertainties realize
in practice.

(3) Case description

In this study, a typical medium voltage direct current (MVDC) 4-DGs AES case is
used to verify the proposed method. The topology and navigation data of this 4-DG
AES are shown in Figs. 5.13 and 5.14, respectively. The topology is from [55], which
follows the ABS-R2 standard [56]. In Fig. 5.13, 4 DGs are connected in two buses
via AC/DC converters, and the circuit breaker is normally open. In general cases,
two buses are located in different watertight compartments for avoiding operating
risk. As for the PV generation uncertainty set characterization, the training datasets
are also applied to [53], which are deduced from real-world navigation from Dalian,
China to Aden, Yemen, and 2 MW PV modules are integrated into the AES for future
applications. Other detailed parameters can be found in [52].

(4) Case study

To test the validity of the proposed forecasting process, three forecasting methods
are compared. The results are shown in Fig. 5.15.
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Fig. 5.13 Topology of 4-DG AES. Reprinted from [52], with permission from IEEE
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Fig. 5.14 Navigation scheme of AES. Reprinted from [53], with permission from IEEE

Forecasting method A: the proposed method considering both the movement and
tilt angle (wind speed);

Forecasting method B: the proposed method without considering the tilt angle (wind
speed);
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Fig. 5.15 Forecasting results under different methods. Reprinted from [53], with permission from
IEEE

Forecasting method C: forecasting method only using the dataset in a stationary
place (irradiation density, temperature) without considering the tilt angle.

From Fig. 5.15, the following conclusions can be found, (1) from the compar-
ison between methods A and B, the forecasting intervals become much wider when
considering tilt angle. This phenomenon suggests the rolling of the shipboard deck
will bring more uncertainties to the PV generation, and if it is ignored, an optimistic
scheme may be obtained; (2) from the comparison between method B and C, the
forecast error of method C becomes rather large when the ship is away from the
initial port ( = 14 ~ 24), which suggests the necessity to use the dataset along the
navigation route to predict the PV generation.

The energy scheduling schemes in two stages are shown in Figs. 5.16 and 5.
17, respectively. From Fig. 5.16, since the PV generations in the second stage are all
larger than the worst case, the DGs’ outputs are further replaced by the PV integration,
which introduces further FC reductions. From Fig. 5.17, the ESS power in most of the
partial intervals is increased, which means the PV generation increments are directly
charged to the ESS in the partial intervals, therefore in the cruising intervals the ESS
has more energy to shed the power demands of DGs than the first stage.

The above results manifest that, since the worst case of PV generation only
happens in a small probability, therefore the single-stage robust method will intro-
duce plenty of conservatism to the operating scheme, which leads to wastes on the PV
generation. In this section, the online half-hour-ahead operation can effectively go
against the uncertainty realization to improve the overall energy utilization efficiency
while satisfying the constraints.
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Fig. 5.18 Coordinated generation-voyage scheduling. Reprinted from [57], with permission from
Elsevier

5.5.2 Energy Management for Navigation Uncertainties
in AES

(1) Problem formulation

Besides the above PV power uncertainties, the navigation uncertainties are also
commonly faced during the operation of AES. Fang and Xu [57] has studied this
problem in detail, which is illustrated below. As shown in Fig. 5.18, the shipboard
microgrid of an AES consists of DGs and ESS to meet the propulsion and service
loads.

Compared with the conventional land-based microgrids, the AES (mobile micro-
grid) has the total voyage distance to the ports as a mandatory requirement, and there-
fore put extra constraints on the cruising speed of AES, as well as on the propulsion
load. The generation scheduling aims to an economic energy scheme and the voyage
scheduling aims to a punctual energy scheme. Both of them consist of a coordinated
generation-voyage scheduling problem.

The speed loss when considering navigation uncertainties can be calculated by
(5.1)—~(5.4). The uncertainty set of the proposed model is formulated as following
(4.13).

In this section, the wave height &, wavelength t, weather direction angle 8 and

wind speed v*"? are four uncertain variables. In (4.13), h,, T, and v/""*¢ are the

expectations of corresponding uncertain variables; p and i are the lower and upper
budgets of the uncertainty set, when the lower budget falls and the upper budget rises,
it means that the uncertainty set can cover higher uncertainty, leading to a higher
robustness degree. Then the robust model shown in (5.6) is utilized to consider the
worst influence by the navigation uncertainties.
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(2) Case study

To test the effects of proposed robust model on the on-time rates, 500 water current
scenarios are randomly sampled according to uniform distributions in each time-
interval, denoted as (hy;, 7,0, v}\"), 1 = 1 ~ 24,i = 1 ~ 500. Robust 1 (The
formulated robust model considering navigation uncertainties, abbreviated as R1)
and Non-robust (conventional coordinated generation-voyage scheduling without
navigation uncertainties, abbreviated as NR1) are set as operating strategies, respec-
tively. The corresponding voyage distances of each sample at the scheduled time
under & = 30° are shown in Fig. 5.19. The cruising speed and EEOI are shown
in Fig. 5.20. The generation scheduling schemes are shown in Fig. 5.21. The worst
speed loss and the corresponding on-time rates under different & with or without
wind are shown in Fig. 5.22.
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Fig. 5.19 On-time rates of different voyage schedules. Reprinted from [57], with permission from
Elsevier
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Fig. 5.21 Scheduling schemes of DGs and ESS of NR1 and RI. Reprinted from [57], with
permission from Elsevier

Figure 5.19 clearly shows that the influences of uncertain water and wind will
constantly accumulate during the voyage, which leads to an average 13 nm delay,
leading to a 0% on-time rate of NR1 at the terminal port. However, the proposed
robust model can accommodate these uncertainties by adjusting the outputs of the
DGs and ESS. Accordingly, the corresponding on-time rates of R1 to each port are
all 100%.

The reason to ensure the on-time rates of proposed method can be inferred from
Figs. 5.20 and 5.21. The first berthing time-interval, # = 0, is not included in the
analysis since the cruising speed and corresponding propulsion load are both zeros.

InFig. 5.20, the cruising speed of robust model is higher than non-robust model, so
able to cover the speed loss led by the wave and wind. Higher cruising speed suggests
heavier propulsion load, so the corresponding outputs of DGs are all increased to
meet the power demand increments, which leads to a higher FC. Specifically, in
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Fig. 5.22 Worst speed loss and corresponding on-time rates. Reprinted from [57], with permission
from Elsevier

Fig. 5.21, NR1 uses no more than 3 DGs all the time, even 2 DGs in ¢t = 1 ~
5,8,9,15 ~ 17,23, 24. Correspondingly, R1 uses 4 DGs in most time during the
voyage, only except the partial speed time-intervals, t = 1,7 ~ 9, 15 ~ 17, 23, 24.

Figure 5.22 shows the worst speed loss and corresponding on-time rates. The
yellow and red curves show that the proposed method can ensure a 100% on-time
rate for all uncertain scenarios. The green curves show that the water wave always
has negative impacts on the cruising speed, but the effect will gradually fade with the
increment of the weather direction angle, which leads to the speed loss reductions.

Besides, it can be observed from Fig. 5.22 that, unlike water wave, the wind
has quite different impacts on the speed loss in different scenarios, e.g. when 6 €
[30°, 90°], the wind will increases speed loss, while when 8 € [90°, 180°], the wind
can reduce speed loss. Especially when & = 150° and 180°, the speed loss under
wave and wind are less than 0.5knot, thereby its negative impacts on the voyage
scheduling can be greatly reduced. This is also the key reason for the cruising ships
to choose their navigation route to the leeward side of wind.
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Chapter 6 ®)
Energy Storage Management e
of Maritime Grids

6.1 Introduction to Energy Storage Technologies

Energy is an essential commodity and a key element for global development, and
generally comes from various sources and can be mainly classified as two types,
(1) the primary forms of energy and (2) the secondary forms of energy. The primary
forms of energy are those energy sources that only involve extraction or capture, and
the energy directly comes from nature. Typical examples are crude oil, coal, various
renewable energy, natural uranium, and falling or flowing water. On the other hand,
the secondary forms of energy include all the energy forms after the transformation
from the primary forms of energy. The relationship between the primary forms and
the secondary forms are shown in Fig. 6.1.

Secondary energy forms are generally more convenient to use and usually viewed
as “energy carriers”, including various types of petroleum, diesel, and electricity.
The transformation technologies include oil refinery, thermal power plants, nuclear
power plants, solar power plants, and so on. Among all the secondary forms of
energy, electricity is the main “energy carrier” for daily lives, and power system is
the corresponding man-made network to generate, transmit, and distribute electricity.
Conventionally, the generation-side and demand-side of power system should be
equal all the time since the electricity cannot be stored. Nowadays, with large scale
of energy storage, power system will have more flexibility since energy storage can
change its roles between the generation-side and the demand-side.

As a special type of power system, maritime grids also complete similar roles of
“generate-transmit-distribute” as conventional power systems. For example, a seaport
microgrid purchases electricity from the upper grid, and the electricity transmits to
the seaport via the main substation and then distributes to different equipment within
the seaport. Similarly in ships, the main and auxiliary engines generate electricity and
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Fig. 6.1 Primary and secondary energy [1]

the electricity is transmitted and distributed by the shipboard microgrid to various
load demands. In this sense, energy storage also plays an essential role to facilitate
the optimal operation of maritime grids.

For ships, in [2, 3], energy storage is coordinated with the propulsion system of
an AES to achieve better economic and environmental targets. Then in [4], energy
storage is used to supply the energy consumption of the shipboard gas capture system.
In short-term timescale, [5—7] use energy storage to mitigate propulsion fluctuations.
For seaports, [8—10] classify the energy storage as an individual agent and has its
energy plans to participate in the seaport operation. Molavi et al. [11] uses energy
storage to facilitate renewable energy integration. Later on, [12, 13] use energy
storage to recover the energy when the lifting-down of port cranes. The above liter-
ature has clearly shown that energy storage has already been an important device in
maritime grids, and proper management is essential for maritime grids.

This Chapter focuses on this topic and is organized as follows. Section 6.2 gives
the characteristics of different energy storage technologies, and Sect. 6.3 gives several
application cases of energy storage in maritime grids. At last, Sect. 6.4 analyzes two
typical problems to demonstrate the effects of energy storage management.
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6.2 Characteristics of Different Energy Storage
Technologies

6.2.1 Classifications of Current Energy Storage Technologies

In this section, Fig. 1.13 is re-drawn here to show the classifications of energy storage
and denoted as Fig. 6.2. This Chapter focuses on conventional energy storage tech-
nologies and fuel cell will be discussed in detail in Chap. 8. The nomenclature of
various energy storage technologies is shown in Table 6.1.

In the following Table 6.2, the characteristics of different energy storage are
given. Since the different characteristics, we can find that different energy storage has
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Table 6.2 Characteristics of different energy storage [14, 15]

Technologies | Investment | Energy rating | Power rating | Specific Specific power

(US$/kWh) | (MWh) (MW) energy (kW/kg)
(kWh/kg)

PHS 10-15 500-8000 10-1000 - -

CAES 2-4 580, 2860 50-300 3.2-55 -

VRB 600 1.2-60 0.2-10 25-35 166

ZBB 500 0.1-4 0.1-1 70-90 45

PSB 450 0.005-120 0.1-15 - -

NaS 170-200 0.4-244.8 0.05-34 100 90-230

Lead-Acid 50-100 0.001-40 0.05-10 30-50 180-200

Ni-Cd 400-2400 6.75 45 30-80 100-150

Li-ion 900-1300 0.001-50 0.01-50 80-200 200-2000

SMES 200-300 0.015 1-100 10-70 400-2000

FESS 400-800 0.025-5 0.1-20 5-100 10000+

SCES 100-300 0.01 0.05-0.2 5-15 10000+

quite different application scenarios. In the following context, some energy storage
technologies which are used in maritime grids are described in detail to show their
applications.

6.2.2 Battery

Among current energy storage technologies, the battery is one of the most common
technologies available on the market. The battery stores energy in the electrochemical
form and the battery cells are connected in series or in parallel or both to make up the
desired voltage and capacity. A typical battery packs’ structure is shown as Fig. 6.3,
and each battery cell consists of two electrodes and an electrolyte, which are sealed
in a container and then integrated into the external grid or load.

In the last decade, the technologies of battery have become much more mature,
such as the lead-acid battery, nickel-cadmium battery, lithium-ion battery. Especially
for lead-acid batteries, which have been researched for over 140 years and is the most
mature battery technology now. Currently, tremendous efforts have been carried out
to turn technologies like nickel-cadmium and lithium-ion batteries into cost-effective
options for higher power applications, and their lifetimes are also important research
topics.
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6.2.3 Flywheel

FES stores energy as the form of kinetic energy in a rotating mass or rotor. The stored
energy is proportional to the rotor mass, location of the mass, and the rotor’s rotational
speed. When FES charges, it absorbs the energy from outside and accelerates the
rotating speed of mass. On the other side, when the flywheel discharges, the rotating
mass drives a generator to produce electrical power, and the rotating speed slows
down. An illustration of flywheel energy storage is shown in Fig. 6.4.

Compared with other types of energy storage, FES can quickly respond to the
power demand, and therefore be widely used in improving the power quality, load
demand peak shaving, power factor correction, and load leveling. Other applications
of flywheels include UPS [16], frequency response [17], smoothing wind power [18],
and heavy haul locomotives [19].

The advantages of FES can be illustrated as it provides intermediate characteristics
in terms of power and energy density compared with batteries and super-capacitor,
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i.e., the FES has much higher power density than batteries and much higher energy
density than supercapacitors. Besides, FES also caters with many shortcomings
of prior energy storage technologies, i.e., less sensitivity to temperature, chemical
hazardless, higher life cycle, reduced space, and weight, which is suitable for many
applications. But the FES also has its shortcoming, i.e., the complex maintenance
process for rotating mass.

6.2.4 Ultracapacitor

Capacitors store energy in the electric field and have a quite low equivalent series-
resistance that enable them to supply the power efficiently. Generally, the capacitors
are used in higher power demand scenarios, including the compensation of reac-
tive power, mitigation of load fluctuations, and power quality issues. Capacitors
usually can be classified as super-capacitors, electrolytic capacitors, and electro-
static capacitors. Figure 6.5 illustrates the typical structure of a super-capacitor. The
main advantages of super-capacitors are higher power density, faster charging and
discharging, longer life cycles compared with other energy storage technologies.
The disadvantages are the low voltage of each cell, and much higher investment
cost per Watt-hour, i.e., more than 10 times compared with a lithium battery. Other
drawbacks of super-capacitor include relatively low energy density, linear discharge
voltage, and high self-discharge.
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6.3 Applications of Energy Storage in Maritime Grids

6.3.1 Roles of Energy Storage in Maritime Grids

Generally, energy storage in maritime grids has three main applications, (1) as the
main energy source, and (2) for long-term load leveling, shifting or shaving; and (3)
for short-term power balancing.

Using energy storage as the main energy source is a recent trend for some short-
trip ferries or cargo ships. Such as the first all-electric ferry “ampere” in North
Europe [20], and China’s first all-electric cargo ship “puffer” in 2019 [21]. Until
now, there are more than 50 ships using energy storage as the main energy source
in Europe. The biggest capacity is 4.16 MWh (Li-ion), the smallest capacity is 0.02
MWh (Lead-acid). The all-electric ships are about to develop in China and there will
be more ships launched in the future. The advantage of using energy storage as the
main energy source is nearly zero-emission, but the disadvantage is also obvious,
i.e., the capacity of current energy storage technologies is limited to individually
sustain a large ship for a long-distance voyage. Similar in seaports and other ocean
platforms, the capacity of current energy storage is just enough to serve as auxiliary
equipment. In this sense, the main application scenarios of energy storage are still in
the long-term load leveling and short-term power balancing.

For the long-term load leveling, the energy storage should have enough energy
density to sustain a long-time discharging. Battery is generally the main equipment to
undertake this task. Nowadays, many maritime grids have installed energy storage as
essential auxiliary equipment for better system characteristics. Two recent examples
in China are provided as following Fig. 6.6.

The first example is the emergency supporting ship launched on April, 28th, 2020
in Shenzhen [22]. This ship has a length of 78 m and 12.8 m breadth. The deadweight
is 1450 tons. The propulsion system has three diesel generators (3 x 2080 kW) and

(a) "Deep ocean 01" ship (b) Lianyungang port

Fig. 6.6 Two cases for energy storage integration in maritime grids
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Fig. 6.7 Schematic of an electric propulsion system with ultracapacitor

two Li-ion batteries (2 x 750 kW). The second example is in Lianyungang Port
which plans a battery installment (1 MW ultracapacitor + 4 MW Li-ion battery) for
cold-ironing services [23]. The above two examples are both using energy storage
for long-term load-leveling (hours or even longer).

For short-term power balancing, energy storage should have enough power
density. This task is usually undertaken by the ultracapacitor [5] or flywheel [6], since
they have enough power density and can quickly respond to the power fluctuations.
Jiang et al. [24] gives a schematic of electric propulsion system with ultracapacitor,
which is shown as Fig. 6.7.

In Fig. 6.7, the EMS sends control signals to the electric power generation
and DC/DC converter to determine their power outputs. Then the electric power
generation and ultracapacitor are both used to supply the propeller.

The applications of energy storage in maritime grids are briefly described above.
To further clarify the applications, three scenarios are selected and analyzed in detail,
i.e., navigation uncertainties and demand response, renewable energy integration, and
energy recovery.

6.3.2 Navigation Uncertainties and Demand Response

Chapters 3 and 4 have discussed the influences of navigation uncertainties on the
maritime grids. To mitigate these uncertainties, maritime grids should reserve a
certain “sea margin” or “spinning margin” which can quickly respond [25]. For
a maritime grid, the influences of navigation uncertainties can be described as
the changes in load demands. Figure 6.8 gives an example of how energy storage
mitigates the navigation uncertainties.

From the following Fig. 6.8a, the total power demand has two peaks. The main
energy source need to suffer fast ramping-ups/ramping-downs, or frequent shut-
downs/start-ups to follow the power demand. The influences of navigation uncer-
tainties are similar to Fig. 6.8a, i.e., leading to many peak loads. When integrating
energy storage, the main energy source and energy storage can share the total power
demand, shown as Fig. 6.8b. The charging/discharging of energy storage can smooth
the power demand and make the main energy source working in a steady-state, and
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the economic and environmental behaviors may be both improved. In this sense,
energy storage integration has been viewed as an important approach to facilitate the
operation of maritime grids.

It should be noted that energy storage can level/smooth other types of power
demand in maritime grids as well, such as service load [3], or weapon system [26],
and even in some short-term timescale applications [5—7]. In those applications,
the effects are similar to Fig. 6.8a, b, i.e., the main energy source keeps a nearly
constant power output and the energy storage shares the fluctuated load demand by
continuous discharging/charging. This advantage also gives a new requirement for
energy storage management, i.e., the energy storage should coordinate with the main
energy source to achieve economic and environmental tasks.
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6.3.3 Renewable Energy Integration

To resolve the bottleneck of energy efficiency problems in maritime grids, renewable
energy has been gradually integrated into and may soon become an essential part of
maritime grids. However, as we have mentioned in Chaps. 1 and 4, the renewable
energy is less controllable compared with conventional energy, and the power outputs
are generally fluctuating all the time and cannot be accurately forecasted. There
are many routes to mitigate the influences of renewable energy and energy storage
integration is an important way [24,27, 28]. Reference [24] gives a schematic diagram
of battery energy storage to mitigate the wind power fluctuations, which is shown in
Fig. 6.9.

From Fig. 6.9, the battery units are installed with the wind turbine in parallel.
Two layers of control strategy are used to determine the battery power for compen-
sating the wind power fluctuation. In the first layer, the wind power is measured
and the fluctuation mitigation control layer determines the compensating power. Then
the power allocation control layer split the power into each battery unit, including
the charging/discharging states and power values. With this compensation, the power
output fluctuation of a wind turbine can be greatly reduced.

Wind turbine
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Fig. 6.9 Power sharing by energy storage [24]
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6.3.4 Energy Recovery for Equipment

With the electrification of various equipment in maritime grids, energy storage can
be used as an energy buffer to recover the wasted energy for later usage. Binti
Ahamad et al. [13] has studied the energy recovery by energy storage for an electrified
port crane. Figure 6.10 shows 8 working steps for an electrified port crane. The
corresponding power demand is shown in Fig. 6.11.

A typical working process of a port crane includes (1) hoist, or beginning to lift
up; (2) lifting up speedily; (3) lifting up speedily and the trolley moving forward;
(4) lifting up with the full speed and the trolley moving forward; (5) lifting up with
slowing speed and the trolley moving with full speed; (6) the trolley moving with
slowing speed; (7) lifting down speedily and the trolley moving with slowing speed;
(8) settling down. Step (2) and (3) usually have the biggest power demand whereas
steps (6), (7) and (8) have smaller power demands. Furthermore, when the cargo is
lifting down, the gravitational potential of cargo is wasted, which accounts for about
20% of the total energy consumption [13].

Reference [13] uses a flywheel to store the energy when the cargo is lifting down.
The entire process consists of three modes, including mode 1: grid provides power
and flywheel discharge; mode 2: grid provides power and flywheel charges; and
mode 3: crane charges the flywheel, and three modes are shown in Fig. 6.12. The
fourth sub-figure shows the operating cycle of the flywheel.

In Fig. 6.12, mode 1 is used when the power demand is high, and mode 2 is used
when the power demand is low, and mode 3 is used when the cargo is lifting down.

= o]
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Fig. 6.10 Typical working steps for a port crane
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From the overall scope, the flywheel has a periodical operation pattern between
“discharging-charging-standby” to recover energy. In a seaport microgrid, there will
be increasing electrified equipment and many of them are used for the lifting up/lifting
down cargos. Therefore energy storage will be widely used in the future.

6.4 Typical Problems

6.4.1 Energy Storage Management in AES for Navigation
Uncertainties

(1) Voyage scheduling and navigation uncertainties

In general, the navigation uncertainty forecasting includes pre-voyage forecasting
and intra-voyage forecasting [30]. Responding to the pre-voyage forecasting naviga-
tion uncertainties is widely known as the weather routing problems, or pre-voyage
planning [30-32]. But the conventional ships are rather difficult to respond to the
intra-voyage navigation uncertainties, since in conventional ships, the prime motors
are connected with propellers via shafts and gearboxes, and the speed regulation
ability of conventional ships are therefore limited. With the development of electric
propellers, the prime motors can be “physically separated” from the propellers by the
shipboard electric network. With the aid from integrated ESSs, the onboard genera-
tion of AESs can quickly and economically respond to the intra-voyage navigation
uncertainties. In the future AESs, both the pre-voyage and intra-voyage navigation
uncertainties should be addressed by proper energy management.
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(2) Two-stage scheduling framework

As shown in Fig. 6.13, the first stage is to respond to the pre-voyage navigation
uncertainties and gives the on/off states of onboard DGs, and the second stage is to
respond to the intra-voyage navigation uncertainties and gives the loading factors of
onboard DGs and other decision variables. The merits are as follow:

a. The two-stage operation model can respond to the pre-voyage navigation
uncertainties and intra-voyage navigation uncertainties, coordinately, to gain a
compromise between the robustness and flexibility, i.e., the first stage for the
worst operating case (robustness) and the second stage to adapt to the current
operating case (flexibility).

b. With the proposed two-stage operation, the management of onboard DGs can be
more convenient, since the on/off states of onboard DGs are determined before
a voyage. The arrangements of the repair or overhaul of the onboard DGs are
much easier.

In the pre-voyage time-window, i.e., the first stage, the decision variables are opti-
mized based on the pre-voyage forecasting navigation uncertainty set. The decision
variables in the first stage include on/off states of onboard DGs and their loading
factors, the shipboard ESS power, the propulsion load and the cruising speed. This
stage is to find an optimal robust shipboard operating scheme for addressing the
worst speed loss case caused by navigation uncertainties. In this stage, only the on/off
states of DGs are “here-and-now” variables and remain as constants in the second
stage. Other variables, including the loading factors of DGs, shipboard ESS power,
propulsion load, and cruising speed are all “wait-and-see” variables, which will be
re-dispatched in the second stage towards uncertainty realization. In the intra-voyage
time-window, i.e., the second stage, the navigation uncertainties are treated as real-
ized. All of the “wait-and-see” variables are re-dispatched to address the short-term
navigation uncertainties.

The proposed two-stage robust model can be viewed as a “predictive-corrective”
process. The first stage is the predictive process to respond to the worst-case and the
second stage is the corrective process which takes recourse actions to compensate
for the first stage, i.e., reducing the conservatism of the first stage.

Pre-voyage Intra-voyage

=0 =6 =12 t=18 1=24

L 1 L 1 »
H Half-hour =

f

First stage: Optimal shipborad microgrid
operation for the worst navigation I
uncertainty case T

£ Second Stage: On-lin Short-term navigation uncertainty
Pre-voyage navigation uncertainty recourse actions characterization
characterization

Fig. 6.13 Relation between the first and second stage of proposed model, reprinted from [33], with
permission from IEEE
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Fig. 6.14 Cruising speed and EEOI comparisons. Reprinted from [33], with permission from IEEE

(3) Case study

To test the proposed two-stage robust optimization problems. Two methods are
compared as follows, and the cruising speed and EEOI comparisons are shown in
Fig. 6.14.

Method A (Non-robust model): shipboard generation scheduling with the expected
wave and wind.

Method B (Robust model): the proposed robust shipboard generation scheduling
(first stage and second stage models). In the second stage, an uncertainty sample is
selected from the uncertainty set to represent the uncertainty realization.

Firstly, the on-time rates are obtained by generating 500 navigation uncertainty
samples in the uncertainty set. The voyage distance of each sample in the terminal
port is shown in Fig. 6.15.

In the proposed two-stage robust model, the cruising speed will increase compared
with the non-robust model since the robust model is to meet the worst case of the
navigation uncertainties, meanwhile, the non-robust model only needs to cope with
the expected uncertainties. In this sense, the non-robust model cannot guarantee the
on-time rates of AES.

To analyze the effects of energy storage on the navigation uncertainties, the total
battery power and SOC in the first and second stages are shown in Fig. 6.16.

From Fig. 6.16, since the worst-case assumed in the first stage may not happen,
the total battery power is reduced in the second stage. This phenomenon also shows
that the proposed two-stage model can well adapt to the uncertainties with sufficient
flexibility.



6.4 Typical Problems 139

60 -
P Method A
[@Method B: first stage
50
Required
o~ terminal
Q40 - distance:
E 188.8nm
=
y
= 30
)
=]
o
2
~ 20
10

0
180 182 184 186 188 190 192 194 196 198 200 202
Voyage distance (nm)

Fig. 6.15 On-time rates of robust and non-robust models. Reprinted from [33], with permission
from IEEE

Fig. 6.16 Multi-battery ESS
scheme in first and second
stages. Reprinted from [33],
with permission from IEEE
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6.4.2 Energy Storage Management in AES for Extending
Lifetime

(1) Definitions of DoD and MSOC

In general, improper cycling conditions are the main reasons for battery degradation,
i.e., charging/discharging cycles and the DoD in each cycle [34—37]. In recent years,
the impacts of MSOC on the battery lifetime have been gradually realized, but still not
been incorporated into the operation problem, yet. In fact, DoD and MSOC are two
main factors we considered in the battery degradation. The DoDs and initial/terminal
SOCs of battery in discharging/charging events are defined in Fig. 6.17a, b.

In Fig. 6.17, when a charging/discharging event begins, the SOC of battery is
denoted as the initial SOC, and when this event terminates, the SOC is denoted as
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SOC=1 Soc=0 SOC=1 SOC=0
Initial Terminal Terminal Initial
soc EOC soC SOC
> <
< > Depth of Discharge (DoD)
Depth of Discharge (DoD) < >
(a) Definition of DoD in discharging event (b) Definition of DoD in charging event

Fig. 6.17 Definitions of the DoD and initial/terminal SOCs. Reprinted from [38], with permission
from IEEE

the terminal SOC. The SOC variations between the initial and terminal SOCs are
defined as the DoD, denoted as d. The middle point of the initial and terminal SOCs
is defined as the MSOC, denoted as SO C™¢",

Since the ship generally has multiple batteries, for the b-th battery in the i-th
charging/discharging event, the DoD is denoted as d”, and the corresponding MSOC
is denoted as S OCfo“”, and the equivalent life cycle (ELC) is denoted as ELC),; =
Y.

l In the following, we use a vector to denote the MSOC-DoD combination hereafter,

ie., (S OCfo‘"‘, df’ ). For example, (0.3, 0.6) means the experiment is conducted in
SOC)*" = 0.3 and dib =0.6.

(2) Impacts of DoD and MSOC on the battery lifetime

In the former section, two main factors for battery degradation have been defined, i.e.,
dib and SOC}'i". In the following, a battery degradation model is formulated based
on the above two factors. The original dataset is based on experimental research of
battery health [39]. It has 14 aging experiments for the batteries in the same brand.
The discharging/charging current in each experiment is the same and there are five
MSOC-DoD combinations, i.e., (0.3, 0.6), (0.5, 0.2), (0.5, 0.6), (0.5,1), (0.7, 0.6).
Several experimental data are shown in Fig. 6.18a, b. If the MSOC-DoD combination
is the same, it refers to the experiment that has been conducted twice, otherwise, the
experiment is only conducted for once.

InFig. 6.18, the horizontal axis represents the ELC. The vertical axis represents the
normalized battery capacity, and it will decay with the charging/discharging cycles.
From above, the impacts of DoD and MSOC on the battery lifetime are clear, i.e.,
smaller DoD and lower MSOC lead to smaller battery degradation. The reasons are
shown as follows, (1) in Fig. 6.18a, experiment 1-6 share the same MSOCs but the
DoDs are different, i.e., from 0.2 to 1. As shown in the dataset, the battery with higher
DoD will have faster degradation, and (2) in Fig. 6.18b, experiment 7—10 share the
same DoD but the MSOC are different, from 0.3 to 0.7. As shown in the dataset, the
battery with higher MSOC suffers from higher battery degradation.

To show an example for battery degradation calculation, we take the curve of
experiment 6 as an example. The battery in experiment 6 has 879 cycles before

life ending. Then the average degradation in each cycle in p.u. is Def7 = % =
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2.2 x 107*. Similarly, the average degradations in each cycle for 14 experiments are
calculated. For clarification, we denote the obtained battery degradation dataset as
(Socyan, d?, De?), b € B, where De is the average battery degradation.

(3) A revised data-driven battery degradation model

According to Ref. [34], the model of battery lifetime versus DoD is shown as (6.1),
where ki, k; and k3 are all fitting coefficients. To reflect the impacts of MSOC,
the degradation model shown in Eq. (6.1) should be revised, and Table 6.3 shows
different fitting models and their R-square parameters under the dataset [39]. The
fitting tools used is the “sftool” in Matlab 2016b.
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Table 6.3 Different Fitting Models and parameters

Model | Model formulation Fitting parameters R-square
1 ki - SOCpen . (db) . k! ki ks, ks = 1.475, —1.106,3.512 | 0.91
2 ki, ko, k3, kg = 1.41,1.1, —1.16,3.62 | 091

k:
- (socpzn)” - @) et

3 ki - €2 SOCH™ () L ekvd! Ik Ky, ks, kg = 0.18,2.0, —1.29,3.89 | 0.87
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Fig. 6.19 Fitting surface of Battery degradation vs. DoD and MSOC. Reprinted from [38], with
permission from IEEE

Dl =k - () - & 6.1

From the results of Table 6.3, model 1and 2 share the best R-square 0.91 with its
maximum equal 1, and model 1 is selected as the final battery degradation model
since fewer fitting variables and shown as the following Fig. 6.19.

In Fig. 6.19, the black points are the original dataset points, and the fitting surface
has shown clear dependence of DoD and MSOC on battery degradation, i.e., higher
MSOC and larger DoD will cause higher battery degradation. With the above battery
degradation model, the lifetime of battery can be shown as (6.2).

1-0.8 0.2
LT = == 6.2
! De? De? ©.2)

1 1

where 1 — 0.8 means the battery lifetime terminates when the normalized battery
capacity becomes 0.8 of its full capacity; L] is the battery lifetime under
charging/discharging event i. Obviously, if we want to extend the battery lifetime
Lz, De? should be minimized.
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(4) Multi-battery scheduling

For indicating when and how many batteries should be utilized, a task matrix B4
is defined and Eq. (6.3) gives an example with the entire operating period having 4
time-intervals, i.e., #; ~ f4, and the shipboard ESS include 4 batteries, i.e., no. 1-4.

1100
1100
01 11
01 11

B4 = (6.3)

In (6.3), the row represents batteries and the column represents time-intervals.
BA(i, j) = Bif‘j = 1 represents battery i will be switched-on to share power demand
(charging or discharging) in the j-th time-interval, or BA(i, j) = Bl{‘j = O represents
the battery i will stand by. With the above definition, the process of multi-battery
management can be shown in Fig. 6.20.

With the above multi-battery ESS management, different batteries or battery
groups can share different charging/discharging events, which has the potential to
reduce the cycles of each battery. The overall lifetime of multi-battery ESS maybe
therefore extended.

(5) Case study

To show the benefits of the proposed model, three methods are compared with each
other.

Shipboard Load demands
) ] ) v First stage: i ; I' i i
Batteries as a "single
battery pack" for pre-
voyage navigation
uncertaines
DGI DG2 DG3 DG4 Single battery pack
= i g e [
Second stage: i W T e }
I il I
Batteries seperated into two | | el g
groups, and obtaining the ] i : g
power for the intra-voyage ] ] :
navigation uncertainties i o g b et o e =
Battery Battery
group 1 group 2

Fig. 6.20 Multi-battery management into two-stage operation. Reprinted from [38], with permis-
sion from IEEE
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Method A: Conventional energy management without considering battery lifetime
degradation [2].

Method B: Conventional energy management only considering DoD as the battery
lifetime determinant [34].

Method C: Proposed energy management without multi-battery management.

It should be noted that methods A—C are used to calculate the battery power, and the
battery degradations of three methods are calculated by the same model proposed
(Model 1 in Table 6.3). The power and SOC curves of three methods are shown
in Fig. 6.21, and the corresponding battery degradation in each voyage and overall
lifetime are shown in Table 6.4.

In this case study, the voyage is divided into two parts, i.e., t = 0 ~ 35 and
t = 41 ~ 64 are in cruising states, and t = 36 ~ 40 is in berthed-in state. From
the results in Fig. 6.21, batteries in method A—C all tend to discharge when cruising
states to share the power demand and to charge when berthed-in state. It is mainly
because when berthed-in, the propulsion load is zero and to avoid frequent start-
ups/shut-downs of onboard generators, the energy will be stored in the battery for
later usage.
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Fig. 6.21 Battery power schedules and SOCs of three cases. Reprinted from [38], with permission
from IEEE

Table 6.4 Battery

. S Method | Battery Battery lifetime | Lifetime
degradation and lifetime in d . . . .
; egradation | (Times) extension ratios

three methods, reprinted from s (%)
[38], with permission from (x107)
IEEE A 34.94 572.4 -

B 25.76 776.4 35.6%

C 23.0 869.5 51.9%
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However, with different battery degradation model, method A—C have different
DoDs and MSOC:s. In method A, the battery degradation is not considered, the battery
operating scheme tends to fully use the battery to reduce FCPY + FCST, and the
DoDs of t = 0-35, r = 3640 and ¢t = 41-64 are 0.8, 0.79, and 0.27, respectively.
Meanwhile, in method B, the DoD is considered as the only decision variable of
battery degradation. Then the battery operating scheme tends to limit the DoDs, in
which the DoDs of t = 0-35, t = 3640, t = 41-64 decrease to 0.6, 0.6, and 0.27. As
aresult, the battery lifetime of method B increases by 35.6% compared with method
A from Table 6.4. This phenomenon clearly shows that DoD is an important factor
for battery lifetime.

In the proposed model (method C), the DoD and MSOC are considered as two
factors for battery lifetime. Then compared with method B, method C reduces the
MSOC of t = 0 ~ 35,t = 36 ~ 40, and t = 41 ~ 64 from 0.8, 0.8, and 0.87
(method B) to 0.49, 0.5, and 0.66 (method C). Correspondingly, the battery lifetime
of method C increases by 51.9% compared with method A, and 12% longer than
method B.

The above phenomenon clearly shows that both the DoD and MSOC have vital
impacts on the battery lifetime. The proposed test case has 4 batteries, and each
battery has 4 MWh capacity and 2.5 MW power, which is denoted as 1-4. 4 batteries
are in two groups. Battery 1, 2 are group 1, and battery 3, 4 are group 2. Method D
is designed to show the advantages of multi-battery management. The battery power
of methods C and D are shown in Fig. 6.22.

Method D: Proposed energy management with multi-battery management.

From Fig. 6.22, with the multi-battery management, the power demand in different
time periods is shared by battery 1 + 2 and 3 + 4, respectively. For example, when
t = 0 ~ 13, the power demand is undertaken by battery 1 4+ 2,and when? = 14 ~ 36,
battery 3 4 4 undertake the power demand. With this strategy, the battery degradations
are shown in Table 6.5.
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Fig. 6.22 Battery power schedules and SOCs of method C and D. Reprinted from [38], with
permission from IEEE
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Table 6.5 Battery degradation and lifetime in method C and D, reprinted from [38], with permission
from IEEE

Method Battery degradation Actual battery Battery lifetime
(x 10~5/MWh) degradation (MWh) (times)
C 142 11.5 1.84 x 1073 869.5
3+4 11.5 1.84 x 1073
total 23.0 3.68 x 1073
D 142 274 2.19 x 1073 980.3
3+4 13.4 1.07 x 1073
total 20.4 3.26 x 1073

From the above results, the implementation of multi-battery management can
further reduce the MSOC of battery 3 + 4, which leads the battery 3 4 4 only
have 1.07 x 10~* MWh degradation compared with 1.84 x 1072 in method C. As a
result, battery 1 4+ 2 must undertake more power demand than battery 3 + 4, so their
degradations increase to 2.19 x 1073, In total, the battery degradation in method D
is still lower than method C.

In the next voyage, battery 1 + 2 and battery 3 + 4 will change their roles. Battery
1 4 2 will lower their MSOC and battery 3 + 4 will undertake more power to protect
the health of battery 1 4 2. With this strategy, the multi-battery management can
further extend the total battery lifetime by 12.7%, and the lifetime increases from
869.5 cycles to 980.3 cycles.

As above, the proposed shipboard multi-battery management method can be
viewed as a coordinated operation of all the onboard batteries. One battery group
undertakes most of the power demand and make the other one working in an MSOC
with lower degradation. Then in the next voyage, the battery groups change their
roles for the iterative usages.
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Chapter 7 ®)
Multi-energy Management of Maritime i

Grids

7.1 Concept of Multi-energy Management

7.1.1 Motivation and Background

Generally, all the energy systems are “multi-energy systems” in the sense that
multiple energy sectors interact at different levels. For example in conventional
power systems, the coal or gas used for generating electricity should be transported
to each power plant, and this process implies the couplings between fossil energy and
electrical energy. Another case is, the heating service by the combined heat-power
plant also last for decades, and this process includes the coupling between heating
energy and electrical energy. However, those energy couplings between different
systems are conventionally weak compared with the relationship within a single
energy system, and that is the main reason for the past studies of power system
mostly only consider the electrical energy [1-3]. However, the interactions between
different energy systems become tighter and more frequent recently, and this trend is
about to continue in the future [4-7], such as the electric-gas energy system, and the
coordinated heat-power system, or even the transportation-power system motivated
by the transportation electrification. In this sense, conventional energy management
for a single energy system may not be valid in the future, which drives the research
of multi-energy management.

In literature, [8—11] focus on the coordination between the gas system and power
systems [12—-15]. Study the energy management methods for heat-power systems [ 16,
17]. Study the water-power systems and [18-22] investigate the coupling between
the transportation system and power system by electric vehicles’ charging and
discharging. The above research has brought a new perspective in energy system
analysis, particularly in the light of reducing the economic and environmental burden
of energy services. In summary, three benefits can be achieved by multi-energy
management:
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a. Increasing or improving the energy efficiency of the entire system and the utiliza-
tion of primary energy sources. The reason is the multi-energy system can use the
energy at different levels. For example, the waste heat after generating electricity
can be used for heating services and the energy efficiency of the entire system
improves.

b. Better deploying various energy resources at multiple system levels. For example,
small-scale gas turbines can respond to volatile electricity market prices in a
wind-rich energy system.

c. Increasing the energy system flexibility by the coordinations between different
energy systems. For example, scheduled charging/discharging of the electric
vehicles acts as demand response tool for power system. Or the thermal storage
tank can bring flexibility for combined power-heat plants.

Since the above three main advantages, the research on multi-energy manage-
ment is essential for future energy systems. However, different energy systems have
different administrators and quite distinct characteristics, and their coordinations are
much more complex compared with the coordinations within a single energy system.
Proper modeling methods and control strategies should be proposed to facilitate their
operation.

7.1.2 Classification of Multi-energy Systems

The multi-energy systems can be classified by different perspectives, and there are
mainly four perspectives to characterize the MES. The first is the spatial perspective.
This perspective points out how MES can intend at different levels of aggregation
in terms of components or even just conceptually. These levels go from buildings
to district and finally to regions and even countries. This classification is shown in
Fig. 7.1a.

The second perspective focuses on the provision of multiple services by optimally
scheduling different energy systems, particularly at the supply levels. Such as the
services provided by the MES, including electricity supply, water supply, heating
service, EV charging services, gas filling services, and so on. This classification is
shown in Fig. 7.1b.

The third perspective highlights how different types of fuels can be integrated
together for providing optimal energy services, typically for economic or environ-
mental targets. The fuel types range from classical fossil fuel, such as oil, coal and
natural gas, to biomass fuels, and renewable energy. This classification is shown in
Fig. 7.1c.

The fourth perspective discusses the coordinations between different energy
systems, especially the coordination between different networks, such as the elec-
trical network, gas network, district heating/cooling network, in terms of facilitating
the development of multi-energy management methods and their interactions. This
classification is shown in Fig. 7.1d.
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Fig. 7.1 Classifications for MES [4]

Figure 7.1a classifies the MESs from the spatial perspective. An individual
building exchanges energy by the transmission of electricity, heat, cooling, and
natural gas. Then multiple buildings aggregate as a district, then multiple districts
aggregate as a region and expand to a wider area. In this perspective, MESs can be
classified as the building MES, district MES, region MES, and so on.

Figure 7.1b classifies the MESs from the service perspective. Generally, MES can
provide multiple services to the customers, such as the electricity supply, heat and
cooling power, and even some transport services, such as the charging/discharging
of EV. In this perspective, MESs can be classified as combined electric-heat MES,
combined electric-heat-cooling MES, and even electric-heat-water supply MES,
since the water pump is coupled with the electric network by the electrical water
pumps.

Figure 7.1c classifies the MES from the fuel perspective. For example, there
exist many power sources in MES, such as power plants, boilers, gas turbines, and
chillers. They may consume different types of fuels. Different power plants may
consume coal, oil, or gas. A boiler may consume electricity or other fossil fuel, and
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a chiller may consume electricity or heat power. In this sense, the fuel type can also
classify the MESs, such as the coal-gas MES, gas-hydrogen MES, or even ammonia
MES since ammonia is a new type of carbon-free fuel [23].

Figure 7.1d classifies the MES from the network perspective since every “energy
carrier” should be transmitted by a designed network. The electrical network includes
power systems on multiple scales. Gas and oil are transported by pipelines or trans-
portation flows. Heat and cooling power also have certain pipelines. Those different
networks can have different topologies and operating strategies, which is the main
motivation of this classification method. In this sense, the networks of MESs can
be classified as combined electric-heat networks, combined electric-heat-cooling
networks, and so on.

7.2 Future Multi-energy Maritime Grids

7.2.1 Multi-energy Nature of Maritime Grids

A sketch of MES is given in the former section to show the basic advantages and char-
acteristics. In this section, the multi-energy nature of maritime grids will be analyzed
to show their similarities and differences compared with conventional MESs, and
Fig. 4.1 is re-drawn below as Fig. 7.2 as an illustration of future maritime grids. Two
cases of maritime grids will be given after this illustration.
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Fig. 7.2 Illustrations of future maritime grids
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(1) Spatial perspective

From Fig. 7.2, maritime grids cover different spatial areas. For example, island
microgrids cover an individual island, and the energy sources include offshore wind
power, photovoltaic power, and underground cables. Seaport microgrids cover the
harbor territory, and the energy sources include the offshore wind farm, land-based
photovoltaic farm, oil pipelines, and the electricity supply from the harbor city.
Other maritime grids include the drilling platforms and different types of ships. In
summary, maritime grids have a very wide range on system scales, from the smallest
to a ferry or a building and the biggest to a harbor city, which involves all the energy
sources within a conventional MES. Different maritime grids are coupled tightly by
energy connections, and current multi-microgrid coordination methods can be used
in maritime grids to achieve better system characteristics.

(2) Service perspective

Figure 7.2 shows maritime grids can provide different services to customers,
including the conventional services of electricity, heat, cooling in land-based MES,
also including some types beyond current focuses, such as the logistic services, fuel
transportation services. This is the primary difference between current studied MES
(land-based MES) from the maritime grids. This is also a challenge for the research
of maritime grids, since new energy models of those services should be formulated
and integrated into the energy management model.

(3) Fuel perspective

Maritime grids also involve different types of fuels. In Fig. 7.2, the drilling platform
can harvest crude oil or natural gas, and transport them to an island or the seaport. The
industrial factory can refine crude oil into different types of fuels, such as gasoline,
diesel, and so on. Those fuels may in reverse fill into the ships for sailing, into seaport
for generation, and into the harbor city for daily lives. Besides, some novel fuels may
also use in maritime grids, such as ammonia, methanol, and ethanol.

(4) Network perspective

Maritime grids also have different types of networks. Figure 7.2 shows some
typical ones, (1) electrical networks in harbor city, seaport, industrial factory; (2)
heat/cooling networks in harbor city, seaport, industrial factory; (3) fossil fuel
networks between the ocean platforms and a seaport or an island; (4) electrical
networks between offshore wind farms and a seaport or an island; (5) multi-energy
network within an island; (6) transportation network by ships and vehicles. Those
networks above are connected with multiple energy and information flows and may
be more complex than conventional land-based MESs.
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7.2.2 Multi-energy Cruise Ships

In Fig. 7.3, a typical topology of a multi-energy cruise ship is shown. Detailed
illustrations can be depicted as follow. The load demands can be classified into three
categories, the electric load, thermal load, and propulsion load. Among the three
load demands, the propulsion load is to drive the cruise ship, which consists most
of, usually more than 50% of the total load demand [24]. The propulsion load has a
simple cubic relationship with the cruising speed, which is under the constraints of
navigation distance [25]. The electric load in cruise ships includes the illumination,
recreation equipment, movie theater, and so on. This type of load scales up to tens of
megawatt [24], which is provided by the electric power bus, shown as the blue lines
and arrows in Fig. 7.3. The thermal load in cruise ship includes the cooling and heat
load, the swimming pool, and the cooking. This type of load also scales up to tens
of megawatt [27], which is provided by the thermal power network, shown as the
green line and arrows in Fig. 7.3. It also should be noted that in some cruise ships the
cooling and heat loads are provided by the electricity. In this work, we will compare
the introduced multi-energy technology with the single electric supply mode.

As for the generation systems, to provide adequate electric and thermal loads
for the overall cruise ship. There exist three types of generation systems, i.e., DG,
CCHP, and PTC. The DGs make up the main part of the shipboard generation, which
provides most of the electric power supply. The CCHP both provides the electric
power and the thermal power and the PTC uses electricity to produce thermal power.
To balance both the electric and thermal loads, the HES (electric and thermal energy
storage) is integrated.
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Fig. 7.3 Topology of a multi-energy cruise ship
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7.2.3 Multi-energy Seaport

We have illustrated the multi-energy seaport in Chap. 1. Here we re-draw Fig. 1.17
as Fig. 7.4to further show its multiple energy flows.

Generally, the seaport is connected with the main grid and various renewable
energy are integrated, i.e., seaport wind farms and PV farms in Fig. 7.4. All the
port-side equipment, including the quay cranes, gantry cranes, transferring trunks,
are electrically-driven. The seaport provides four types of services to the berthed-in
ships and has four sub-systems for each type of services: (1) logistic service. The
berth allocation and quay crane scheduling for loading/unloading cargo; (2) fuel
transportation. Unloading or refilling fuel for the berthed-in ships; (3) cold-ironing.
Providing electricity to the berthed-in ships and (4) refrigeration reefer for the cold-
chain supply. The coordination between different sub-systems is shown in Fig. 7.5.
Four sub-systems are communicating by the seaport control center and a distributed
control strategy is employed in the seaport microgrid.
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Fig. 7.4 Multi-energy seaport microgrid
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7.3 General Model and Solving Method

7.3.1 Compact Form Model

From above, maritime grids involve different networks and provide multiple types
of services by different types of fuels. In this sense, maritime grids have a significant
characteristic, i.e., using the electric network as the backbone for energy manage-
ment, and other different networks serve as the “load demand” of electric networks.
For example, the heat/cooling networks couple with the electric network by CHP
or electric boiler/chiller, and water supply network couple with the electric network
by electric water pumps, and logistic network couple with the electric network by
charging/discharging.

For this complex network, a general energy scheduling form can be shown as
(7.1). Where f(x) is the objective function of the main network, generally the electric
network, and x is the decision variable vector; g;(y;) is the objective function of the
i-th network, and y; is the decision variable vector of the i-th network; F(x) is the
constraint set of the main network; G;(y;) is the constraint set of the i-th network;
A; - x = H;(y;) is the coupling constraint set of power consumption of coupling
equipment, such as water pump, CHP, and various logistic equipment.
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mi)nf(x)+2gi(yi)

X i i=1
st.F(x)>0,Gi(yi)) =0

Ai-x=H(y),xe X,y €Y,

(7.1)

7.3.2 A Decomposed Solving Method

This Chapter proposes a decomposed method to solve this type of problem, which
is given by the following Theorem 7.1.

Theorem 1 The above formulation is equivalent to the following form.

min| £+ 3 inf (a0 + - G+ s [HiG) = 42D |

i=1Yi,Ti Ui
s.t.F(x)>0,G;(y) >0
xeXnNV (7.2)

V= 0l LHiGn = Ar - x1=0)

,wherekl; > 0and Y 1; = 1
i=1

where u; is the optimal multiplier vector of the following optimization problem.

min l; & (i) (7.3)

5.t.Gi(yi)) 20, A; - x = Hi(y;), foralli

Proof
(1) Problem (7.1) and (7.2) have the same feasible region.
(1.1) If x be feasible for (7.1), then x is feasible for (7.2).

Let x be an arbitrary point in the feasible region of (7.1), then
F(x)>0,A;-x = H;(y;), forVi (7.4)
It follows that (7.5) holds for all ;.
Ai - [Hi(yi) —Ai-x]=0 (7.5)

Then x € V, and F(x) > 0. x is also feasible for (7.2).



158 7 Multi-energy Management of Maritime Grids

(1.2) If x be feasible for (7.2), then x is feasible for (7.1).

Let x be an arbitrary point for (7.2), then (7.5) holds at least for one i. F(x) > 0 is
satisfied all the same, then (7.6) holds.

n-F&)+A - [Hi(y)—Ai-x] >0 (7.6)
It follows that

Ing{ﬁ “F(X) + A - [Hi(y) — Ai - x] = 0} (1.7)
n>

Since n = Ois allowedin (7.7). Now, (7.7) is the dual of the following optimization
problem.

min 07 - y;
Vi€Y; (7.8)
st.F(x)>0,Hi(y;)) =A;i - x

Obviously, (7.8) is feasible and has the optimal value of 0, hence, x is feasible for
(7.1).

(2) The objective function
Since u; is the optimal multiplier vector of (7.3), then (7.9) holds.

rginigi(yi)
" W T (7.9)
= inf{Zgi(yi) + > -G+ D ui - [Hi(y) — A 'x]}
= i= i<

In this sense,

minf / (¥) + 3 (0]
. o i=1 (7.10)
rr§in|:f(x) + > inf (g + 1 - Gi(yi) +u; - [Hi(yi) — A 'X])i|

i=1Yi,Ti Ui

From above, (7.1) and (7.2) are equivalent, then the solution process is given
below.

Solution process: From (7.2), the original problem can be solved in a two-step
process. It should be noted that, g;(v;) + t; - G;(y;) is a constant when minimizing
X, so it is eliminated for simplification.

Step 1: Given a feasible x, solve (7.11) for y and u;.

n
min I; &) 7.11)

5.t.Gi(yi)) 20, A; - x = H;(y;), foralli
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It should be noted that, there are no coupling between different networks. So
(7.11) can be solved in parallel.
Step 2: Solve (7.12) for x.

min] 760+ 50 [#107) - 41+ | 1
* i=1 :
st.F(x)>0,A; - x = H,-(yi*), foralli

Then check the convergence characteristic, if yes, terminates and if not, return to
Step 1 and update x. The algorithm convergence is given below.

Algorithm convergence It is proved that the proposed method has finite &-
convergence characteristic.

Theorem 2 Assume X and V are both compact set, f, g, F, G; and H; are contin-
uous. The set UT (x) of the optimal multiplier vector for (7.3) is non-empty for all
x in X and uniformly bounded. Then, for any given ¢ > 0, the proposed procedure
terminates in a finite number of steps.

Proof For simplification, we define (7.13).

Lx,7,u) = f(x)+ Z(gi(J’i) +1-Gi(y) +u-[Hi(yi) — Ai -x])  (7.13)

i=1

For any sequence L(x", t", u"), x¥ of the optimal solution of (7.2). Firstly, the
optimal multipliers sequence t", u* will converges to a point noted as (7, i), since
the uniformly bounded assumption of UT (x). Additionally, x” will converge to a
point denoted as x since the compactness of X.

Atlast, since L(x", T, u") is anon-increasing sequence and bounded below, there
exists at least one sub-sequence of L(x", t", u"), x* which converges to a point, we
noted it as L(x, T, u), x.

Since the weak duality, (7, ) is the optimal multiplier for x and (7.14) holds.

L(%. 7, i) = Inf(f@ +) g (y») (7.14)
¥i P
Then, for any given ¢ > 0, there should be finite v to make (7.15) hold.
L, T,00) < L(xv, T, uv) < Inf(f(i) + Zgi(yi)) +e (7.15)
Vi
i=1

Then the proposed method should converge in finite steps.
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7.4 Typical Problems

7.4.1 Multi-energy Management for Cruise Ships

This section uses the cruise ship in Fig. 7.3 as the test case to show the effects
of energy management. For a more economic and environmental operation of the
cruise ship, the shipboard energy management system will optimally dispatch the
outputs of the DG, CCHP, PTC, and HES to fulfill the propulsion, onboard electric,
and thermal loads. However, in practice, those control variables are not on the same
time-scale. During the navigation, the ship will constantly cruise and the speed cannot
be regulated rapidly [25], and the onboard facilities for tourists also should keep
working till night. This makes the propulsion and electric loads should be fulfilled
in a long-term horizon (every hour in this work). Besides, the thermal load should be
satisfied in a short-term horizon (20 min) to meet the real-time constraints of indoor
temperature and hot water supply. To coordinately satisfy the above load demands
in two time-scales, in this work we propose a two-stage operation framework for the
cruise ship, which is shown as follow:

From the Fig. 7.6, the first stage hourly schedules the DGs, CCHP, and battery to
fulfill the voyage distance constraints and hourly electric load demand. The thermal
power produced by the CCHP is stored in the thermal energy storage. In the second
stage, every 20 min, the PTC and thermal energy storage is dispatched to meet the
thermal load demand. With the above operation framework, both the propulsion and
electric loads can be met in a long-term time-scale, as well as the thermal load demand
can be met in a short-term time-scale to improve the QoS.
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Fig. 7.6 Two-stage operation framework for the cruise ship, reprinted from [26], with permission
from IEEE
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To show the benefits of the proposed model, the onboard generation and battery
SOC are shown in Fig. 7.7a, b, respectively. Figure 7.8 compares the results of the
thermal load of the proposed two-stage method.

From Fig. 7.7a, the battery can coordinate with the speed adjustment to smooth
the load profiles, which facilitates the economy of cruise ships (the DGs can better
operate around their economic points). From Fig. 7.7b, the battery may have much
deeper charging/discharging events without the speed adjustment. That is mainly
because the cruising speed is fixed during the cruising time-intervals, and the battery
should quickly respond to the load profiles for the economy of navigation.

From Fig. 7.8a, the proposed two-stage scheduling model can meet the thermal
load demand in a more accurate time-scale by simply dispatching the loading factor

without speed variations: [[ll DGs [ CCHP [[] Battery =8=Speed
0 with speed variations: [ DGs [_] CCHP [_] Battery 'e' Speed

z 3
~ . =
= 1 o ] F 152
.2 gl o | Bl (O 0" ml = =
% | ! §
=] = 17}
) 10 oh
2 z
o 1
;N | 0 1 | 1 | L | | I‘ 0
5 10 15 20 25
Time Step (hour)
(a) Onboard generation with/without speed variations
16 -
14 |-
=
2 12+
2
O 10F
o
7 gl
)
o
g or =¢= without speed variations
m
4r with speed variations
2 1 1 1 1 1
0 5 10 15 20 25

Time Step (hour)
(b) Battery SOC with/without speed variations

Fig. 7.7 Onboard generation and battery SOC with/without speed variations, reprinted from [26],
with permission from IEEE
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of the thermal storage tank, and the outputs of PTC and CCHP. The results are shown
in Fig. 7.8b. The indoor temperature can be kept as a constant meanwhile the single
first stage will have a maximal 3 °C temperature variations since the accumulated
effects of thermal load demand variations. Similarly, the single first stage also cannot
meet the hot water supply-demand all the time, and the thermal variations will also

be accumulated and make the supplies always smaller than the demands.

Current cruise ships are mainly BOS cruise ships, which means in the BOS mode,
the thermal load demand is all provided by the electric-side (PTC units). In this case,
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Fig. 7.9 Comparisons between BOS and HES cruise ships, reprinted from [26], with permission
from IEEE

the BOS ship replaces the CCHP to conventional DG with the same capacity. The
parameters are the same with DG2, 3. The total load demand and EEOI of BOS and
HES ships are shown in Fig. 7.9.

From Fig. 7.9, the BOS cruise ship will have much larger load demands since the
thermal load is provided by the PTC unit. Correspondingly, the EEOI of the HES
integrated cruise ship is also much smaller than the BOS by 8.37%.

7.4.2 Multi-energy Management for Seaport Microgrids

(1) System description

From Fig. 7.10, there are three energy resources in this microgrid, i.e., photo-
voltaics(PVs), electrical substation, and gas pressure house. The PVs and substation
inject electricity into the seaport microgrid via DC and AC buses, respectively. The
gas pressure house injects gas into the seaport microgrid to the gas storage. Addi-
tionally, to improve the system flexibility, a battery energy storage system (ESS) and
two thermal storages are incorporated. The AC/DC loads and heat/cooling power
are supplied to the seaport loads, and DC power is used for charging the electric
trunk. The power to gas equipment transforms the excess power to gas to fill the gas
vehicles.

In this paper, the scheduling horizon is divided into equal time step A¢, denoted
by set 7 = {1, 2, ..., T}. The proposed operation method is formulated as a two-
stage framework, where the first stage is for the day-ahead time-scale, and the second
stage is for real-time scheduling, i.e., hourly. In the day-ahead operation (first stage),
the hourly energy scheme is provided considering the uncertainties, and then in
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Fig. 7.10 An illustrated seaport microgrid case revised from [28]

the second stage, the seaport microgrid adjusts its scheduling plan responding to
the realization of uncertainties in the hourly time-scale. The electrical load profile,
heating load profile, and cooling load profile are shown in Fig. 7.11, which are all
given in 1000 scenarios. Other detailed parameters can be found in [28].
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Fig. 7.11 Input parameters of the proposed method, reprinted from [28], open access
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Fig. 7.12 Power flow via bi-directional AC/DC converter, reprinted from [28], open access

(2) Case study

To verify the effectiveness of the proposed method, different cases are formulated as
follows.

Case 1: Two-stage optimization is considered, meanwhile the joint constraints are
considered.

Case 2: Only the first-stage optimization is considered.
(2.1) Bi-directional AC/DC power flow

To show the coordination between AC and DC sides, the power flow via the bi-
directional AC/DC converter is shown in Fig. 7.12. The AC to DC power is shown
as the surface above the zero surface, while the DC to AC power is shown as the
surface below the zero surface. Then, to show the effects of ESS, the state of charge
(SOC) of battery is shown in Fig. 7.13.

From the above figure, at first, when the PV power is almost zero, i.e., t = 0—
5 h, 20-24 h, the DC load is mainly met by AC to DC converter. When the DC
load gradually increases, the AC to DC power is also increasing, and the battery
discharges to further support DC load, i.e., t = 5, 6 h. After that, with the PV power
increasing, the power demands also become larger, i.e., both DC and AC loads during
t = 10-16 h. In those time intervals, the PV output is beyond the maximal DC load,
which leads the PV power change to AC via AC/DC converter to support the AC
load or charge into battery, which is shown as the surface below zero in Fig. 7.12 and
the charging event in Fig. 7.13. From the above results, the integration of the AC/DC
converter can bring great flexibilities to meet both DC and AC loads. The DC power
for PV and AC power from UG and CHP can coordinately operate to enhance energy
efficiency.



166 7 Multi-energy Management of Maritime Grids

2000

Battery SOC (kWh)
w o v
o (= (=1
=1 (=] (=]

1 1 !

(=]
\

(=]
wn

10
B 20 25 1000 &
Time (h)
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(2.2) Multiple energy flows

In this seaport microgrid, various energy carriers are working coordinately to enhance
operation flexibility. To show those coordinations, the power of CHP is shown in
Fig. 7.14, the power of heat storage is shown in Fig. 7.15, the power of cooling

storage is shown in Fig. 7.16, and the power of power-to-gas facility is shown in
Fig. 7.17.
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Fig. 7.14 Power of CHP, reprinted from [28], open access
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Fig. 7.16 Power of cooling storage, reprinted from [28], open access

From Fig. 7.11d and e, there are two demand impulses of both heat and cooling
demands in r = 6, 7 h. The CHP responds to those demand impulses and consumes
the gas to produce electricity and heat. The heat energy is stored and both the heat
and cooling storages are discharging in this period to satisfy the demand, which is
shown as the great valleys in their energy curves in Figs. 7.15 and 7.16. After that,
CHP is shut-down since the total electricity demand is limited. The thermal demands
are then met by the coordination of thermal storage and the gas boiler.
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It should be noted that when # = 10-15 h, the temperature increases and requires
great air-conditioning power demand. While in this time period, the PV power is also
in its peak-hours. Then the PV power is converted to gas for the gas boiler to meet
the air-conditioning power demand, which is shown as in Fig. 7.17.

The above results show that different energy carriers can be coordinated flexibly
in a seaport microgrid. The excess electricity can be converted to gas for thermal
demand. With the interactions between different energy carriers, the electric and
thermal demand can both be satisfied and the flexibility can be enhanced.

(2.3) Electric and gas trucks

The energy demand of trucks is quite important in future seaport since they play a
major role for cargo lifting and transporting. However, before the completed elec-
trification of vehicles, the gas trunks and electric trunks will both exist in seaport
microgrid. To satisfy their energy demands, the electric and gas sub-systems of
seaport microgrid should be operated in coordination, respectively. In this case, the
equivalent energy of gas trucks are shown in Fig. 7.18, and the charging power of
electric trucks are shown in Fig. 7.19.

From Fig. 7.18, the energy peaks of gas vehicles are # = 10-15 h and 20-24 h. The
first peak period corresponds to the working hours, and the second is the vehicles
coming back for charging. From the results in Fig. 7.19, the charging patterns are
more periodic with three peak hours, i.e., t = 10-15, 16-18, and 20-24 h. From the
above results, both the gas and electricity demands of trunks can be satisfied.
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Chapter 8 ®)
Multi-source Energy Management e
of Maritime Grids

8.1 Multiples Sources in Maritime Grids

8.1.1 Main Grid

The main grid plays as the main power source of land-based maritime grids since
the very beginning, such as the seaports and some coastal industries. This type of
maritime grids usually operates in a harbor territory and can receive electricity from
the harbor city. Some equipment in those maritime grids is driven by electricity and
the others may be driven by fossil fuel. Table 8.1 shows the power sources of a
terminal port.

From Table 8.1, electricity, diesel, petrol and natural gas are four main power
sources for a terminal port, especially the electricity and diesel, serving for most of
the port-side equipment. When a seaport is less-electrified, the portion from diesel is
generally higher. In recent years, the extensive electrification of seaport becomes an
irreversible trend, then the electricity now has become the primary power source of a
seaport. Diesel now serves for some flexible operating equipment, such as trucks and
other carriers. Similar phenomena also happen in other land-based maritime grids,
such as coastal factories, since when fully electrified, electricity will serve as the
main energy carrier and the main grid will be the main power source.

8.1.2 Main Engines

Most types of maritime grids cannot always receive power from the main grid.
They mostly operate as islanded microgrids, such as island microgrids, shipboard
microgrids, and various working platforms. For the island microgrids, if they cover
a wide area, a small-scale or even medium-scale power plant is possible to construct,
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Table 8.1 Possible power sources for different equipment in a seaport (data from [1])

Diesel Petrol Natural gas Electricity

Ship-to shore cranes . .
Mobile cranes . .
Rail-mounted gantry . .
Rubber-tired gantry . .
Reach stackers . .
Straddle carriers . .
Lorries . . .
Generators .

Building .
Lighting .
Reefer .
Other vehicles . . . .

and this scenario is similar to the first case since the power plant can provide sufficient
power support. For the other smaller cases, the main engines act as the main power
sources instead, especially in the shipboard microgrids.

Generally, the main engines have four stages of development. The first stage is in
1900-1940, which is the initial stage of main engines. In 1910, the first diesel engine
driven ship “Romagna” was launched. It uses two diesel engines manufactured by
“Sulzer” company. Then in 1912, the first ocean cargo ship “Selandia” uses two
DMB&8150x diesel engines manufactured by “B&M?”. In this stage, the main engines
have the steamed ones and diesel ones. Then in 1940-1970, the development of main
engines steps into the second stage, and this is the golden age of low-speed diesel
engines. The power of a single air cylinder grows from 900-1030 kW in 1956 to
3400 kW in 1977. Then 1970-1990 is the third development stage of main engines.
The theme of this stage is to reduce the fuel consumption rate. In this stage, the unit
fuel consumption has reduced to 0.155-0.160 kg/(kWh), and the energy efficiency
can be up to 55%. Then after 2000, the fourth stage, main engines become smarter and
various advanced monitoring equipment is integrated to achieve automatic control.

Nowadays, main engines have different scales, from kilowatt to megawatt, which
uses diesel, natural gas, ammonia, and so on. Some of them can use more than two
types of fuels, referred to as “multi-fuel engines”. Currently, main engines serve as
the main power sources for many maritime grids.

8.1.3 Battery and Fuel Cell

In Chaps. 1 and 5, the energy storage technologies into maritime grids, especially
the battery, are illustrated in detail. Battery stores energy in the electrochemical form



8.1 Multiples Sources in Maritime Grids 175

and the battery cells are connected in series or in parallel or both to make up the
desired voltage and capacity. There are currently many cases of battery integrated
ships. Some of them are shown in Table 8.2. Nowadays, battery mostly serves as
auxiliary equipment to shave the peak load of ships and benefit the operation of
shipboard microgrid. In the future, the battery integration into maritime grids will
be more convenient and the large-scale integration will be reality.

Since no combustion process, fuel cell has higher power generation efficiency
than the traditional internal combustion engine, which is a promising power source
technology in the future. Table 8.3 shows some cases of fuel cell integrated ships.

Both of battery and fuel cell have no combustion process, and are highly efficient,
which are promising for future usages.

Table 8.2 Cases of battery into ships

Name Ship types Battery capacity References
Ampere Ferry 1040 kWh [2]

Norled Ferry 1400 kWh [3]

Puffer Cargo ship 2400 kWh [4]
Princess Benedikte Cruise ship 2.6 MWh [5]

Elektra Hybrid ferry 1040 kWh [6]

Tycho Brahe Hybrid ferry 460 kWh [7]

Deep ocean 01 [0\ 2.8 MWh [8]
Selbjgrnstjord Cruise ship 585 kWh [9]
Schleswig-Holstein Cruise ship 1.6 MWh [10]

Table 8.3 Projects of some selected fuel cell-based ships

Ship Power Fuel References
Viking Lady 330 kW LNG [11]
SF-Breeze 100 kW Hydrogen [12]
PA-X-ELL 30 kW Methanol [13]
MYV Undine 250 kW Methanol [14]
US SSFC 2.5 MW Diesel [15]
MC-WAP 500 kW Diesel [16]
MS Forester 100 kW Diesel [17]
212 submarine U31 330 kW Hydrogen/Methanol [18]
212 submarine U32 240 kW Hydrogen/Methanol [19]
S-80 Submarine 300 kW Ethanol [20]
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8.1.4 Renewable Energy and Demand Response

In Chaps. 1 and 5, renewable energy integration into maritime grids has been illus-
trated. The following Fig. 8.1 shows renewable energy integration into a seaport.
Wind power, solar energy, and the main grid supply the energy demand of seaport.
The ships can charge or use cold-ironing power when berthed in a seaport, which
can be also viewed as using renewable energy for propulsion.

However, renewable energy is highly fluctuating and less controllable. In conven-
tional operation patterns, the generation-side should follow the trend of renewable
energy or renewable energy has to be curtailed [21]. To mitigate this issue, the
demand-side can be adjusted to follow the trend of renewable energy, then the oper-
ating burden of the generation-side can be greatly reduced and the total system
benefits can be improved.

In literature, demand-side management has been used in power system operation
[22, 23], unit commitment [24], and so on. In the energy market, the demand-side
management sources can be aggregated as one unit and acting as a “virtual power
plant”. In maritime grids, demand-side management is used to adjust the propulsion
system of AES [25]. Later in [26], demand-side management is used to mitigate
the fluctuations of photovoltaic energy. Then [27] proposes a robust demand-side
management method for a photovoltaic integrated AES.
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Fig. 8.1 Renewable energy integration into a seaport
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8.2 Coordination Between Multiple Sources in Maritime
Grids

From above, maritime grids involve multiple sources, including both generation-
side and demand-side, and different sources should be coordinated to achieve better
system behaviors. The coordination framework is shown as the following Fig. 8.2.

From Fig. 8.2, maritime grids consist of 4 main parts, (1) generation-side,
including the main grid, main engines, fuel cell, various renewables, and so on;
(2) demand-side, including the propulsion in ships, and port cranes and vehicles
in a seaport, and all the load demand in different platforms; (3) Energy storage,
including battery, flywheel and all the energy storage technologies can be used
in maritime grids, and it should be noted that energy storage can change its roles
between generation-side and demand-side, i.e., it is generation-side when discharging
and it is demand-side when charging; (4) Multiple networks, including electrical,
heat/cooling, water, and transportation networks, and those networks are used to
deliver multiple energy flows from the generation-side to the demand-side. The
energy storage and networks are the interfaces between generation-side and demand-
side, thus the operating strategies of them can improve the flexibility of maritime
grids.

In summary, maritime grids are a series of microgrids that have specific maritime
load demand, and their operation strategies can be derived from the conventional
land-based microgrids while addressing some specialties.

Maritme grids

Generation-side Demand-side
Main grids Energy storage Propulsion
/ =
le‘_ :
bl Port crane
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Fig. 8.2 Coordination framework of maritime grids
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8.3 Some Representative Coordination Cases

8.3.1 Main Engine—Battery Coordination in AES

A single line diagram of AES is shown in Fig. 8.3 with two buses. 4 DGs are integrated
into two buses. In this AES, bus A and bus B are both DC, and the DGs are all AC
generators. The load demands include electric propellers and AC loads. Batteries are
installed in two buses to act as auxiliary equipment.

Three sources are participating in the operation of AES, i.e., DGs, batteries, and
the propulsion system of AES. The reason for the propulsion system to participate
in demand response is shown as Fig. 8.4a, b.

In Fig. 8.4a, the propulsion load is cubically increasing with the cruising speed
until the “wave wall”. In Fig. 8.4b, the constant speed and variable speed both sail
30 nm in 6 h, but they have different load curves. In this sense, the propulsion system
can adjust its load demand to coordinate with the DGs and battery to facilitate the
operation of AES [25] has studied this topic and the main results are shown in
Fig. 8.5a, b.

From the above Fig. 8.5a, b, the coordinated adjustment of propulsion and ESS
can make the operating cost and EEOI smoother since it can mitigate the peak-
valley difference of onboard power demand, which proves the effects of multi-source
management on AES.

DG2
~ ~ ~ ~
Bus A l l l Bus B
Circuit Breaker
~u - - ~u
AC loads Battery 1 Electric Propeller Battery 2 AC loads

Fig. 8.3 Single-line diagram of an AES



8.3 Some Representative Coordination Cases

Wave wall

Propulsion
load

»

N

—e— Calm water

With wave
and wind

Speed
»
L
(a) Propulsion load of cruising speed
— Constant speed
14 - - Variable speed
— Propulsion load of constant speed
- - Propulsion load of variable speed
12+ AN LeTTTTT
= AN .-
g 4 AN -7
= 10 7 < —=
5] v N -
o ’ ~ -
o . N -
“© v’ N -
2 8y
Z
S
6 el T
ab ot TheoemT
- | | | | | | | |
1 1.5 2 2.5 3 35 4 4.5 5

Time (hour)

(b) Demand response of propulsion load

Fig. 8.4 Reason for propulsion system in demand response

8.3.2 Main Engine-Fuel Cell Coordination in AES
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Compared with the main engines, fuel cell has smaller capacity and scale, which is
suitable to undertake some small-scale load demands. Compared with the battery,
fuel cell doesn’t need charging, which can undertake long-term load demand [28] has
studied this topic and compared two cases: (1) main engine; and (2) main engine-
fuel cell. The testbed used in this study consists of a hybrid power source with
the combined capacity of 180 kW (100 kW fuel cell, 30 kW battery, and 50 kW
diesel generator). The results are shown in Fig. 8.6a, b. From the above curves, the
integration of fuel cells can greatly reduce fuel consumption and CO, emission.
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8.3.3 Demand Response Coordination Within Seaports

Chapter 6 has illustrated the operation steps of quay crane (QC). Original Fig. 6.10
is now re-drawn as Fig. 8.7 below. A typical working process of a port crane includes
(1) hoist, or beginning to lift up; (2) lifting up speedily; (3) lifting up speedily and
the trolley moving forward; (4) lifting up with the full speed and the trolley moving
forward; (5) lifting up with slowing speed and the trolley moving with full speed;
(6) the trolley moving with slowing speed; (7) lifting down speedily and the trolley
moving with slowing speed; (8) settling down. Step (2) and (3) usually have the
biggest power demand whereas steps (6), (7) and (8) have smaller power demands.

Chapter 6 shows the integration of ESS can recover energy when lifting down
the cargo. This Chapter proposes the demand response model of port crane. The
dimension of QC, cargo speed, and QC power are shown in the sub-figures in Fig. 8.8.
Based on Fig. 8.8, the entire lifting cargo distance is calculated as (8.1).

L=hs+(di+d)/2+ (h+hy)/2 (8.1
@ @ ©) ) @

Fig. 8.7 Typical working steps for a port crane
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From sub-figure @ and @, the cargo speed and consumed power has a nearly
linear relationship and can be shown as (8.2).

P=k-v (8.2)

where P is the power of QC; k is the coefficient; and v is the cargo speed. Then the
average consumed power can be shown as (8.3).

Ti T;
Py -T. = [Pdt =k [vdt =k L (8.3)
0 0

where P,, is the average consumed power of QC; T; is the average handling time for
one container. Then to handle n cargos, the consumed time is shown as (8.4).

T=n-Ty=kL) (Py)" (8.4)
i=1

Generally there exist an upper and a lower limit on the total handling time, i.e.,
Twin < T < Tax. Then the demand response model of QC can be obtained.

T,i " T,
mm< Puv _1< max 85
RN OREET ®

Within the range in (8.5), the consumed power of QCs can be adjusted to facilitate
the operation of seaport microgrids.
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Chapter 9 ®)
The Ways Ahead e

9.1 Future Maritime Grids

To illustrate the future maritime grids, we re-draw Fig. 4.1 here and give a more
detailed illustration for future maritime grids. The following Fig. 9.1 is renamed as
“future maritime grids”.

In Fig. 9.1, the main types of maritime grids including harbor city grid (2), seaport
microgrids (4), offshore platforms (10), shipboard microgrids (12), offshore wind
farms (14), island microgrid (15).

In the first place, harbor city grid (2) is the core and acts as the main grid for the rest
of maritime grids. The main functions include receiving the land-based renewable
generation (1), supplying the industrial facilities (9), providing power to seaport
microgrids (4), and operating two-way ferries (12) to island microgrid (15). The
former four are energy connections and the fifth is a transportation connection.

Then seaport microgrid (4) is the network within a seaport, and this microgrid
receives electricity from the harbor city grid (2) and providing raw materials to the
industrial facilities (9). The seaport microgrid also receives energy from the seaport
renewable (6). Seaport provides berth positions to the cargo ships (16), and handling
the cargos by the port cranes (13). The cargos are then lifting by the transferring
vehicles (5) to the stackyard (8), and the cold-chain containers are stored in the reefer
area (7). Besides, seaport microgrid provides cold-ironing power to the shipboard
microgrid (12).

The offshore platforms (10) include oil drilling platforms or other construction
ships. They produce raw materials and transmit them to the industrial facilities (9)
or island (15) by the oil pipes or other networks. The raw materials can be also
transported by cargo ships (16).

The shipboard microgrid (12) is the network installed in cargo ships (16), offshore
support vessels (3), and other ships. It receives the cold-ironing power from the
seaport microgrid (4), and it periodically sails between seaport and islands (15) or
other places to transfer cargos.
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Fig. 9.1 Future maritime grids

Offshore wind farm (14) is to harvest wind energy on the sea. It has underground
cables (13) to connect with the seaport (4) and then with the harbor city (2). It can
also support the energy for the island microgrid (15). The offshore support vessels
(3) are used to construct and repair offshore wind farms.

Island microgrid (15) is the microgrid within an island, which involves various
renewable energy and other distributed generations. The scale of island microgrid
depends on the area of island, and large island microgrid may have environmental
agriculture facilities [1]. Island microgrid can receive the raw materials from the
offshore platforms, and exchange materials with the seaport (4) by cargo ships (16).
The tourists can have two-way traveling between islands and harbor city by two-way
ferries (12).

From above, maritime grids undertake different maritime tasks and they are tightly
coupled and they should be studied as one unit. Some typical operating scenarios are
important and shown below.

(1) The coordination between the seaport microgrid and the harbor city grid. In
this scenario, the harbor city grid is the main grid, and the seaport microgrid
purchases electricity from the main grid to support the within equipment, i.e.,
port cranes, transferring vehicles, reefer area, and so on [2—4] have studied this
scenario.

(2) The coordination between the seaport microgrid and the shipboard microgrids.
In this scenario, the seaport allocates berth positions to the berthed-in ships
and providing cold-ironing power and logistic services [5, 6] have studied this
scenario.
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(3) The coordination between the shipboard microgrids and the island microgrids.
This scenario is similar to the case between seaport and ships when an island
has a very strong power network. When the power grid of the island is weak, the
ships may in reverse support the islands, which is referred to as “mobile power
plant” [7].

(4) The coordination between the offshore platforms. There are generally many
offshore platforms in an ocean area, and they should coordinate with each other
to complete the same task, i.e., oil drilling, construction, and so on.

9.2 Data-Driven Technologies

9.2.1 Navigation Uncertainty Forecasting

Navigation uncertainty generally comes from uncertain weather, and Chap. 4 has
emphasized the influences of navigation uncertainty on the operation of maritime
grids. Until now, there are many data-driven maritime weather forecasting methods
for ships and seaport [8—10], in different timescales, or by different algorithms,
using different attributes, and also have different advantages and disadvantages. Our
focus is on how to use those forecasting datasets to generate the distributions and
uncertainty sets of energy management models. With the obtained distributions or
uncertainty sets, stochastic and robust programming models can be formulated for
different operating scenarios.

Inrecentresearch [11], anovel data-driven heuristic framework for vessel weather
routing is formulated as Fig. 9.2. Based on the weather forecasting results, the ship
chooses a better sailing route to save fuel consumption. The main key performance
indicators (KPIs) of ships can also be predicted.

Fang et al. [12] also studies the robust energy management of all-electric ships
when considering navigation uncertainties, but the weather conditions are simply
classified as four sub-scenarios and only the worst case is considered. In the future,
more accurate uncertainty sets should be forecasted to facilitate the operation of
maritime grids.

9.2.2 States of Battery Energy Storage

Chapters 5-8 have emphasized the critical roles of battery energy storage in the
maritime grids for load leveling and power quality issues. Generally, there are six
states for battery energy storage, i.e., state of charge (SOC), state of power (SOP),
state of energy (SOE), state of safety (SOS), State of temperature (SOT), and state of
health (SOH). The above states are all essential indicators for the battery management
system and many methods have been proposed to estimate them, and various data-
driven techniques have been utilized.
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Fig. 9.2 Flowchart of the data-driven weather routing method

Generally, SOC is defined as the ratio of available capacity to the nominal capacity.
Here the nominal capacity stands for the maximum amount of charge. Using the tank
of a fuel vehicle as an analogy, SOC is similar to the fuel gauge. The definition of
SOC is shown in (9.1) [13].

SOC(t):SOC(to)—i-}I(t)w/Qndt .1

where I (t) is the current of battery energy storage; Q, is the nominal capacity; 7 is
the coulombic efficiency.

Another indicator, SOP is generally defined as the available power that a battery
can supply to or absorb over a time horizon [14]. The definition of SOP is shown as
9.2).

SO Peharse (p) = max(Pmi,,, Vit + At) - IC’“"g“)

min

| | 9.2)
SO PAscharse (1) = min( Pre, V(¢ + A1) - ™)

where P,,;, and P, are the lower and upper limits of power; I,ff;flrge and Jdischarse
are the lower and upper limits of current.

Another indicator, SOE is defined as the supplying/absorbing discrepant energy
amounts in different voltage levels, which is given as (9.3).
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SOE(t)=SOE(t0)—|—fP(t)/Eth 9.3)
)

where P(¢) is the power; E is the nominal energy capacity.
Another indicator, SOS represents the hazard level when battery operating, and
the definition is given as (9.4).

where H,, Hy, H; represent the hazard risk, hazard severity, and hazard likelihood,
respectively. In [15], H; can vary from O to 7 as an integer to represent the hazard
level; H; can take values from 1 to 10 to represent the occurrence percentage of
failures; H, utilizes two states (i.e., H; and H) to find a safe operating region.

The temperature has been recognized as one main factor for battery degradation,
and the SOT indicates the operating temperature of battery, including the estimations
of external, internal, and temperature distribution. In general, the external temperature
is easy to control, and the internal temperature and temperature distribution are much
more important to represent the state of battery. The estimation of SOT is based on
the thermal dynamic model as (9.5) [16].

Cc-T=Q+(T, —T)/R,

: (9.5)
Cs- r= (Too = )/ Ry + (Ts = T.) / R,

where T and T, are the surface and core temperature, respectively; R, and R, are the
conductive and convective resistances, respectively; T, is the ambient temperature.
The last indicator is the SOH to represent the health state of battery, which is given
by the following.

SOH =C,/C: x 100% (9.6)

where C, and C, are the actual and rated capacity, respectively.

There are many estimation methods for the above six states of battery energy
storage [13-20], and these methods belong to multiple timescales, which are shown
as Fig. 9.3 below.

Besides, there are different timescales for each state. For example, there are offline
training and online estimation stages for SOH estimation in Fig. 9.4 [21].

In summary, current state estimation methods can be used in maritime grids when
addressing the working conditions of highly humid and saline, and high-temperature.
In Fig. 9.4, these characteristics should be considered in the experimental conditions
and the uncertainty management of SOH estimation model. However, there is still
very little literature on this topic now.
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Besides, the above state estimation methods are for a single battery cell. As shown
in Fig. 9.5, a battery pack is comprised of many battery cells and generally different
cells have different degradation speeds. This difference should be considered, named
as the inconsistency of state estimation.

9.2.3 Fuel Cell Degradation

The importance of fuel cells in maritime grids has been clarified in Chap. 8, and the
technological development will drive the further large-scale integration of fuel cells.
Similar to battery, the degradation of fuel cells is important and certain methods
should be proposed to estimate the degradation in different scenarios. Generally,
the fuel cell degradation methods can be classified as (1) stack voltage degradation
model; (2) Electrochemical impedance spectrometry (EIS) impedance estimation;
(3) Remaining useful life (RUL) estimation. Their advantage and disadvantages are
shown in Table 9.1.

The stack voltage degradation models use the output voltage Vi, .« to demonstrate
the degradation phenomenon, and are usually based on two prototypes, shown in (9.7)
and (9.8), respectively.

{ Vslack = Vrale : ch (9 7)
Dpe=kp - (P ni+Py-ny+ P11+ Py o)
Vitack = Vo = b - log(ife) —r-ige+ o iG(1 =B iz ©-8)

In (9.7), Viqek is the stack voltage; D . is the degradation rate; k, is the acceler-
ating coefficient; Py, P,,P; and Py are the degradation rates led by the load change,
start-up/shut-down, idling, and high-power demand, respectively; and ny, n,, t, t»
denotes the corresponding times/time-periods. In (9.8), V; represents the open-circuit
voltage; i 7. is the current of fuel cell; b, r, , and o are parameters deduced from the
experiment dataset. When the dataset changes, all the parameters should be adjusted.
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Table 9.1 Summary of different fuel cell degradation methods
Model References | Methods Advantages Disadvantages
Stack voltage [22-24] data-driven 1. Easily implement | 1. Highly rely on

degradation model parameter 2. Less requirement experiment
recognization on theoretical 2. Hard to adjust the
analysis parameters
EIS impedance [25, 26] Model-based | 1. Easily implement | Cannot directly
estimation methods 2. Suitable for forecast SOH
diagnostics field
RUL estimation [27-29] Hybrid Robustness to Computational
methods uncertainties stress

EIS is carried out by adding a small sinusoidal perturbation on the nominal current
and then the EIS impedance can be calculated as the ratio between the response and
the perturbation. This method can characterize the phenomenon inside the fuel cell
and evaluate the fuel cell degradation [25], which are widely used in the diagnostics
field, but it cannot give the information of SOH. RUL methods are a series of hybrid
methods, which can be based on the semi-empirical model [28], or various machine-
learning methods [30]. Since the recent development of data-mining techniques, RUL
methods also have many new applications [30].

In summary, the fuel cell degradation estimation is similar to the battery and
a similar estimation process can be utilized. The gaps before implementing in
maritime grids are addressing the working conditions with high humidity, and
high-temperature. However, there is still very little literature working on this topic.

9.2.4 Renewable Energy Forecasting

Chapter 5 has emphasized the importance of renewable energy forecasting of
maritime grids. Figures 5.10 and 5.11 show that the forecasting of renewables
onboard should consider more features. To recall this part, Figs. 5.10 and 5.11 are
re-drawn as Fig. 9.6a, b as follows.
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Fig. 9.6 Two extra features in onboard renewable energy forecasting [31]

An adaptive clustering method for onboard photovoltaic energy is proposed in
[32]. The sketch process is shown in Fig. 9.7.

With the proposed method, the scenarios of photovoltaic energy can be adap-
tively obtained, and the administrator can give an optimal energy scheme for each
scenario. Later in [33], the ship motion, temperature, irradiance, and temperature are
all considered and a hybrid ensemble forecasting method is formulated as Fig. 9.8.

With the proposed method in Fig. 9.8, the onboard photovoltaic energy can be
predicted with more accuracy. Two representatives above show the keys for the
renewable energy forecasting in maritime grids: (1) properly clustering the original
dataset, and the main reason is the weather conditions may change more frequent in
maritime grids than other land-based applications; (2) putting more practical features
into the forecasting model, such as the ship motion and rolling. With the development
of renewable energy technology, the penetration of large-scale renewable energy into
maritime grids will become reality, and the renewable energy forecasting in maritime
grids will find a promising scenario for application.

9.3 Siting and Sizing Problems

9.3.1 Energy Storage Integration

Chapter 6 has clarified the functions of energy storage in the long-term operation
of maritime grids: (1) improving economic and environmental characteristics of
maritime grids [5, 12, 34]; (2) benefiting the operation of onboard equipment [31,
32, 35]; (3) improving the resilience of maritime grids [36], which are illustrated in
Fig. 9.9.

In Fig. 9.9a, the main engines and energy storage are sharing the highly fluctuated
power demand via maritime grids. The energy storage shares the highly fluctuated
part and the main engines can work in a constant and economic working condition. In
Fig. 9.9b, new equipment is integrated into the maritime grid, and the energy storage
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Fig. 9.9 Main functions of energy storage in maritime grids

can share the power demand of new equipment to improve its behavior. In Fig. 9.9c¢,
energy storage is installed distributionally in different zones of maritime grid, and
energy storages in different zones share the power demand, and make the system be
resilient to various failures.

Since the important functions above, energy storage gradually becomes essential
equipment in maritime grids to improve system characteristics. However, energy
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storage, generally battery for long-term operation, is still expensive and the install-
ment area is also another limit for energy storage. The balance between the economic
benefits and the system characteristics motivates the siting and sizing problems of
energy storage.

Reference [32, 37, 38] propose optimal energy storage sizing methods after
comprehensively studying the influences of energy storage on the penetration of
photovoltaic energy into maritime grids, which considers effects of the ship motion,
deck rolling, and solar irradiation density. In seaport, [2] proposes six indexes to indi-
cate the green operation, and a two-stage energy storage sizing problem is formulated
to improve the indexes. Since the battery is limited in power density, [34, 39] propose
optimal sizing methods for hybrid energy storage, i.e., high power density energy
storage for the high-frequency load demand, and battery for the low-frequency load
demand. For the system resilience, a distributed energy storage siting and sizing
model is formulated, and the simulation results show that the distributionally installed
energy storages benefit the resilience.

In summary, future research should consider more specialties of maritime grids,
which are shown as follows.

(1) Special network structures. Maritime grids have a different network structure
compared with conventional land-based microgrids. This feature in ships has
been illustrated in Chap. 5 as Fig. 5.11. We re-draw this figure to Fig. 9.10
below, and we can find the network structure of ships is zonal and parallelly
designed.

(2) The distributional installment of energy storage. Different from the land-based
applications, the energy storages in maritime grids are mostly distributionally
installed. For example, the energy storage system in ships is usually separated
into several parts and installed in different watertight compartments for system
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Fig. 9.10 The graph topology of an all-electric ship
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resilience. In seaport, energy storages have different functions, i.e, for cold-
ironing, for port cranes, for electric truck charging, and so on. So the energy
storages also need to be distributionally installed.

(3) The redundant capacity of energy storage. Different from conventional land-
based microgrids, maritime grids generally receive less support from the main
grid. In this sense, energy storage is viewed as one of the main power sources
to improve system resilience, and therefore needs to have a redundant capacity.

9.3.2 Fuel Cell Integration

Chapter 8 has revealed the fuel cell is a promising power source for the future
maritime grids, and its integration is an irreversible trend. Currently, there are many
practical cases and studies on the siting and sizing of fuel cells in maritime grids. With
these cases, fuel cell shows similar effects as the integration of energy storage, i.e.,
highly flexible, energy-efficient, no combustion process, and easily maintained. The
functions are also similar: (1) improving economic and environmental characteristics
of maritime grids; (2) benefiting the operation of onboard equipment; (3) improving
the resilience of maritime grids. Although these similarities, fuel cell is a power
source and has no need to charge, and therefore the fuel cell is able to sustain the
long-term power demand.

As above, future research should consider the following aspects as Fig. 9.11 before
it can integrate into maritime grids.

(1) Fuel cell is a power source and has similar functions with the main engines.
In this sense, the maritime grids should be expanded for its integration, i.e.,
structure modification.

(2) Generally, fuel cell and main engines serve different load demands, i.e., main
engines for the large-scale load demand such as propulsion, and fuel cell for
the small-scale but critical load demand such as control center. The division of
responsibilities should be considered.

Fuel cell 4 Maritime grids expansion | | Extra load demand

Fig. 9.11 Fuel cell integration and maritime grid expansion
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9.4 Energy Management

With the above illustrations, the main target for maritime grids is to achieve the cost-
efficient and green development of the maritime industry, and the energy manage-
ment methods/strategies are fundamental for this target. In the future, the energy
management of maritime grids should have two main abilities: (1) Ambient envi-
ronment perception, i.e., the real-time perception of working conditions and the
quick responding abilities for the changes of working conditions. (2) Optimal energy
scheduling ability, i.e., real-time perception of system conditions and the ability for
the optimal energy scheduling among different sources and equipment. These two
abilities are shown in Fig. 9.12 below.

From Fig. 9.12, the first ability, ambient environment perception, relies on real-
time data measurement and the corresponding data-driven techniques. This ability
can provide adequate inputs to indicate the energy scheduling of maritime grids.
It should be noted that the ambient environment includes the working conditions
and the coordination from other maritime grids, such as the coordination between
berthed-in ships and seaport.

Then the second ability, optimal energy scheduling ability, should integrate all the
current management methods, i.e., the methods mentioned in Chaps. 5-8, namely,
uncertainty management, energy storage management, multi-energy management,
and multi-source energy management, and determines an optimal energy scheme to
respond to the ambient working conditions.
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Fig. 9.12 Energy management of maritime grids
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9.5 Summary

Generally, maritime grids are born under the trend of maritime transportation elec-
trification, and this trend is irreversible in the future. From the views of electrical
engineering, maritime grids are a series of microgrid-scale networks which undertake
different maritime tasks. The electrical network serves as the backbone and connects
with other networks with different functionalities. This characteristic determines the
operation of maritime grids should have plenty of similarities with conventional
microgrids, but the maritime tasks involved further make the maritime grids with
many distinguishing features. In this sense, it is essential and also very necessary to
study this type of special microgrids before they can be implemented in real-world.

In this book, maritime grids are defined as those networks installed in harbors,
ports, ships, ferries, or vessels. A typical maritime grid consists of generation, storage,
and critical loads, and can operate either in grid-connected or in islanded modes, and
operate under both the constraints of the energy system and maritime transporta-
tion system, and formulates as a “maritime multi-energy system”, and the energy
management of this special system will shape the energy efficiency improvement of
the future maritime transportation system.

In this book, optimization-based energy management methods are comprehen-
sively reviewed and overviewed with plentiful case studies. In Chaps. 1-4, i.e., (1)
the introduction for maritime grids, (2) the mathematical basics of optimization; (3)
mathematical formulation of management targets and (4) formulation and solution
of maritime grid optimization, give illustrative descriptions on the research focus.
Then in Chaps. 5-8, four aspects, i.e., (1) energy management under uncertainties,
(2) energy storage management, (3) multi-energy management, and (4) multi-source
energy management, are discussed. At last, this chapter overviews the future roadmap
in four parts, i.e., (1) future maritime grids, (2) data-driven technologies, (3) siting
and sizing problems, and (4) energy management. With the above arrangement, the
initial research framework of maritime grids has been launched and specific efforts
are expected in this field for future development.
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