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Preface

Since 2014, we have organized an annual summer school in computational physiol-
ogy. The school starts in June each year and the graduate students spend two weeks
in Oslo learning the principles underlying mathematical models commonly used in
studying the heart and the brain. At the end of their stay in Oslo, the students are
assigned a research project to work on over the summer. In August the students travel
to the University of California, San Diego to present their findings. Each year, we
have been duly impressed by the students’ progress and we have often seen that the
results contain the rudiments of a scientific paper.

Starting in the 2021 edition of the summer school, we have taken the course one
step further and aim to conclude every project with a scientific report that passes
rigorous peer review as a publication in this new series called Simula SpringerBriefs
on Computing – reports on computational physiology.

One advantage of this course adjustment is that we have the opportunity to intro-
duce students to scientific writing. To ensure the students get the best introduction
in the shortest amount of time, we have commissioned a professional introduction to
science writing by Nature. The students participate in a 2-day Nature Masterclasses
workshop, led by two editors from Nature journals, in order to strengthen skills in
high quality scientific writing and publishing. The workshop is tailored to publica-
tions in the field of computational physiology and allows students to gather real-time
feedback on their reports.

We would like to emphasise that the contributions in this series are brief re-
ports based on the intensive research projects assigned during the summer school.
Each report addresses a specific problem of importance in physiology and presents
a succinct summary of the findings (8-15 pages). We do not require that results
represent new scientific results; rather, they can reproduce or supplement earlier
computational studies or experimental findings. The physiological question under
consideration should be clearly formulated, the mathematical models should be de-
fined in a manner readable by others at the same level of expertise, and the software
used should, if possible, be made publicly available. All reports in this series are
subjected to peer-review by the other students and supervisors in the program.
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Chapter 1
An Automated Cardiac Constitutive Modelling
Framework with Evolutionary Strain Energy
Functions

Kristin Ludwicki*, Leto L Riebel*, Sophia Ohnemus*, Frida M E Westby,
Nickolas Forsch, and Gabriel Balaban
* These authors contributed equally to this work

Abstract Heart disease is the leading cause of mortality worldwide. Many cardiac
diseases are associated with altered elastic energy relations of the heart tissue. How-
ever, the strain energy functions describing these characteristics are limited since
they were designed manually for highly specific experimental setups. In this study,
we develop CHESRA (Cardiac Hyperelastic Evolutionary Symbolic Regression Al-
gorithm), an automated constitutive modelling framework, to derive cardiac elastic
strain energy functions directly from experimental data. Our results indicate that
CHESRA finds functions that reproduce mechanical tissue properties from exper-
imental data whilst controlling function complexity. Our novel approach has the
potential to find strain-energy functions that fit to various experimental data sets
and may contribute to automatically building mathematical models to understand
clinical observations of heart diseases.
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2 An Automated Cardiac Constitutive Modelling Framework

1.1 Introduction

Cardiovascular disease is the leading cause of mortality worldwide, accounting for
around 19 millions deaths in 2020 [1]. In many cardiac diseases, the mechanical
and structural properties of the heart are altered. Examples include hypertrophic
cardiomyopathy, which is characterized by a thickening of the heart walls [2] and di-
lated cardiomyopathy, a disease which causes the ventricular walls to thin and stretch
[3]. Another example is myocardial infarction, commonly known as a heart attack,
during which oxygen and nutrient supply to the cardiac tissue is interrupted [4].
Myocardial infarction results in altered mechanical loading conditions [5], structural
changes, increased tissue stiffness, and ultimately ventricular dysfunction [6]. A bet-
ter understanding of these pathological mechanisms may improve clinical diagnosis
and treatment options.

To characterize the elastic properties of the heart, stress-strain relations of the
myocardium have been extensively studied experimentally. Assessment of passive
shear properties of pig ventricular myocardium by Dokos et al. [7] indicates that
the myocardium presents as an orthotropic material since the shear response differs
along three mutually orthogonal directions. Demer and Yin [8] and Yin et al. [9] mea-
sured the stress-strain relationship of passive non-contracting canine myocardium for
simultaneous biaxial stretching and observed highly nonlinear, anisotropic, and vis-
coelastic behavior. Novak et al. [10] performed more biaxial experiments in canine
myocardium from different regions of the left ventricle and found that qualitatively
the mechanical properties were similar, but quantitatively they differed. For example,
samples from sub-endocardium and sub-epicardium of the left ventricular free wall
tended to be more rigid than samples from the mid-myocardium.

In order to mathematically represent the mechanical properties of the heart tissue,
a number of strain-energy functions (SEF) have been proposed. These SEF describe
the potential energy density of the heart tissue depending on its deformation and
have been developed based on a few key considerations. Considerations include
structural metrics and other experimental results, as well as assumptions on physical
properties of the system. Although the myocardium appears to be a viscoelastic
material, the relaxation time of the viscoelastic response is long compared to the
cardiac cycle [11]. Therefore, most SEF, with exceptions as presented in [12], model
it as hyperelastic for simplicity reasons. Examples for SEF based on the assumption
of transverse isotropy are given in [13, 14], whereas [11, 15, 16, 17] introduce
orthotropic models. However, creating these SEF is labor intensive as they must
be derived manually and, thus, only a limited amount of experimental data can be
considered.

Evolutionary algorithms have the potential to automatically find functions that
describe experimental data with minimal human guidance. This has been applied
already to various research fields; for example, Doglioni et al. used evolutionary
polynomial regression (EPR) to build a function for the relationship between air
and water temperature [18]. Their method not only considered suitability of the
discovered function to describe the given data, but also aimed to minimise the
complexity of the formula. Montes et al. used a modified EPR framework to create
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self-cleansing models for new sewer systems [19] and several different machine
learning methods, including EPR, were used by Jamei et al. to model the density
of hybrid nanofluids [20]. Furthermore, Javadi et al. established an EPR method to
build constitutive equations describing the deformation of bridges and tunnels [21].

In this work we present the development of a Cardiac Hyperelastic Evolutionary
Symbolic Regression Algorithm (CHESRA) that derives hyperelastic SEF for ven-
tricular myocardium. In contrast to EPR algorithms, CHESRA is not restricted to
polynomials, but searches the whole space of mathematical functions for SEF de-
scribing the given experimental data. Our results highlight the potential to automat-
ically find SEF which reproduce experimental findings of cardiac elastic properties
of different species.

1.2 Methods

In the following subsections we outline the individual components of CHESRA.
First, in 1.2.1 we briefly introduce the physical principles of hyperelastic continuum
mechanics that we use to define the SEF. Then, in 1.2.2 we outline how we represent
the SEF computationally as function trees. Subsequently, we explain how we fit the
SEF to experimental data in 1.2.3. Lastly, we go through the individual steps of the
evolutionary symbolic regression (ESR) algorithm in detail in 1.2.4.

1.2.1 Basic Principles of Hyperelastic Continuum Mechanics

In order to define our SEF, we build upon the framework developed by Holzapfel
and Ogden for cardiac hyperelasticity [11]. Here, the structure of the myocardium
is characterized by three orthonormal basis vectors: the fibre axis 𝑓 associated with
the prevailing cell orientation, the sheet axis 𝑠 defined as the direction in the plane
of the cell sheets perpendicular to the fibre direction, and the sheet-normal axis 𝑛
perpendicular to 𝑓 and 𝑠.

Any point within the material can be described by a vector X =
∑
𝑖= 𝑓 ,𝑠,𝑛 𝑐𝑖e𝑖 ,

where e𝑖 denote the basis vectors of the 𝑓 , 𝑠, and 𝑛 axis. Upon deformation, the
position of each point changes and the new position can be described by a vector
x. The fundamental quantity describing such a deformation is the deformation gra-
dient F, defined by 𝐹𝑖 𝑗 = 𝜕𝑥𝑖/𝜕𝑋 𝑗 with 𝑖, 𝑗 = 𝑓 , 𝑠, 𝑛 and where 𝐽 = detF = 1 for an
incompressible material such as the myocardium. The right Cauchy-Green tensor

C = F𝑇F, (1.1)

and the Green-Lagrange strain tensor

E =
1
2
(C− I), (1.2)
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are associated with F, with I being the identity tensor.
Since these quantities do not only account for deformation but also for rotation

and translation, in the following, we consider the invariants of C which are defined
as

𝐼1 = trC, 𝐼2 =
1
2
[𝐼21 − trC] 𝐼3 = detC,

𝐼4𝑖 = e𝑇𝑖 (Cei), 𝐼5𝑖 = e𝑇𝑖 (C2e𝑖), 𝐼8𝑖 𝑗 = e𝑇𝑖 (Ce 𝑗 ), (1.3)

with 𝑖 ≠ 𝑗 ∈ { 𝑓 , 𝑠, 𝑛}. Defining a SEF based on these invariants ensures objectivity.
The SEF proposed by Holzapfel and Ogden [11] is given by

𝜓 =
𝑎

2𝑏
exp[𝑏(𝐼1 −3)] +

∑︁
𝑖= 𝑓 ,𝑠

𝑎𝑖

2𝑏𝑖
{
exp[𝑏𝑖 (𝐼4𝑖 −1)2] −1

}
+
𝑎 𝑓 𝑠

2𝑏 𝑓 𝑠

{
exp[𝑏 𝑓 𝑠 𝐼28 𝑓 𝑠] −1

}
. (1.4)

Here, 𝑎, 𝑏, 𝑎 𝑓 , 𝑏 𝑓 , 𝑎𝑠 , 𝑏𝑠 , 𝑎 𝑓 𝑠 , and 𝑏 𝑓 𝑠 are material parameters chosen to either fit
the corresponding Cauchy stress tensor

𝝈 = 𝐽−1F
∑︁
𝑘

𝜕𝜓

𝜕𝐼𝑘

𝜕𝐼𝑘

𝜕F
(1.5)

to the shear data from Dokos et al. [7], or the associated second Piola-Kirchhoff
stress tensor

S = 𝐽F−1𝝈F−𝑇 (1.6)

to the biaxial stretch data by Yin et al. [9] (see Section 1.2.3.1 for details about these
experimental data sets).

1.2.2 Representation of the Strain-Energy Functions as Function Trees

In CHESRA, SEF are represented as a list of nodes composing function trees. Details
on function tree implementation and use cases can be drawn from [22, 23]. In our
implementation, each node in the function tree has a type, a value, up to one parent,
and up to two children (one left and one right). Only the root node of the function
tree has no parent, further explained in 1.2.4.1. Nodes with no children are called
’leaves’. Sub-trees within the function tree represent individual terms of the SEF.

Nodes are either a symbol, an operand, or a pre-operand. Nodes of type symbol
can either be a constant material parameter or an invariant. Material parameters are
represented by the symbols {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8}. These material param-
eters are later replaced by a constant real number to fit the SEF to experimental
data, as described in 1.2.3. Similarly, invariant nodes are assigned a symbol from
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the set of invariants {𝐼1, 𝐼2, 𝐼3, 𝐼4 𝑓 , 𝐼4𝑠 , 𝐼4𝑛, 𝐼5 𝑓 , 𝐼5𝑠 , 𝐼5𝑛, 𝐼8 𝑓 𝑠 , 𝐼8 𝑓 𝑛, 𝐼8𝑛𝑠}, as defined in
Equation 1.3. Operand nodes can either have the value + (addition), − (subtraction),
÷ (division) or ∗ (multiplication); and pre-operands are either 𝑝𝑜𝑤 (to the power of
2), 𝑒𝑥𝑝 (euler’s number ’𝑒’ to the power of) or - (negation). While operands require
two terms, for example 𝑥+ 𝑦, a pre-operand requires only one, for instance 𝑒𝑥 , which
is written before the term in many coding languages, such as in python: 𝑝𝑜𝑤(𝑥,2).
An example function tree is shown in Figure 1.1.

Fig. 1.1: Example SEF 𝜓 and corresponding function tree with node types indicated.
The function tree is converted to a real function 𝜓 by applying an in-order traversal.

If a node of type symbol, i.e. either a material parameter or an invariant, has a
parent node, it has to be either an operand or a pre-operand to be a valid function.
Similarly, symbol nodes can only have children of type operand. Pre-operands are
applied to terms, and hence can only have exactly one child, which has to be of
type symbol or pre-operand. Their parent has to be either an operand or another
pre-operand. Operands have a parent and exactly one child, both of which cannot be
another operand. If an operand is a right child, its child needs to also be a right child
and vice versa, to avoid two symbols next to each other. These rules are summarised
in Table 1.1. We apply brackets only around the terms pre-operators are applied to,
all other operations are carried out according to their priority, e.g. ∗ before +.

Using the rules summarized in Table 1.1, to convert our function trees into
functions we apply an in-order traversal, where any node is read out as: value of its
left child, its own value, value of its right child. Figure 1.1 shows an example of
a function and one of its possible corresponding function trees, depending on the
order the terms are created in. Note that since our algorithm does not perform any
searches within the tree, there is no need for it to be balanced.

Representing SEF as function trees has several benefits. Firstly, individual terms
can be identified as sub-trees, allowing for pre-operands to be applied to parts of the
equation only. This would be more difficult, for example, in a linked list structure.
Secondly, terms can be manipulated, swapped, and deleted easily during mutation
and mating, which are explained in 1.2.4.2.
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Type Value Rules

Symbol Invariant (variable), -Parent has to be an operand or pre-operand

material parameter (const) -Child has to be an operand

Operand +, −, ∗, ÷ -Has exactly one parent of type symbol

-Has exactly one child of type symbol/pre-operand

Pre-Operand 𝑒𝑥 , 𝑥2, −𝑥 -Parent has to be an operand or pre-operand

-Child has to be a symbol or pre-operand

Table 1.1: Summary of node types, possible node values, and node connection rules
within the function tree.

1.2.3 Fitting the Strain-Energy Functions to Experimental Data

For each SEF 𝜓 we fit the material parameters 𝑝𝑛 to experimental data sets in a
separate step, in order to ensure that only the material parameters differ for different
experimental setups while the general form of the SEF is the same. In this work we
consider the shear data of Dokos et al. [7] and the biaxial stretch data by Yin et al.
[9], which we briefly describe in the following.

1.2.3.1 Experimental Data under Consideration

Dokos et al. [7] measured the shear stress, corresponding to the Cauchy stress tensor
components 𝜎𝑖 𝑗 versus the amount of shear 𝛾 in a cube of pig left ventricular
myocardium sheared in the 𝑓 𝑠, 𝑓 𝑛, or 𝑛𝑠 plane (see Figure 1.2a). They considered
different shear modes (𝑖 𝑗) referring to shear in the 𝑖 𝑗 plane in 𝑗 direction with
𝑖 ≠ 𝑗 ∈ { 𝑓 , 𝑠, 𝑛}.

The biaxial stretch data from Yin et al. [9] was collected in canine left ventricular
tissue which was stretched simultaneously in the fibre and sheets direction. Figure
1.2b shows the measured second Piola-Kirchhoff stress 𝑆 𝑓 𝑓 versus strain 𝐸 𝑓 𝑓 and
respectively 𝑆𝑠𝑠 versus 𝐸𝑠𝑠 for three different constant strain ratios 𝑟 = 𝐸 𝑓 𝑓 /𝐸𝑠𝑠.

For both data sets, we used the digitizer software WebPlotDigitizer [24] to digitize
the data from the graphs shown in [7] and [9].

1.2.3.2 Fitting to the Experimental Data

In order to fit the material parameters 𝑝𝑛 of a SEF 𝜓 to the shear data set we
calculated the predicted Cauchy stress tensor components 𝜎𝑖 𝑗 according to Equation
1.5. Then, we used the Python package lmfit [25] to minimize the residuals,

𝑟𝑒𝑠𝑘 = 𝑠𝑖 𝑗 (𝛾𝑘) −𝜎𝑖 𝑗 (𝛾𝑘), (1.7)
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(a) Shear data (b) Biaxial stretch data

Fig. 1.2: Experimental data sets under consideration. (a) Plot of the digitized data
collected by Dokos et al. [7] in pig left ventricular myocardium for shear stress
𝜎𝑖 𝑗 versus the amount of shear 𝛾 for shear (𝑖 𝑗) in the 𝑖 𝑗 plane in 𝑗 direction with
𝑖 ≠ 𝑗 ∈ { 𝑓 , 𝑠, 𝑛}. Results for (𝑛 𝑓 ) and (𝑛𝑠) shear are identical. (b) Visualization of
the data by Yin et al. [9] for biaxial loading in the 𝑓 𝑠 plane of canine left ventricular
myocardium. The left plot shows the stress 𝑆 𝑓 𝑓 versus strain 𝐸 𝑓 𝑓 in the fibre direction
and the right plot 𝑆𝑠𝑠 versus 𝐸𝑠𝑠 in the sheets direction for three different strain ratios
𝑟 = 𝐸 𝑓 𝑓 /𝐸𝑠𝑠 = 2.05 (triangles), 1.02 (squares) and 0.48 (circles). In both cases we
used WebPlotDigitizer [24] to digitize the data shown in [7] and [9].

between experimental data points 𝑠𝑖 𝑗 and the corresponding calculated stress tensor
component 𝜎𝑖 𝑗 for all shear modes (𝑖 𝑗) and all amounts of shear 𝛾𝑘 in the data set
simultaneously.

Analogously, for fitting the material parameters to the biaxial data set we cal-
culated the diagonal components of the second Piola-Kirchhoff stress tensor 𝑆𝑖𝑖
according to Equation 1.6. We used the same Python package for simultaneously
minimizing the residuals

𝑟𝑒𝑠𝑘 = 𝑠𝑖𝑖 (𝐸𝑖𝑖,𝑘) − 𝑆𝑖𝑖 (𝐸𝑖𝑖,𝑘), (1.8)

with 𝑖 = 𝑓 , 𝑠, for all Green-Lagrange strain tensor components 𝐸𝑖𝑖,𝑘 and strain ratios
𝑟 = 𝐸 𝑓 𝑓 /𝐸𝑠𝑠 in the data set.

1.2.4 Evolutionary Symbolic Regression Algorithm

To develop CHESRA, we build upon the traditional ESR framework. First, popula-
tions of random SEF are created (see Section 1.2.4.1). Then, every equation within
each iteration, or generation, is assigned an error-score based on a user-designed
fitness function. Our fitness function assesses the complexity of the SEF and how
well it fits to the shear and/or biaxial data set (see Section 1.2.4.3). The individuals
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with the best fitness are then selected, mated to generate a new population, and mu-
tated to ensure diversity for the next generation (see Section 1.2.4.2). This multi-step
process continues until the maximum number of generations is reached. A schematic
representation of CHESRA is illustrated in Figure 1.3.

Fig. 1.3: The main workflow of CHESRA.

1.2.4.1 Setup and Initialisation

To initialise SEF and their corresponding function trees, a maximum function length,
set of invariants, and material parameters are defined. First, our algorithm creates
a root node, which is always an invariant or a material parameter. Second, it picks
a random length within the given maximum and extends the function tree until this
chosen length is reached. The function can either be extended by adding a pre-operand
in front of a term, or by attaching an operand and a new symbol (i.e., an invariant
or material parameter) to an existing symbol. For the latter, the selected existing
symbol may have at most one child. Details concerning function development can
be found in Section 1.2.2.
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1.2.4.2 Mutation and Mating of Strain-Energy Functions

We mutate SEF by randomly selecting a node from the corresponding function tree
to be mutated. The selected node is then replaced by a randomly chosen element of
the same type (see 1.4).

To mate two parent SEF and create two new children, our algorithm creates a
deep copy of each parent function tree, chooses one random sub-tree per copy, and
then swaps them over. To make sure the resulting children SEF are valid functions,
we restrict the chosen sub-trees to be proper terms and hence start with a symbol
or pre-operand. Alternatively, one may also choose to ensure the sub-trees to be
swapped to start with a node of the same type. Our chosen sub-trees may be of
different size and hence children SEF may be of different lengths than their parents
(see 1.5).

Mutation and mating are important to increase population diversity in CHESRA.
However, too much diversity could also prohibit convergence towards an optimal
solution. Therefore, we set rates that will dictate the probability of a given individual
to mate, 𝑝mate, and/or mutate, 𝑝mutate. These rates were set to 𝑝mate = 20% and
𝑝mutate = 80% in all CHESRA experiments.

Fig. 1.4: An examplary function tree representing a SEF 𝜓 is mutated by choosing a
random item and replacing it with a random value of the same type, as highlighted
by the orange boxes.

1.2.4.3 Scoring Fitness of Strain-Energy Functions

We designed a fitness function to ensure that CHESRA can penalize against poor
fitting SEF with high complexity. Therefore, each SEF, or individual, in each gener-
ation is evaluated based on its complexity and how well it reproduces the results of
a specific experimental data set. It is this evaluation that allows the best individuals
to be selected for mating, mutation, and population of the following generation.
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Fig. 1.5: Mating between two parent SEF to generate two children SEF is imple-
mented by swapping two random subtrees from the corresponding function trees as
highlighted in the orange boxes.

To evaluate the fitness of each equation, first we quantify its complexity as the sum
of the function length 𝑙eq (i.e., the number of nodes it consists of), and the number of
pre-operators 𝑛pre-op that it contains. The pre-operator count allows for penalization
against nestedness, or the creation of functions with pre-operators within themselves.

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑙eq +𝑛pre-op. (1.9)

Second, we assess how well each individual SEF reproduces experimental data.
For this, the material parameters of each equation are first fitted to the experimental
data as described in 1.2.3.2. Then, for each equation the sum of squared errors (SSE)
is calculated as the sum of the squared residuals 𝑟𝑒𝑠𝑘 between the experimental data
points and the fit,

𝑆𝑆𝐸 =
∑︁
𝑘

𝑟𝑒𝑠2𝑘 , (1.10)

with 𝑟𝑒𝑠𝑘 as defined in Equation 1.7 for the shear data or in Equation 1.8 for the
biaxial stretch data.

The final fitness score is then given by

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (𝛼 ∗𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) + 𝑆𝑆𝐸, (1.11)

where the hyperparameter 𝛼 ensures appropriate balance between fitting and com-
plexity. Numerical experiments conducted to find a suitable 𝛼 can be found in Section
1.3.1.

Where CHESRA is given 𝑁 data sets, the fitness function can be extended to

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = (𝛼 ∗𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦) +
∑︁
𝑁

𝑆𝑆𝐸𝑁 . (1.12)
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Hence, in the following section 1.3.1 we used Equation 1.11 in order to find a
SEF that can reproduce the shear data alone, while in section 1.3.2 we used Equation
1.12 to consider both the shear and the biaxial data set.

1.3 Results

1.3.1 Trial 1: SEF Describing the Shear Data

In our first trial, we ran CHESRA while fitting the SEF to the shear data set from
Dokos et al. [7]. We chose the hyperparameter 𝛼 of the fitness function (see Equation
1.10) by running CHESRA with 𝛼 = 10−5, 10−3, 10−1, 1, 2, and 5 for 50 generations
and 100 individuals each. 1.6 indicates that a value of 𝛼 = 0.1 lead to the best result as
it allowed for SEF with low SSE and minimal complexity. Using this hyperparameter,
the fitness score of the best SEF gradually decreased over the generations until a
plateau was reached (see 1.7).

In this run, the SEF with the lowest fitness score derived using CHESRA repro-
duces the shear data well (see 1.8a) and is given by

𝜓1 = exp (𝑝1𝐼5𝑠 + 𝑝2𝐼5 𝑓 +2𝐼2 − 𝐼4𝑛 − 𝑝3). (1.13)

In order to assess whether CHESRA is reproducible, we repeated this trial twice,
with the best SEF given by

𝜓2 = −(𝐼5 𝑓 − 𝑝1)2 + 𝑝2𝐼5 𝑓 ((𝐼5 + 𝑝3)2 + 𝐼4𝑠)2, (1.14)

𝜓3 = exp (𝑝2
1𝐼5 𝑓 + (𝑝2 + 𝑝3 −1)𝐼8 𝑓 𝑠 + 𝑝4𝐼4 𝑓 + 𝐼1 +2𝐼2 − 𝐼4𝑛 + 𝑝5). (1.15)

The equations derived from the three trial runs have unique material parameters
that can be found in 1.2. 1.8 shows a good fit to the shear data for all three SEF found.

Trial run 𝒑1 𝒑2 𝒑3 𝒑4 𝒑5

1 0.77 2.00 9.92 - -

2 1.47 0.20 0.50 - -

3 0.86 1.44 0.04 1.38 510.06

Table 1.2: Material parameters to fit the SEF defined in Equation 1.13 (trial run 1),
1.14 (trial run 2), 1.15 (trial run 3) to the shear data set by Dokos et al. [7]
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Fig. 1.6: SSE vs. complexity for different hyperparameters 𝛼 in the fitness function
(see Equation 1.11). Six runs of CHESRA were completed in which each was run
with one of the unique 𝛼 values listed in the legend. For experiment 1, we chose
𝛼 = 0.1 since it lead to SEF with low SSE and function complexity.

Fig. 1.7: Evolution of 100 individual SEF for 50 generations. Each point represents
the fitness of the best SEF from each generation.
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(a) Trial run 1 (b) Trial run 2 (c) Trial run 3

Fig. 1.8: In our numerical experiment 1, CHESRA found a SEF that reproduces the
shear data of Dokos et al. [7] in all 3 trial runs. Markers represent the experimental
data points whereas solid lines show the fit of the SEF derived using CHESRA.

1.3.2 Trial 2: SEF Describing the Shear and Biaxial Data

As a next step, we extended CHESRA to find a SEF that reproduces the results of
multiple experimental data sets. Therefore, we ran CHESRA with the same setup as
in trial 1, but updated the fitness function to incorporate the SSE of both the shear
and the biaxial data set, as described in Equation 1.12. Moreover, in this numerical
experiment we used 𝛼 = 0 in order to assess quality of fit without penalizing for
equation complexity. In addition, 𝛼 = 0 allowed convergence in a shorter number of
generations as fitting to two different data sets is a challenging optimization problem.

The SEF found using CHESRA is given by

𝜓 =

(
𝑝1𝑝2𝐼4 𝑓 − 𝐼24 𝑓 +

𝑝1
𝐼5𝑛

− 𝐼4𝑠 [𝑝1𝑝2𝐼5𝑛𝐼4 𝑓 − 𝑝3𝑝
2
4𝐼1 + 𝑝5 + 𝑝6 + 𝑝7]2

− 𝑝4𝑝6 − 𝑝1 − 𝑝6 + 𝑝7

)2
, (1.16)

where the material parameter values are provided in Table 1.3. Figure 1.9 shows that
the equation derived in experiment 2 has a better fit to the biaxial data than to the
shear data.

Data 𝒑1 𝒑2 𝒑3 𝒑4 𝒑5 𝒑6 𝒑7

Shear 0.00 433.64 33.52 0.31 1.85 3.08 4.95

Biaxial 0.49 1.34 1.24 1.11 2.56 0.04 2.06

Table 1.3: Material parameters for fitting the SEF defined in Equation 1.16 to the
shear and biaxial data sets.
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(a) Shear Data. (b) Biaxial Data.

Fig. 1.9: In experiment 2, CHESRA was extended to find a single SEF aimed to
reproduce both the shear data from Dokos et al. (a) and biaxial stretch data from
Yin et al. (b). Solid lines show the fit of the SEF found using CHESRA to the
experimental data represented by the markers.

1.4 Discussion

CHESRA automatically generates functions which reproduce experimental data of
cardiac hyperelastic properties. The results of trial 1 indicate that CHESRA can
derive SEF that fit the shear data from Dokos et al. [7] well. However, the quality
of fit was not equal for all shear directions. Specifically, in all trial runs the derived
SEF did not fit to the shear data for the (nf) and (ns) direction, as shown in Figure
1.8. As the magnitude of shear stress is much lower in those cases, it is likely that the
fitness function neglects these shear modes. Previous studies have used coefficient
of determination in the fitness function [18, 21], which will be a key consideration
in our future work.

To extend CHESRA to multiple experimental data sets, we included both shear
[7] and biaxial data [9] in trial 2. Here, the biaxial data was fitted at the expense
of the shear data. A possible cause for this could be a non-optimal individual and
generation number. Since more data sets were given to the algorithm, optimization is
challenging in only 50 generations. Therefore, increasing the number of generations
and individuals may allow for better convergence and a more universal SEF to be
found.

Ensuring that CHESRA derives simple equations was important to this study.
Therefore, we included the hyperparameter 𝛼 to the fitness function to ensure penal-
ization against long equations with nesting. While this is a valuable proof-of-concept,
it has limitations. Specifically, it does not take computational time into consideration.
Long but simple equations might be penalized more compared to shorter, but more
complex or nested functions. The time it takes for an equation to be calculated may
be a better measure of simplicity and will be explored in next steps.
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Moreover, the current version of CHESRA can only generate SEF using quadratic
and exponential functions; however, this could be widened to a larger function space.
In addition, CHESRA may be extended to even more experimental data sets. Future
work may also investigate to what extent the functions generated by CHESRA fulfill
the mathematical requirements of SEF, such as convexity and strong ellipticity [11].
Lastly, it would be interesting to compare our method to a Multivariate Adaptive
Regression Spline (MARS) model since studies by Jamei et al. [20] suggest that this
can be more accurate than ESR.

1.5 Conclusions

In this work we present CHESRA, an ESR framework for automatically deriving
strain-energy functions of the myocardium. Our algorithm allows for controlling
function complexity and inputting multiple experimental data sources.
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Chapter 2
Electromechanical In Silico Testing Alters
Predicted Drug-Induced Risk to Develop
Torsade de Pointes

Anna Busatto, Jonathan Krauß, Evianne Kruithof, Hermenegild Arevalo, and Ilse
van Herck

Abstract Torsade de Pointes (TdP) is a type of ventricular tachycardia that can occur
as a side effect of several medications. The Comprehensive in vitro Proarrhythmia
Assay (CiPA) is a novel testing paradigm that utilizes single cell electrophysiological
simulations to predict TdP risk for drugs that could potentially be used clinically.
However, the effects on mechanical performance and mechano-electrical feedback
are neglected. Here, we demonstrate that including electromechanical simulations
in CiPA testing can provide additional insights into the predicted drug-induced TdP
risk. In this work, we analyzed six drugs, namely flecainide, ibutilide, metronida-
zole, mexiletine, quinidine and ranolazine. We compared previously classified risks
(low, intermediate, high) with our fully coupled electromechanical simulation results
based upon the action potential, the electromechanical window, and the maximum
active tension [1]. For ranolazine and metronidazole the predicted risk changed from
low to intermediate and intermediate to high, respectively. For the latter, while elec-
trophysiological markers indicated a low risk, the active tension decreased by 58%
which can result in a loss of heart function. Therefore, adding mechanics to CiPA
testing results in an altered prediction of drug-related TdP risk.
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2.1 Introduction

Torsade de Pointes (TdP) is a form of abnormal heart rhythm often preceded or
caused by a prolonged QT-interval of the ECG [2]. Due to the high risk of unwanted
and dangerous side-effects, promising new drugs with a potential TdP risk have been
excluded from the research and drug-development pipeline. This, in combination
with the long and complicated process of drug approval, led to a lack of new
drugs on the market for cardiac disease. Therefore, the Comprehensive in vitro
Proarrhythmia Assay (CiPA) is performed to better predict the TdP risk for drugs
that could potentially be used in the clinic. However, some of the tests can result in
inaccurate predictions of the actual outcomes and lead to restrictive results, limiting
the number of drugs allowed on the market.

There has been ongoing research on improving these models to increase the pre-
dictability of drug-induced effects in the heart [3]. Llopis et al. proposed CiPA testing
using a population of models approach to obtain more accurate risk predictions by
simulating the effects of altered ion channel functions on the electrophysiological
behavior of cardiac cells [1].

The electromechanical window (𝐸𝑀𝑤) is a biomarker for TdP risk introduced
by Passini et al. for in silico drug testing [4]. Clinically, 𝐸𝑀𝑤 is defined as the
difference between the duration of electrical and mechanical systole [4]. However,
for the in silico test, they defined the 𝐸𝑀𝑤 as the time difference between calcium
transient duration at 90% repolarization (𝐶𝑎𝑇𝐷90) and action potential duration at
90% repolarization (𝐴𝑃𝐷90) [4]. This assumption makes the simulation computa-
tionally less expensive and complex, but this simplification reduces accuracy in the
mechanical component.

In previous work, the effects of electromechanical feedback are neglected and
no insight into the mechanical function is obtained. This feedback alters the elec-
trophysiological results, especially the calcium transient, and affects the biomarkers
used to predict TdP risk. However, the effect of drugs on the mechanical performance
can be investigated with electromechanical simulations. Therefore, in this work, a
fully coupled electromechanical simulator SimCardEMS is used to perform CiPA
tests [5]. Here, the cardiac mechanical function can be analyzed in terms of active
tension, tissue deformations and 𝐸𝑀𝑤 where the latter can be altered due to elec-
tromechanical feedback. We performed several tests to compare our predicted TdP
risks to previous classifications such as the ones found in Llopis et al. [1].

2.2 Methods

To assess TdP risk, we focused on selected biomarkers, namely maximum active
tension 𝑇a,max [kPa], 𝐴𝑃𝐷90 [ms], 𝐶𝑎𝑇𝐷90 [ms], and the 𝐸𝑀𝑤 [ms]. Using these
metrics, we analyzed six different drugs from CiPA: flecainide, ibutilide, metron-
idazole, mexiletine, quinidine, and ranolazine with known cardiac effects. Each of
the drugs has been classified as high, intermediate, or low risk for TdP in Llopis et
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al. [1]. Here, the indicated risks are compared with the risks predicted by a fully
coupled electromechanical model to investigate whether the mechanical biomarkers
should also be taken into account for risk classification.

2.2.1 Drug Implementation

The cardiac effects of the drugs are tested for three different plasma concentrations
(𝑃𝐶). For each of the concentrations, the ion channel conductances (𝑔) are multiplied
with scaling factors (𝑆𝐹) representing the effect of the tested drug. The 𝑆𝐹 values are
calculated using the drug 𝑃𝐶, the inhibitory concentration (𝐼𝐶50) and Hill coefficient
(ℎ) value of the targeted ion channel:

𝑆𝐹 =
𝑔drug

𝑔
= [1+ ( 𝑃𝐶

𝐼𝐶50
)ℎ]−1 (2.1)

Table 2.1: Ion channel scaling factors (SF) for quinidine using three different plasma
concentrations (𝑃𝐶). Scaling factors for seven ion channels were calculated with
Equation 2.1.

Scaling factor 𝑃𝐶0.5 𝑃𝐶1.0 𝑃𝐶2.0

𝑆𝐹Kr 0.375 0.231 0.130
𝑆𝐹Na 0.936 0.863 0.730
𝑆𝐹NaL 0.585 0.429 0.285
𝑆𝐹CaL 0.970 0.941 0.889
𝑆𝐹Ks 0.985 0.967 0.929
𝑆𝐹K1 0.983 0.977 0.970
𝑆𝐹to 0.731 0.524 0.309

Equation 2.1 is derived from the standard Hill equation [1]. The 𝑃𝐶, 𝐼𝐶50 and ℎ
values are taken from Llopis et al.. The 𝑆𝐹 values are calculated for the considered
ion channels 𝐼Kr, 𝐼Na, 𝐼NaL, 𝐼CaL, 𝐼Ks, 𝐼K1 and 𝐼to at three different 𝑃𝐶s which are half
(𝑃𝐶0.5), normal (𝑃𝐶1.0) and double (𝑃𝐶2.0) the effective free therapeutic plasma
concentration [1]. As an example, specific 𝑆𝐹 values used to simulate the effect of
quinidine are shown in Table 2.1.

2.2.2 SimCardEMS Simulations

The calculated 𝑆𝐹 values are finally used as input for the SimCardEMS solver, which
is implemented in FEniCS [6], to simulate the effects of drugs on an endocardial tis-
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sue block. We solved the electrophysiological O’Hara-Rudy model which is strongly
coupled with the mechanical Land model via intracellular calcium concentration and
stretch activated channels [7, 8]. The active tension was scaled by a factor of five.
The Holzapfel model was used to describe the tissue material properties, where we
increased the stiffness by a factor of ten [9].

The simulations were performed on a 6x3x3 mm mesh representing an endocar-
dial tissue slab with 1 mm and 0.5 mm spatial resolution for the mechanical and
electrophysiological parts, respectively (Fig. 2.1). One corner of the mesh was fixed,
and each of the connected planes were fixed in their respective normal directions, al-
lowing the simulation of free contraction. The fibers were aligned in the longitudinal
direction of the mesh and the tissue was activated by stimulating the entire mesh.

To reach steady state, 40 beats of 1000 ms each were simulated and used as control.
Thereafter, the drugs were added into the simulation by loading the calculated 𝑆𝐹s.
Each of these simulations was run either for five or ten beats (1000 ms each)
depending on when steady state was reached; the goal was to investigate the effect
of each tested drug on the electrophysiological and mechanical behavior of the cells.
The biomarkers used for the analysis were extracted from the center of the mesh for
the last beat of each simulation.

2.2.3 Evaluation

The TdP risk classifications were based upon maximum active tension 𝑇a,max,
𝐴𝑃𝐷90, 𝐶𝑎𝑇𝐷90, and 𝐸𝑀𝑤 where

𝐸𝑀𝑤 = 𝐶𝑎𝑇𝐷90 − 𝐴𝑃𝐷90 (2.2)

Fig. 2.1: (Left) Mechanical mesh 6x3x3 mm with 1 mm resolution. (Right) Elec-
trophysiological mesh 6x3x3 mm with 0.5 mm resolution. Three planes are fixed in
their normal direction to allow free contraction of the material.



2 Electromechanical Testing in TdP 23

The metrics used for evaluation are visualized in Fig. 2.2. TdP risk was classified as
high or intermediate respectively in the following situations:

• 𝑇a,max decreases by more than 50% (high) or between 20% and 50% (intermediate)
compared to control. Clinically, a decrease in ejection fraction from 60% to 35%
is considered dangerous [10]. We assumed that a 50% drop in 𝑇a,max represented
a similar level of danger for the patient since 𝑇a,max affects the contraction;

• 𝐴𝑃𝐷90 increases by more than 10% (high) or between 6% and 10% (intermediate)
compared to control [11, 12];

• 𝐸𝑀𝑤 decreases by more than 20% (high) or between 10% and 20% (intermediate)
compared to control [4].

If none of these criteria were met, the drug was considered safe and classified as low
risk.
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control. The metrics used to evaluate the results are indicated in the figure with
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24 Electromechanical Testing in TdP

2.3 Results

The biomarkers extracted for all simulations are shown in Table 2.2. For the control
simulation we found a 𝑇𝑎,𝑚𝑎𝑥 of 55.0 kPa, 𝐴𝑃𝐷90 of 258 ms and 𝐸𝑀𝑤 of 134 ms.
The associated risk classification thresholds for 𝑇𝑎,𝑚𝑎𝑥 were 44.0 kPa (intermediate)
and 27.5 kPa (high). For 𝐴𝑃𝐷90, the thresholds were 273 ms (intermediate) and 284
ms (high), while for 𝐸𝑀𝑤 they were 121 ms (intermediate) and 107 ms (high).

2.3.1 Action Potential Duration

The resulting action potentials for control as well as the six examined drugs at 𝑃𝐶1.0
are shown in Fig. 2.3. Ibutilide, quinidine and flecainide have 𝐴𝑃𝐷90 values of 597
ms, 446 ms and 352 ms respectively which are above the threshold for high risk
drugs. Ranolazine has an 𝐴𝑃𝐷90 of 283 ms at 𝑃𝐶1.0 which fits in the range of
intermediate risk drugs. 𝐴𝑃𝐷90 values for metronidazole and mexiletine are below

Table 2.2: Overview of the extracted biomarkers,𝑇a,max [kPa], 𝐴𝑃𝐷90 [ms],𝐶𝑎𝑇𝐷90
[ms], 𝐸𝑀𝑤 [ms] and TdP risk classifications for all performed simulations. 𝑃𝐶0.5,
𝑃𝐶1.0 and 𝑃𝐶2.0 results are given in this order for each of the six tested drugs.

Drug 𝑇a,max 𝐴𝑃𝐷90 𝐶𝑎𝑇𝐷90 𝐸𝑀𝑤 in vitro in silico
risk risk

Control 55.0 258 392 134 - -

Flecainide
61.0
66.4
75.4

316
352
400

404
412
425

88
60
25

High High

Ibutilide
50.8
46.1
43.8

531
597
644

541
560
641

9
3
-3

High High

Metronidazole
28.8
22.9
17.8

249
252
263

393
396
401

145
144
138

Intermed High

Mexiletine
54.8
54.3
53.2

253
251
250

390
388
386

136
137
136

Low Low

Quinidine
56.1
57.3
61.9

372
421
470

425
446
469

53
25
-2

High High

Ranolazine
68.7
79.5
96.1

272
283
303

391
391
392

119
107
89

Low Intermed
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the intermediate threshold and should therefore be classified as low risk if only the
𝐴𝑃𝐷90 is considered.

All the chosen drugs were then examined for 𝑃𝐶0.5 and 𝑃𝐶2.0 as well. An example
of the differences of action potential shape for quinidine based on the PC is shown in
Fig. 2.4. A concentration dependent effect is observed for 𝐴𝑃𝐷90 as it is the smallest
for 𝑃𝐶0.5 and increases with an increase in PC. An overview of the 𝐴𝑃𝐷90 values
for each of the examined drugs at 𝑃𝐶0.5, 𝑃𝐶1.0, and 𝑃𝐶2.0 is given in Table 2.2.

2.3.2 Electromechanical Window

Looking at the 𝐸𝑀𝑤 values, high risk drugs were classified by 20% decrease com-
pared to control; flecainide, ibutilide, and quinidine returned values below this thresh-
old, indicating high risk, while metronidazole and mexiletine returned values above
it. Finally, for ranolazine the decrease was slightly less than 20% which, in combi-
nation with the remaining biomarkers, led us to classify it as an intermediate risk
drug. For all the drugs, the TdP risk classification based on the 𝐸𝑀𝑤 was the same
as 𝐴𝑃𝐷90 risk classifications. In four out of the six analyzed drugs, the 𝐸𝑀𝑤 pro-
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Fig. 2.3: Action potentials for control and six tested drugs at 𝑃𝐶1.0. Based on these
results, ibutilide, quinidine and flecainide are classified as high risk. Ranolazine is
classified as intermediate risk for this drug concentration.
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gressively decreased with higher drug concentration compared to control. However,
addition of metronidazole at 𝑃𝐶0.5 increased the 𝐸𝑀𝑤 initially while for higher
concentrations of metronidazole (𝑃𝐶2.0) the 𝐸𝑀𝑤 decreased again. The addition
of mexiletine changed the 𝐸𝑀𝑤 by only 3 ms while both the 𝐴𝑃𝐷90 and 𝐶𝑎𝑇𝐷90
remained similar to control. All results are shown in Table 2.2.

2.3.3 Maximum Active Tension

Applying metronidazole, the maximum active tension decreased from 55.0 kPa to
28.8 kPa, 22.9 kPa, and 17.8 kPa for 𝑃𝐶0.5, 𝑃𝐶1.0 and 𝑃𝐶2.0, respectively. This
represents a decrease in 𝑇𝑎,𝑚𝑎𝑥 of 48%, 58%, and 68%. For ranolazine, the 𝑇𝑎,𝑚𝑎𝑥
increased by 45% at𝑃𝐶1.0 compared to control. In the remaining drugs, the maximum
active tension remained similar or slightly increased compared to control.
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Fig. 2.4: Action potential for control and quinidine at 𝑃𝐶0.5, 𝑃𝐶1.0, and 𝑃𝐶2.0.
An increase in PC highlights the drug concentration effect on the action potential
duration.



2 Electromechanical Testing in TdP 27

2.3.4 In Silico and in Vitro TdP Risk Classifications

We classified all six drugs using the evaluation process described in section 2.2.3.
Flecainide, ibutilide, and quinidine were determined to be high risk both in the
previous classification and in our electromechanical model (based on 𝐴𝑃𝐷90 and
𝐸𝑀𝑤 values). Based on the maximum active tension, the risk of metronidazole
was changed from intermediate (CiPA indication) to high risk. On the other hand,
following the 𝐴𝑃𝐷90 and 𝐸𝑀𝑤 values it would have been classified as low risk.
Mexiletine was classified as low in the CiPA as well as in our study. Lastly, ranolazine
was previously predicted as low risk but was classified as intermediate risk using
our model based on both the 𝐴𝑃𝐷90 and 𝐸𝑀𝑤 values. Even though the increase in
𝑇𝑎,𝑚𝑎𝑥 for ranolazine was the largest of the analyzed drugs, potentially having an
effect on contraction and tissue stress, increases in 𝑇a,max were not considered in TdP
risk classification.

2.4 Conclusions

In this study we analyzed six drugs, flecainide, ibutilide, metronidazole, mexiletine,
quinidine, and ranolazine. Three of these drugs were classified as high risk, one as
intermediate risk, and two as low risk according to CiPA. Using our fully coupled
electromechanics model, four drugs were classified as high risk, one as intermediate
risk and one as low risk. An overview of this distribution is given in Table 2.3. After
performing our analysis, we concluded that some drugs may belong to different
risk categories depending on the individual parameters considered. For example,
ranolazine was previously classified as low risk; in our simulation, both the 𝐴𝑃𝐷90
and 𝐸𝑀𝑤 biomarker values for 𝑃𝐶1.0 fell in the range of intermediate risk, while for
𝑃𝐶2.0 it was predicted high risk. In general, for all six drugs, both the 𝐴𝑃𝐷90 and the
𝐸𝑀𝑤 biomarkers indicated the same risk categories. However, the risk classification
based on 𝑇𝑎,𝑚𝑎𝑥 differed from the other biomarkers. For metronidazole, a low TdP
risk was observed based on the electrophysiological biomarkers. Despite that, there
was a decrease of 58% in𝑇𝑎,𝑚𝑎𝑥 which can lead to severe problems in heart function.

Table 2.3: Predicted versus in vitro risk classifications for the analyzed drugs. Out
of the six tested drugs, two drugs were classified differently based on the electrome-
chanical results.

Pred. high Pred. intermediate Pred. low

CiPA high 3 0 0
CiPA intermediate 1 0 0
CiPA low 0 1 1
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We conclude that the addition of a mechanical biomarker, the maximum active
tension, is valuable in the prediction of cardiac risk stratification. Additionally, using
the electrophysiological biomarkers, SimCardEMS succeeded in predicting the same
TdP risk category as previously determined for four of the six drugs.
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Chapter 3
In silico Investigation of Sex-Specific
Osteoarthritis in Human Articular
Chondrocytes

Khoa Ngo, Nathaniel T Herrera, Milda Folkmanaite, Kei Yamamoto, and Mary M
Maleckar

Abstract Osteoarthritis (OA), a progressive degenerative disease of cartilage in
joints, is the most common cause of chronic disability in older adults. While OA
is mostly considered an age-related pathology, women have a 1.5-fold higher risk
of developing OA relative to men and experience more severe symptoms. Yet, they
remain underrepresented in musculoskeletal research and clinical trials. Responsible
for cartilage formation, articular chondrocytes experience physiological changes in
OA, but the functional implications of such alterations remain largely unexplored due
to difficulties in acquiring the data experimentally. Through reparameterization, we
expand a mathematical chondrocyte model to investigate sex-specific OA pathogen-
esis. We performed sensitivity analysis to address the impact of ion channel activity
in healthy and OA chondrocyte populations. Simulations show that in healthy female
chondrocytes, the resting membrane potential is more depolarized than in healthy
male chondrocytes, suggesting potential sex-specific emergent physiological differ-
ences in articular chondrocytes. In both sexes, the resting membrane potential of
healthy chondrocytes is most sensitive to 𝐼𝐶𝑎−𝐴𝑇𝑃 , 𝐼𝑁𝑎−𝑏, 𝐼𝑁𝑎𝐾 and 𝐼𝐾−𝑏, but in
OA it depolarizes and becomes sensitive to 𝐼𝐾𝐷𝑅, 𝐼𝑁𝑎𝐾 and 𝐼𝐾−𝑏. Developed and
evaluated against experimental data, our articular chondrocyte OA electrophysiolog-
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ical model can be used to further study OA pathology and sex-specific pathological
OA changes.

3.1 Introduction

Mammalian chondrocytes are found within intervertebral discs and articular carti-
lage, where they maintain the extracellular matrix (ECM) and produce the cartilage
matrix [1]. The ECM mainly consists of collagen fibers that transmit force and dis-
sipate energy, proteoglycans that withstand compressional forces, and synovial fluid
to reduce friction between bones. In normal function, healthy chondrocytes respond
to outside stimuli and damaged articular cartilage, where they increase production
of specific ECM complexes [2]. Functional, mature, healthy articular chondrocytes
are necessary for the maintenance of cartilage and therefore, physiological joint
motion [3]. Chondrocytes function to maintain a homeostatic environment in the
articular cartilage. Pathophysiologic conditions can lead to the development of os-
teoarthritis (OA); however, the mechanism by which this occurs is poorly understood.
Osteoarthritis is the most common form of arthritis and is a disease characterized
by the degeneration of cartilage and underlying bone [4]. Women are 1.5x more
likely to develop OA, and experience more severe symptoms as compared to men
[5, 6, 7]. In OA, chondrocytes secrete increased levels of inflammatory cytokines,
actively produce proteoglycans and collagen type II to recover the degeneration of
the ECM, and become hypertrophic [8]. The present study on human, sex-specific
OA is modeled after the specific cell physiology of the human articular chondrocyte.

Recent research suggests that maintaining a stable resting membrane potential
is essential for chondrocytes in articular cartilage to be able to withstand pressure
and force changes [9]. Despite chondrocytes being non-excitable cells, they undergo
robust ion-channel mediated changes in response to OA. This is further supported
by experiments where ion-channels contributing to the resting membrane potential
were blocked, resulting in a decrease in the production of matrix mRNAs, proteins
and glycosaminoglycans [10, 11]. Additionally, channel blockers inhibit chondro-
cyte proliferation and increase apoptosis [12, 13]. During OA, chondrocytes have
reduced capability to respond to changes in the extracellular environment, specifi-
cally with respect to ion transport; this is recognized by i.e. a deficiency in volume
regulation [14]. Chondrocyte diameters vary between 7 and 30 µm, making technical
electrophysiological experimental studies difficult [15]. Therefore, there is limited
experimental data investigating the electrophysiological differences of chondrocytes
in normal physiology and pathophysiology.

Therefore, to gain a better understanding of the human chondrocyte channelome in
the context of OA, we have developed an OA chondrocyte model by further expanding
a previously established mathematical model of the human articular chondrocyte
[3, 16]. Mathematical models can play a key role in the dearth of physical data and
in hypothesis generation, among other utilities. In the absence of constraining data,
models can be used to generate valuable hypotheses about the underlying processes
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at work, which can then be tested in carefully designed experiments and/or against
data from other sources. This initial model of the human articular chondrocyte
features various ion channels describing the resting membrane potential and ion
movement across the cell membrane. Previous iterations of the model focused on
potassium fluxes across the cell membrane, and included functions specifically for the
integration of the sodium/potassium pump, an active transport pump that establishes
an electrochemical gradient across the cell membrane. In this study, the model
is expanded to include sex-specific OA by implementing the differences in ion
channel conductances observed between males and females, as well as alterations
of ion channel expression in OA disease. Populations of models using a log-normal
distribution were also implemented to accurately represent biological variability,
and subsequent parameter sensitivity analysis was performed to identify the currents
that influence chondrocyte resting membrane potential to the greatest degree in both
health and disease.

In summary, we have developed a mathematical OA chondrocyte model to gain
a better understanding of OA pathogenesis through exploratory simulations, driving
forward hypothesis development in the context of relative scarcity of human chon-
drocyte electrophysiological data across the channelome. As OA is more prevalent
in females than males, we also implemented sex differences in our updated model.
Our main goals in the present study were to: (i) update and scale the baseline male
model (1) to generate a (2) disease OA-male model, (3) a control female model,
and (4) a disease OA-female model, (ii) utilize a population of models approach
to determine which ion channels were the main contributors to resting membrane
potential in human articular chondrocytes during normal function and in OA.

3.2 Methods

To study the effects of OA on the resting membrane potential, we employed the
chondrocyte model and simulation protocols developed by Maleckar et al. [3] and
further improved by Fischer-Holzhausen et al. [17]. The model components are
shown in Figure 3.1. 𝐼𝑁𝑎𝐾 has been scaled to be within 0.1-0.6 of the original value,
corresponding roughly to 0.9–5.35 pA/pF, as prior work has shown this range is
more likely to present a physiologically-relevant model regime [17].

Following the Hodgkin-Huxley formalism, the cell membrane is modeled as a
capacitor coupled in parallel with ion channels represented by resistors. The time-
evolution of the transmembrane potential is given by the summation of all electro-
genic transport processes.

𝐶𝑚
𝑑𝑉

𝑑𝑡
= −(𝐼𝐾𝐷𝑅 + 𝐼𝑁𝑎𝐾 + 𝐼𝑁𝑎𝐶𝑎 + 𝐼𝐶𝑎−𝐴𝑇𝑃 + 𝐼𝐾−𝐴𝑇𝑃 (3.1)

+ 𝐼𝐾2𝑝𝑜𝑟𝑒 + 𝐼𝑁𝑎𝑏 + 𝐼𝐾𝑏 + 𝐼𝐶𝑙𝑏 + 𝐼𝐾𝐶𝑎) ,
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Fig. 3.1: Schematic illustration of the model adapted from Maleckar et al. [17],
showing the principal ion-selective channels, exchangers, and pumps expressed in
human chondrocytes.

where𝐶𝑚 is the chondrocyte capacitance (6.3 pF). A set of three transport equations
gives the time-derivatives of the intracellular ionic concentrations of 𝑁𝑎+, 𝐾+, and
𝐶𝑎2+

𝑑 [𝑁𝑎+ ]𝑖
𝑑𝑡

= − 𝐼𝑁𝑎𝑏 +3𝐼𝑁𝑎𝐾 +3𝐼𝑁𝑎𝐶𝑎 − 𝐼𝑁𝑎𝐻 + 𝐼𝐶𝑙𝑏
𝑣𝑜𝑙𝑖 ×𝐹

, (3.2)

𝑑 [𝐾+]𝑖
𝑑𝑡

= −
𝐼𝐾𝑏 −2𝐼𝑁𝑎𝐾 + 𝐼𝐾𝐷𝑅 + 𝐼𝐾2𝑝𝑜𝑟𝑒 + 𝐼𝐾𝐶𝑎 + 𝐼𝐾−𝐴𝑇𝑃

𝑣𝑜𝑙𝑖 ×𝐹
, (3.3)

𝑑
[
𝐶𝑎2+]

𝑖

𝑑𝑡
= − 𝐼𝐶𝑎−𝐴𝑇𝑃 −2𝐼𝑁𝑎𝐶𝑎

2𝑣𝑜𝑙𝑖 ×𝐹
−0.045× 𝑑𝑂𝑐

𝑑𝑡
, (3.4)

where 𝑣𝑜𝑙𝑖 is the internal volume of the chondrocyte (0.005884 mL), 𝐹 is the Faraday
constant (96,485 C/mol), and 𝑂𝑐 is the fraction of intracellular calmodulin bound
to 𝐶𝑎2+. The coefficients in front of the exchangers come from their respective ionic
exchange ratios. For example, the NaK exchangers exchange three 𝑁𝑎+ ions for two
𝐾+ ions.
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3.2.1 Modeling Ionic Changes Induced by Osteoarthritis in Male and
Female Chondrocytes

To gain mechanistic insight into the pathogenesis of OA, we implemented changes in
ion channel expressions as measured by Karlsson et al. [18]. We further expanded our
investigation by integrating sex-specific differences in ion channel activity into our
model. Due to the lack of experimental data on female chondrocytes, we compiled
a list of sex-specific differences in ion channel expression based on mRNA and
ion channel subunit expression data collected from epicardial cardiomyocytes. In
our model, we modeled the effect of changes in ion channel expression on their
conductances (𝐺), as displayed in Table 7.2.

Table 3.1: Sex-specific subcellular ion channel conductances relative to the male
baseline model

Parameter Male Control Male OA Female Control Female OA

𝐺𝑁𝑎𝐾 1 2.20 0.95 2.08
𝐺𝐶𝑎−𝐴𝑇𝑃 1 2 1 2
𝐺𝐾−2𝑃𝑜𝑟𝑒 1 0.20 1 0.20
𝐺𝐾𝐷𝑅 1 8.30 0.80 6.64
𝐺𝐾−𝐴𝑇𝑃∗ 1 0.34 1 0.34
𝐺𝑁𝑎𝐶𝑎 1 1 0.97 1
𝐺𝐾−𝑏 1 1 0.51 1

∗

Implemented as change to the Q10 parameter which defines the effect of temperature on ion channel
kinetics [19, 20].

3.2.2 Generation of a Population of Models

To capture biological variability and investigate parameter sensitivity, we used the
published chondrocyte model [3, 17] as a baseline to build our population of 1,000
models by randomly modifying parameters corresponding to conductances of ion
current and maximal rates of ion transports. A relatively large sample size of 1,000,
typically used in similar population-based studies [21, 22], was chosen to allow
even small effects, often indistinguishable in small sample sizes, to reach statistical
significance. Prior studies have shown that biological parameters, when randomly
selected, are distributed according to log-normal frequency curves instead of normal
ones [23]. For each channel in the model, we varied its conductance by sampling
from a log-normal distribution centered around their respective baseline value with
the standard deviation set to 0.15.
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3.2.3 Model Parameter Sensitivity Analysis

We performed parameter sensitivity analysis on the generated model population to
assess the sensitivity of the model output (e.g., the resting membrane potential) in
response to channel conductance variations. The degree to which perturbing a set
parameter can influence the results are quantified as a set of regression coefficients,
which are obtained by performing multivariable partial least squares regression on
the dataset. Partial least squares regression was chosen over standard multivariable
regression as many independent parameters (e.g., ion channel conductances) were
used to predict a smaller set of dependent variables (e.g., the resting membrane
voltage) [24]. This methodology was first used in cardiac electrophysiology by
Sobie et al. [25] and has been widely used in other fields of biology [21, 26].

3.3 Results

3.3.1 Modeling the Impact of Sex-Specific OA on Resting Membrane
Potential

In Figure 3.2, we implemented the experimentally-observed changes in ion channel
expression in control and OA chondrocytes, accounting for sex differences as de-
scribed in Table 7.2. Figure 3.2 shows that the healthy female chondrocyte maintains
a more depolarized resting membrane potential (-58.21 ± 5.75 mV) as compared to
the healthy male chondrocyte (-69.11 ± 4.71 mV). Electrophysiological differences
instigated by OA result in depolarization in both male (from -69.11 ± 4.71 mV to
-53.87 ± 3.21 mV) and female (from -58.21 ± 5.75 mV to -49.03 ± 1.34 mV) chon-
drocytes. This overall depolarizing effect of OA remodeling on the resting membrane
potential has previously been reported in experiments [27].

Fig. 3.2: Resting membrane potential in control and OA chondrocytes for (A) male
and (B) female models. Changes in ion channel expression in OA induce resting
membrane depolarization.
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3.3.2 Population of Models

Shown in Figure 3.3, and as outlined previously, we further expanded our analysis to
investigate population variability by generating 1,000 models for each condition with
channel conductances varied according to a log-normal distribution. For all 1,000
parameter sets, the steady-state solutions were reached within the simulation period
of 50,000 seconds. Figure 3.3 shows that in male and female OA chondrocytes,
intracellular sodium quickly becomes depleted and remains very small, close to
zero, for the rest of the simulation. We calculated the mean resting membrane
potentials for all conditions and compared them against the reported experimental
values as measured in experiments, shown in Figure 3.4. In all cases, the membrane
potentials of OA chondrocytes are relatively more depolarized compared to their
healthy counterparts. Comparing male and female chondrocytes, although the control
resting membrane potential values slightly differ (females are more depolarized
compared to males), OA male and female chondrocytes depolarize to a similar value
(approximately -51 mV).

3.3.3 Parameter Sensitivity Analysis

Sensitivity analyses were performed on the chondrocyte populations to reveal how
ionic modulations induced by OA might affect the sensitivities of underlying elec-
trophysiological properties in the models. Shown in Figure 3.5, in the healthy male
chondrocyte population, 𝐼𝑁𝑎𝐾 , 𝐼𝐶𝑎−𝐴𝑇𝑃 , 𝐼𝑁𝑎−𝑏, and 𝐼𝐾−𝑏 are predicted to have the
most critical impact on the resting membrane potential. In this case, 𝐼𝑁𝑎−𝑏 is the
strongest depolarizing current and 𝐼𝐶𝑎−𝐴𝑇𝑃 is the strongest hyperpolarizing current.
In male chondrocytes expressing OA, only 𝐼𝑁𝑎𝐾 and 𝐼𝐾−𝑏 remain the most influen-
tial currents. Compared to the healthy case, the impact of 𝐼𝐶𝑎−𝐴𝑇𝑃 and 𝐼𝑁𝑎−𝑏 are
severely reduced in OA, while 𝐼𝑁𝑎𝐾 gains a 1.6-fold depolarizing influence.

The healthy female chondrocyte population shares some similarities with their
male counterparts, as the resting membrane potential is still the most sensitive to
𝐼𝑁𝑎𝐾 , 𝐼𝐶𝑎−𝐴𝑇𝑃 , 𝐼𝑁𝑎−𝑏, and 𝐼𝐾−𝑏. However, 𝐼𝐾−𝐴𝑇𝑃 now plays a slightly more
dominant role as a hyperpolarizing current. Compared to male chondrocytes, 𝐼𝑁𝑎𝐾
gains a more significant role in establishing the resting membrane potential than in
males (2.5-fold increase in importance). 𝐼𝑁𝑎𝐾 is the strongest depolarizing current
and 𝐼𝐾−𝑏 is the strongest hyperpolarizing current. Surprisingly, in female chondro-
cytes expressing OA, the majority of the currents no longer have as much of an
impact on the resting membrane potential. Nonetheless, 𝐼𝑁𝑎𝐾 and 𝐼𝐾−𝑏 each still
retain a minor influence.
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Fig. 3.3: Membrane voltage and internal ion concentrations for (A) male and (B)
female population.

3.3.4 Inhibiting 𝑰𝑵𝒂𝑲 Restores Normal Resting Membrane Potential in
OA Chondrocytes

Per sensitivity analysis results, 𝐼𝑁𝑎𝐾 has the largest impact on depolarizing the
resting membrane potential (i.e., having positive regression coefficients) in both
male and female chondrocytes in OA. To restore the membrane potential back to
near control values, we applied 𝐼𝑁𝑎𝐾 current block treatment then simulated the
membrane potential in male and female OA populations of 1,000 models each. Figure
3.6 shows that applying 45% 𝐼𝑁𝑎𝐾 block to male and 55% 𝐼𝑁𝑎𝐾 block to female
OA chondrocytes restored the mean resting membrane potential of the population
back to the control level. Notably, previous clinical studies have revealed that 𝐼𝑁𝑎𝐾
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Fig. 3.4: Mean resting membrane potential in control and OA chondrocytes for male
and female populations (1,000 models each) compared against experimental data
[27]. To account for differences in data collection methodology, experimental resting
membrane potential values were scaled to match the mean of the male population.

Fig. 3.5: Parameter sensitivity analysis on (A) male and (B) female population of
sex-specific chondrocyte models. The regression coefficients measure the relative
impact of a particular ionic current on the resting membrane potential. A positive
regression coefficient indicates the associated current is a depolarizing current, while
a negative regression coefficient indicates a hyperpolarizing current.
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blockers Ouabain and Digoxin protected against OA and relieved OA-associated pain
[28].

Fig. 3.6: Resting membrane potential in control, OA, and OA chondrocytes with
partial block of 𝐼𝑁𝑎𝐾 for male and female model population (1,000 models each).
Blocking 𝐼𝑁𝑎𝐾 (45% for male and 55% for female population) helped restore the
resting membrane potential back to normal levels in OA chondrocytes.

3.4 Discussion

OA, a debilitating disorder affecting 1 in 7 individuals in the United States in their
lifetime [29], has no current curative treatment. The prevalence, as well as disease
severity, is more pronounced in female patients [30]. It is known that chondrocytes
play an essential role in maintaining healthy cartilage, and that their function is
impaired in disease [31]. As experimental investigation of human chondrocytes is
challenging due to the lack of human control samples, we have further expanded
a previously-developed mathematical model of a chondrocyte channelome by in-
troducing experimental changes observed in ion channel electrophysiology, as well
as temperature and capacitance [3]. The updated model is user-friendly and freely
accessible (github.com/k-ngo/Chondrocyte).

Simulations revealed that the chondrocyte membrane becomes depolarized in
OA, which agrees with experimental data [32]. This suggests that the changes in
ion channel expression together with temperature and capacitance are sufficient to
capture the main pathological alterations observed in OA chondrocytes related to
their membrane potential. In the future, it remains important to further validate the
model experimentally, as well as to investigate the primary cause of the alterations
in ion channel expression observed in OA chondrocytes. These are likely to involve
inflammatory processes associated with OA [33].

http://github.com/k-ngo/Chondrocyte
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Comparisons between male and female chondrocyte models reveal intriguing
phenotypic differences. First, the resting membrane potential is more depolarized
in females compared to males in controls. The main differences between male and
female healthy chondrocyte models include reduced 𝐺𝐾𝐷𝑅 (by 25%), 𝐺𝐾−𝑏 (by
95.2%), 𝐺𝑁𝑎𝐶𝑎 (by 2.8%) and 𝐺𝑁𝑎𝐾 (by 5.7%). The investigation of the main fac-
tors important for maintaining membrane potential visualized in Figure 3.5 revealed
that, in the present model, calcium ATPase and background sodium and potassium
currents contribute the most for maintaining healthy resting membrane potential in
males, with an addition of 𝐼𝑁𝑎𝐾 in females. It could be that the relative depolariza-
tion of the female chondrocyte membrane driven by the aforementioned changes in
the model predisposes female patients to OA, although additional experimental data
is needed to further investigate this hypothesis.

OA chondrocyte model simulations show that resting membrane potential is de-
polarized in disease, following experimental data [32]. This effect is seen in both
male and female OA models. Our results also suggest that chondrocyte resting mem-
brane potential in female patients could be more depolarized compared to that in
males, which could lead to higher depolarization in OA (mean resting membrane
potential is -49.03 ± 1.34 mV in the female and -53.87 ± 3.21 mV in the male OA
model). The resting membrane potential in OA was around 17.5% more depolarized
for female and 24.5% for male model compared to respective healthy resting mem-
brane potentials. In our OA model, 𝐼𝑁𝑎𝐾 current plays a prominent role in regulating
membrane voltage: in both males and females with OA, increased 𝐼𝑁𝑎𝐾 becomes the
most important contributing factor to the overall depolarization of the resting mem-
brane potential, as revealed by sensitivity analysis. Inhibiting 𝐼𝑁𝑎𝐾 might therefore
provide a useful approach for reversing resting membrane alterations in OA and,
more broadly, 𝐼𝑁𝑎𝐾 could be a useful target in modulating disease pathogenesis in
OA.
𝐼𝑁𝑎𝐾 inhibitors are well characterized for e.g. cardiac disease treatment, and new

selective inhibitor drugs are currently in the pipeline [28]. To test whether 𝐼𝑁𝑎𝐾
block could be useful in overcoming OA-associated changes in resting membrane
potential, we simulated 𝐼𝑁𝑎𝐾 block. With varying degrees of 𝐼𝑁𝑎𝐾 inhibition, the
resting membrane potential in disease can be restored to healthy, pre-OA levels in both
males and females. Therefore, re-purposing 𝐼𝑁𝑎𝐾 blockers feasibly provide a useful
new therapeutic approach for OA treatment. 𝐼𝑁𝑎𝐾 blockers have, in fact, already
been applied for OA treatment: clinical studies have reported positive outcomes in
patients, revealing that 𝐼𝑁𝑎𝐾 blockers, Ouabain and Digoxin, induced a reduction in
pain and elicited an apparent OA-protective effect [28], supporting our simulation
results implying 𝐼𝑁𝑎𝐾 blockers as a potential treatment for OA.

Given this putative critical role of Na+ concentration in healthy and OA chon-
drocytes, novel future experiments should consider thoroughly probing Na+ balance
in human chondrocytes. For instance, Figure 3.3 shows that in male and female
OA chondrocytes, intracellular sodium quickly becomes depleted and remains very
small, close to zero, for the rest of the simulation, suggesting that alternate sodium
regulation not currently accounted for in base models may apply in OA. Model
development should additionally move towards incorporating new channel species
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to regulate Na+ concentrations in control and in OA, including epithelial sodium
channels (ENaC), which are not currently included in the model [31, 34]. Other work
has also focused on voltage-gated sodium channels in chondrocytes, which may also
be considered.

Naturally, the lack of available biological data from new electrophysiological and
other experimental studies presents a challenge for the validation of both male and
female models, both in control and in OA. Further experimental studies will be
instrumental in determining the ranges of parameters for the model, as well as for
simulated chondrocyte behavior evaluation. In the future, further experimental data
will be helpful in further developing and expanding the current chondrocyte model.
While the current study, synthetic in nature, limits its direct translation to clinical
application, the present work retains utility in terms of physiological exploration and
hypothesis generation.

In summary, further incorporating additional species key in the chondrocyte
channelome into the model and incorporating new data from emerging experiments
will permit even greater insights into the broad and nuanced role of membrane
dynamics in chondrocyte function and pathophysiology.

3.5 Conclusions

We have further expanded a previously published chondrocyte mathematical model
enabling simulations of the osteoarthritic chondrocyte channelome. Implemented
changes were based on published data, and model simulation results show that the
resting membrane potential in chondrocytes becomes depolarized in OA in both
male and female chondrocytes, which agrees with the experimental data acquired
from males. Our sex-specific chondrocyte model reveals differences in resting mem-
brane potential between males and females that could potentially contribute to the
higher prevalence of OA in female patients. Finally, sensitivity analyses revealed the
main currents responsible for maintaining resting membrane potential in chondro-
cytes and potential novel therapeutic targets for OA treatment. Our OA chondrocyte
electrophysiological model provides an accessible tool for subsequent studies of OA
pathogenesis and drug targeting.
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Chapter 4
Recapitulating Functional Heterogeneity in
Electrophysiologically Active Tissues

Meye Bloothooft, Joseph G Shuttleworth, Gabriel Neiman, Ishan Goswami, and
Andrew G Edwards

Abstract Inter-cellular heterogeneity is central to the dynamic range and robustness
of function in many tissues, particularly electrically excitable tissues. In pancreatic
islet 𝛽-cells, inter-cellular heterogeneity underlies the range of insulin response to
glucose. In human-induced-pluripotent stem cell-derived cardiomyocytes (hiPSC-
CMs), inter-cellular heterogeneity presents a key challenge for drug screening appli-
cations. In this study, we assess the ability to reconstruct inter-cellular heterogeneity
in silico by applying a “population of models” (PoMs) framework, i.e. collections
of computational cells created via Monte Carlo variation of model parameters. We
define parameter variation based on experimentally observed heterogeneity in prop-
erties such as ion current conductances and enzymatic affinities. We then assess the
accuracy of those reconstructions, based on the degree to which variation in PoM
outputs (e.g. action potential duration) matches experimentally observed variation.
We report that this “ground-up” approach underestimates functional heterogeneity
in the hiPSC-CM population, but overestimates it in adult human cardiomyocytes.
In contrast, the 𝛽-cell PoM captures three distinct and physiologically relevant sub-
classes of 𝛽-cell function. In the future, we expect PoM approaches like these will
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permit incorporation of realistic cellular heterogeneity in detailed models of intact
tissues, and thereby aid development of sophisticated tissue-engineered platforms
for therapeutics.

4.1 Introduction

Functional heterogeneity among cells within a tissue is a characteristic and relevant
feature of living systems. Even within a genetically homogeneous population, in-
dividual cells often show a considerable amount of phenotypic heterogeneity [1],
and this feature has implications in the plasticity and robustness of the organisms.
Plasticity allows adaptive cellular responses to perturbations in the environment
while maintaining a robustness in functional behaviour of the tissue even after a
perturbation or insult. For example, when a region of the heart becomes infarcted
(dies), non-infarcted healthy areas will adapt and increase their force of contraction
to maintain blood flow to the body. This ability to adapt is a form of robustness of
organ function, but must be achieved in a manner that maintains the heart’s elec-
trophysiologic stability. Similarly, in obesity induced diabetes, hyperlipidemia and
hyperglycemia exert excessive insulin demand on pancreatic islet 𝛽-cells. In some
𝛽-cells this prolonged exertion leads to exhaustion of insulin reserve and cell death.
Thus, increased demand for insulin must be achieved via an adaptive response in
the remaining viable 𝛽-cells, which are phenotypically distinct. In both of these
examples, cellular heterogeneity is central to the plasticity and robustness that al-
lows both organs to maintain function after pathophysiological challenge. Functional
heterogeneity may also broaden the range of responses to drugs [2]. For example,
glibenclamide has differential effects on pancreatic islets owing to functional het-
erogeneity of their 𝛽-cell populations [3]. Thus, the study of cellular heterogeneity
for both basic understanding of living systems and discovery of therapeutics has
motivated the development of experimental techniques and the construction of com-
putational models to simulate the dynamics and effects of cellular heterogeneity
[4].

A range of single-cell experimental techniques are available to investigate this
heterogeneity. These range from transcriptome assessment via single cell RNA se-
quencing, to classical cell electrophysiology via patch clamp. While these approaches
are generally both time and labor intensive, data collected by those methods can be
stored and interrogated via efficient modelling frameworks, such as the population
of models approach (PoM) [5, 6]. These approaches simulate the dynamics and
functional implications of heterogeneity in cell populations, including responses to
pathologic insults and drug challenges.

In the PoM approach, heterogeneity is implemented by varying parameters (such
as the ionic conductance of a single or multiple ion channel/s) of a baseline model,
which itself captures the average characteristics of a particular cell type. Each unique
configuration of parameters creates a new instance of the cell model, which is anal-
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ogous to a new “member” cell of the population. In general, this procedure has been
performed by first specifying equal distributions over which all parameters of inter-
est (e.g. all ionic conductances) can vary, and then selecting only members of that
population that exhibit behaviour within the experimentally observable range [5, 6].
For example, a cardiac myocyte population could be constructed by first allowing
all ionic conductance parameters to be sampled from Gaussian distributions with an
arbitrary standard deviation of 30% of each mean parameter value in the baseline
model - this sampling strategy involves homogeneous variability across parameters.
Some members of this PoM will exhibit parameter combinations that are biolog-
ically unrealistic, and thus possibly exhibit behaviour outside the experimentally
observable range. To eliminate those models, it is common to reject models that
produce outputs or features, such as a cardiomyocyte action potential duration, that
are outside the range of experimental observations for the respective features. Con-
tinuing the example, a cardiomyocyte population member will be deemed non-viable
if the action potential duration is far longer or shorter than observed experimentally.
Similarly, a non-firing 𝛽-cell model will be rejected from the islet PoM. Because,
in these examples, the PoMs are generated from arbitrary and homogeneous pa-
rameter distributions, they will exhibit appropriate behavioural characteristics, but
may not involve truly biologically representative parameter combinations. Thus, the
behaviours may not result from truly representative underlying dynamics.

In this work, we apply a different approach, with the intention of introducing more
biologically realistic variability in PoMs of three different cell types: human adult
cardiomyocytes, hiPSC-CMs and primary islet 𝛽-cells. By introducing variability to
the input parameters that is grounded in experimentally observed variability for each
parameter, we hope to span the biologically reachable configurations and limit the
number of unrealistic configurations that are generated. That is, we use published
experimental variation (standard deviations) for ionic conductance parameters and
enzymatic activity/affinity parameters in order to apply parameter-specific hetero-
geneity rather than variation that is homogeneous across the varied parameters.
Based on these constraining conditions, we demonstrate the feasibility of PoMs to
generate a heterogeneous population representing different functional phenotypes.

4.2 Methods

An illustrative example of our approach in generating PoMs is shown in Figure
4.1. To recapitulate the functional heterogeneity in the tissue PoMs, we introduced
parameter-specific variability into our models. To do this, we identified a set of pa-
rameters which we expect to account for much of the inherent biological variability
influencing electrophysiologic function in these cell types. These parameters are a
selection of maximal conductance (or flux) parameters for both the cardiomyocyte
models (hiPSC-CM and adult) and the 𝛽-cell model. Additionally for the 𝛽-cell, a
selection of kinetic parameters for enzyme reactions in the glycolysis cycle were
varied to introduce metabolic heterogeneity. We chose to endow each of these pa-
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Fig. 4.1: Illustrative example of generating population of model (PoM) of human
cardiomyocytes and islet 𝛽-cells. Experimental data obtained from literature was
used to generate log-normal distributions of electrophysiological and/or metabolic
parameters used as inputs to computational model. Sets of features are obtained
from the simulations that are then used to generate viable candidates for the PoMs
representative of cardiomyocyte or 𝛽-cells via constraining conditions.

rameters, 𝑝, with a log-normal distribution, such that log 𝑝 ∼ 𝑝𝑁 (0,𝜎2) where 𝑝
is the original, unmodified parameter from the baseline model and 𝜎 is a standard
deviation derived from the literature. We term the random variable

𝑝

𝑝
the scaling

factor. To assign values for the various 𝜎, we surveyed the literature for measured
variability of each parameter of interest. To mitigate the impact of systematic differ-
ences among the means of different datasets, and to keep our parameter distributions
centred on the original parameter values, we computed the coefficient of variation
for each parameter (𝜎𝑝):

𝜎𝑝 :=
𝜎lit
𝜇lit

(4.1)

where 𝜇lit and 𝜎lit are the mean and standard deviation, respectively, of the observa-
tions found in the literature.

The published mathematical models chosen as the baselines for the adult-CM and
the hiPSC-CM were developed by [7] and [8], respectively. For the 𝛽-cell PoM, the
electrophysiological model developed in [9] and glycolysis model developed in [10]
were used to generate the heterogeneous population of 𝛽-cells. In the following sub-
sections, we will detail the generation of parametric distributions and the constraining
conditions via feature extraction for each PoM.

4.2.1 Cardiomyocytes

The O’Hara-Rudy model (ORd, [7]) is a widely-used mathematical description of the
average human left ventricular cardiomyocyte. We specifically used the epicardial
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version for our adult human baseline model. Likewise, the baseline model for hiPSC-
CMs was that published in [8]. Both models use the following fundamental equation
for calculation of time-varying membrane potential:

𝐶𝑚
𝑑𝑉

𝑑𝑡
= −

∑︁
𝑖

𝐼𝑖 (4.2)

where𝐶𝑚 is the capacitance of the cell membrane and each 𝐼𝑖 is a current describing
the transmembrane current carried by each species of ion channel present in the
model. For each ion channel, there is a maximal conductance parameter 𝑔𝑖 , or analo-
gous permeability parameter, such that 𝐼𝑖 = 𝑔𝑖 𝐼𝑖 for some 𝐼𝑖 . 𝐼𝑖 is in turn described by
a system of ordinary differential equations that specify the voltage, ion concentration
and time-dependencies of ion channel function. For all currents, we only vary the
maximal conductance (𝑔𝑖), and not the parameters of the remaining equations con-
tributing to 𝐼𝑖 . The formulation for sarcoplasmic reticulum (SR) calcium reuptake is
different to those of the ion channels, but an analogous term that reflects the maxi-
mal rate of SR calcium reuptake 𝐽SERCA. As for the ion channel conductances, this
parameter was varied to introduce heterogeneity in this key element of intracellular
calcium handling.

Table 4.1: Scaling parameters for the cardiomyocyte PoM
Sources to construct coefficient of variation (𝜎𝑝) listed by the reference numbers

Variable Mean Unit 𝜎𝑝
human adult CM
𝑔K1 3.60 pA/pF 0.781

𝑔Kr 0.31 pA/pF 0.131

𝑔Ks 0.18 pA/pF 0.652

𝑔ko 9.30 pA/pF 0.991

𝑔CaL 10.20 pA/pF 0.131

𝑔Na 16.10 pA/pF 0.833

𝑔NaL 0.34 pA/pF 0.494

𝑔NaK 1.90 𝜇M/min/mg protein 0.485

𝑔NaCa 0.05 nmol Ca2+/mg protein/sec 0.366,7

¯𝐽SERCA 7.10 nmol ATP/mg protein/min 0.395

hiPSC-CM
𝑔Na 166.00 pA/pF 0.268-11

𝑔Ca 12.20 pA/pF 0.418,11-15

𝑔Kr 2.02 pA/pF 0.478,11,16-18

𝑔Ks 1.30 pA/pF 0.588,11,19

𝑔f 2.50 pA/pF 0.328,11

𝑔k1 1.00 pA/pF 2.208,11,17,20

𝑔to 4.69 pA/pF 0.488,14,21

𝑔NCX 2.10 pA/pF 0.3322

𝑔NaL 0.70 pA/pF 0.8610

1[11], 2[12], 3[13], 4[14], 5[15], 6[16] 7[17], 8[18], 9[19], 10[20], 11[21], 12[22], 13[23], 14[24],
15[25], 16[26], 17[27], 18[28], 19[29], 20[30], 21[31], 22[32]
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Fig. 4.2: A. The resultant log-normal distributions for the 𝑔Ks scaling factor, along
with histograms resulting from 100 samples, are shown for the representative para-
metric variation in adult CM and the hiPSC-CM inputs for the models. B. The scaling
factors that were sampled in order to create the PoM are shown for two cardiomyocyte
models. Parameters from the models that were excluded from the POM are shown in
grey, whereas the parameters which were calibrated into the PoMs are highlighted
in orange.

Table 4.1 provides the values for each varied parameter for both the adult human
myocyte model and the hiPSC-CM model. The variability presented in this table
may not completely capture the variability in each maximal conductance parameter.
Nevertheless, these values provide a reasonable approximation, and yield plausible
distributions for each of the relevant parameters. We took 500 samples from each of
these distributions and the results are shown in Figure 4.2A alongside the relevant
sampling distributions.

The PoMs generated by varying the input parameters as summarized in Table 4.1
were solved via MATLAB stiff-solver ode15s, and allowed to equilibrate by simulat-
ing for 500s before computing the output features. Calibrated PoMs for both the adult
CM and hiPSC-CM were obtained by rejecting models that produced features out-
side the experimentally observed range. We identified a collection of features from
the literature: maximum upstroke velocity (voltage), minimum diastolic potential,
voltage amplitude, action potential duration (APD90), maximal departure velocity
for Ca2+, diastolic Ca2+ concentration, Ca2+ transient amplitude, Ca2+ transient
time-to-peak, and time constant of Ca2+ decay. Representative scaling factors sam-
pled from the output of the models obtained via the constraining criterion are shown
in Figure 4.2B. In the results section, we discuss the typical features obtained and
constraining criteria to generate calibrated PoMs for the cardiomyocytes.



4 Functional Heterogeneity 51

4.2.2 Islet 𝜷-cells

A robust secretion of insulin by the 𝛽-cell upon glucose challenge relies heavily on
the coupling of the metabolic oscillations in the glycolysis pathway with electrical
oscillations (e.g. isolated action potentials and action potential bursting). Recogniz-
ing this, the 𝛽-cell PoM was generated via a coupling of the electrophysiological
model developed in [9] and glycolysis model developed in [10]. A coupling of these
models was demonstrated in [33], albeit using single mean values for the electri-
cal and glycolytic component parameters. A simplistic illustration of this coupled
model is shown in Figure 4.3. To delineate contributions made by the glycolytic
and electrophysiologic systems to the overall functional heterogeneity in our 𝛽-cell
populations, we divide the parametric distributions into two components: ionic and
glycolytic.

Fig. 4.3: Schematic representation of a 𝛽-cell’s metabolic and electrophysiologi-
cal circuit involved during the glucose-stimulated-insulin-secretion. Included in the
schematic are representative formulae of the glycolytic component’s enzyme rate
equations and a few parameters (in red) that are changed to generate PoMs. Log-
normal distributions for two of the 14 parameters are shown in the bottom right hand
side of the figure.

Details of the ionic models can be found in the cited articles, but briefly electrical
oscillations in the system were modeled as described by Equation 4.2. The maximal
conductance (𝑔𝑖) of 8 ion channels were varied based on experimental data in the
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literature (references found in [34], [35], and [36]). These variations, reported via
coefficients of variation (𝜎𝑝) and their sources, are summarized in Table 4.2.

The glycolysis model comprised enzymatic reactions from glucokinase to
glyceraldehyde-3-phosphate. The rate of ATP generation through these steps and
via downstream oxidative phosphorylation in the mitochondria is introduced in a
phenomenological manner via the variable, a, which represents ATP level.

𝑑𝑎

𝑑𝑡
=𝑉𝐺𝐴𝑃𝐷𝐻 − 𝑘𝐴𝑎 (4.3)

where 𝑉𝐺𝐴𝑃𝐷𝐻 is the metabolic flux due to GAPDH and 𝑘𝐴 is a phenomenological
time constant.The ion channel conductance of 𝐾𝐴𝑇𝑃 channel is then altered via:

𝑔𝐾𝐴𝑇𝑃 =
𝑔̂𝐾𝐴𝑇𝑃

1+ 𝑎 (4.4)

In our study, we varied the kinetics of the enzymatic reactions by varying the
limiting rates 𝑉𝑖,𝑚𝑎𝑥 of glucokinase, phosphofructokinase, and glyceraldehyde 3-P
dehydrogenase. In addition we varied other kinetic parameters such as the half-
activation concentrations 𝑆𝑖0.5. These parameters are highlighted in red in our Figure
4.3. Variations in these glycolytic components of our model and their sources are
summarized in Table 4.2. This variability was again assumed to be log-normal
distributed and implemented as such for construction of our PoMs. Sources for these
datasets can be found in [37], [38],[39],[40].

Since the behaviour of individual 𝛽-cells is much more diverse than those of
cardiac myocytes, the constraining conditions are also less well-established. Thus,
we discuss the features used for constraining the 𝛽-cell PoMs in the results, and we
report sub-classes of 𝛽-cells obtained via our approach. Furthermore, we will analyze
the effects of perturbations to the glycolysis and ionic components in maintaining
functional heterogeneity.

4.3 Results

4.3.1 Cardiomyocyte PoM

As described in the methods, we allowed each PoM member model to equilibrate
for 500s before computing the output features. The last 10 action potentials of each
simulation for these models were used to extract features that were compared against
the constraining criteria to generate the calibrated PoMs. Constraining criteria were:
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Table 4.2: Scaling parameters for islet 𝛽-cell PoM
Sources to construct coefficient of variation (𝜎𝑝) listed by the reference numbers

Variable Mean Unit 𝜎𝑝
Ionic component
𝑔KV 1.00 nS/pF 0.371

𝑔BK 0.02 nS/pA 0.801

𝑔Na 0.40 nS/pF 0.491

𝑔CaL 0.14 nS/pF 0.341

𝑔CaPQ 0.17 nS/pF 0.401

𝑔CaT 0.05 nS/pF 0.421

𝑔KATP 0.01 nS/pF 0.892

𝑔HERG 0.00 nS/pF 0.303

Glycolysis component
𝑉GK,max 55.60 𝜇M/s 0.714

𝑆GK
0.5 8.00 mM 0.905

𝑉PFK,max 556.00 𝜇M/s 0.036

𝑆PFK
0.5 4.00 mM 0.096

ℎPFK 2.50 N/A 0.146

𝑉GAPDH,max 1.39 mM/s 0.277

1[34], 2[35], 3[36], 4[37], 5[38], 6[39], 7[40]

(𝐶1) At all times during the simulation, −100mV < V𝑚 < 70mV,
(𝐶2) The change in cytosolic Ca2+ transient amplitude < 2% of the mean,
(𝐶3) The change in cytosolic Na+ < 2% of the mean,
(𝐶4) The change in CaSR transient amplitude < 2% of the mean,
(𝐶5) Peak V𝑚 > −20mV,
(𝐶6) Action potential amplitude > 20mV,
(𝐶7) The standard deviation of the final 10 APD90s is less than 10% of the mean,
(𝐶8) We are able to extract every feature from the model,
(𝐶9) The minimum diastolic potential is less than −65mV.

The full populations, showing both the accepted (orange) and discarded (grey) model
configurations are shown in Figure 4.4A, together with the percent of configurations
discarded based on each pairwise combination of constraints in Figure 4.4B. This
figure provides a first indication of how well variability in the model behaviour is
captured by applying a data-defined variation in the model inputs. A large number
of configurations had to be discarded for both models, although the reasons for
exclusion were different. Specifically, we retained only 55 of 500 models for our
adult ventricular cardiomyocyte PoM, and 60 of 100 models for our hiPSC-CM PoM.
For the adult ventricular PoM the vast majority of exclusions were made because the
configuration failed either𝐶1 (43% of configurations) or𝐶9 (40% of configurations).
This can also be seen in Figure 4.4A, where many configurations fail to repolarize
below -65 mV (𝐶9), whereas others reach supraphysiologic membrane potentials
(either > 70mV or < −100mV). For the hiPSC-CM model the reasons for exclusion
were physiologically reachable but not observed in published hiPSC-CM phenotypes.
That is, the vast majority of excluded configurations simultaneously failed criteria
𝐶2 - 𝐶9, each of which was chosen to address a different source of biologically
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reachable instability. This can also be seen in Figure 4.4A, where most of the
discarded (grey models) have attracted to a second equilibrium in membrane potential
between −10mV and −20mV. This property of electrophysiologic bistability is a
real biological property of cardiac myocytes [41]. It is thus a fair question to ask
whether such configurations should be discarded for the hiPSC-CM PoM, as they
may in fact be realistic members of most hiPSC-CM cell populations. Regardless,
this initial characterization suggests that the experimentally-defined variation in
hiPSC-CM input parameters results in sharp transition to gross electrophysiologic
instabilities, most of which remain physiologically plausible. On the other hand,
the majority of adult ventricular PoM exclusions resulted from either biologically
unreachable phenotypes (V𝑚 > 70mV or < −100mV), or to an unstable resting
potential (minimum V𝑚 > −65mV).

Fig. 4.4: A The action potential and calcium transient phenotypes from the adult CM and hiPSC-
CM PoMs. Traces of cells accepted into the calibrated PoMs are in orange, while those discarded
are shown in grey. B Tables summarizing the % of models excluded by the constraining criteria.
Diagonal values show the percentage of models excluded by each criterion in isolation, whereas
the off-diagonal entries show the % of configurations for which each combination of two excluding
criteria were present. The meaning of each criterion, i.e. 𝐶𝑖 , is explained in the main text.

Figure 4.5 shows the relationships between major features of the final calibrated
PoMs for the two cardiac models, and provides a basis for comparing systematic
differences in the phenotypic span of each PoM. The stronger relationships for the
hiPSC-CM PoM between Ca2+ handling features and AP amplitude indicate the
larger role of sarcolemmal fluxes in determining Ca2+ features. In contrast, the adult
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Fig. 4.5: Scatter plots of feature pairs from both PoMs. The fitted distributions are
shown along the diagonals using a kernel density estimator. Noteworthy differences
between the two PoMs are boxed in the red (adult) and purple (hiPSC-CM).

ventricular PoM Ca2+ dynamics are more internally determined, as demonstrated by
stronger relationships boxed in green. These differences reflect intrinsic characteris-
tics of the baseline hiPSC-CM and adult ventricular cardiac myocyte models. They
are a well-known difference in the biological underpinnings of the two cell types and
reflect the generally less “mature” Ca2+ handling phenotype of hiPSC-CMs relative
to adult ventricular myocytes.

Finally for the cardiac PoMs, Figure 4.6 shows important differences between
the two calibrated PoMs in terms of degree to which the variability in their AP
and Ca2+ handling features reflect those reported in the literature. Specifically, it
is clear that the adult ventricular PoM features (top row, orange histograms) are
generally more variable than is reported experimentally (dashed lines). Only the
APD90 feature for this PoM appears to approximate reported experimental variation.
In contrast, the hiPSC-CM feature distributions (bottom row, orange histograms)
are less variable than published reports of these phenotypes (dashed lines). This
presents a fundamental distinction, and suggests that literature reports of variation
in the underlying currents and fluxes overestimate the true physiologic variability in
human adult cardiac ventricular myocytes. In contrast, the same techniques applied
to hiPSC-CMs underestimate observable phenotypic variability. We explore this
important observation in the discussion.
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Adult ventricular cardiomyocyte PoM
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Fig. 4.6: Histograms showing the variability in the features of the PoM. The first
row shows the adult ventricular cardiomyocyte PoM, and the second row shows the
hiPSC-CM PoM. In each plot, the probability density function of a representative
Gaussian distribution shows the variation typically found in measurements of these
features in the literature. These distributions have been normalised such that they are
centered on the means of each histogram.

4.3.2 Islet 𝜷-cell PoM

The individual models for the 𝛽-cell PoM were simulated to capture cell behaviour
over 10 minutes - the acute phase of glucose-stimulated insulin release. The param-
eter variations provided in Table 4.2 were used to generate 1000 cells to assess the
importance of 3 sources of heterogeneity, by varying model parameters associated
with: (a) only glycolytic (enzyme) model components, (b) only ionic (ion channel
and transporter) components, (c) both ionic and glycolytic components. In all three
cases, each model configuration was simulated under high glucose (10 mM) and low
glucose (2 mM) conditions. Thus, the total number of simulations across all 3 cases
(3000 cell model configurations), at both glucose concentrations, was 6000.

Figure 4.7A shows V𝑚 and cytosolic calcium for representative simulations at
high glucose. We see cells 1 through 3 demonstrate similar features as experimentally
observable sub-classes of 𝛽-cells, i.e. spiking, bursting, and plateau phenotypes. Non-
firing cells such as those shown in cells 4 and 5 were also observed. As for the cardiac
PoMs, in order to generate a calibrated 𝛽-cell PoM, we have to invoke and apply
a set of constraining criteria to reject configurations that produce features outside
the ranges of experimental observations. However, because the 𝛽-cell phenotype
is the most heterogeneous of all cell types assessed here, there exists far fewer
such objective constraints in the 𝛽-cell literature. However, some benchmarks are
available. For example, [42] suggested two metrics of activity based on 𝛽-cell V𝑚
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Fig. 4.7: Representative simulation outputs and categorizations. A. Representative
simulation outputs of membrane potential and cytosolic calcium representing dif-
ferent sub-classes of 𝛽-cells. 1. Spiking cells 2. Bursting cells 3. Plateau cells 4 &
5. Non-firing cells. Scales on the plots represents time of 240s. B. Plot of activity
fraction vs. Δpeak for the 5 representative cells. C. Number of peaks in the Fast
Fourier Transform (FFT) of the membrane potential traces for the 5 representative
cells.

(the activity fraction and Δpeak), as means of classifying phenotypic sub-classes.
Activity fraction was defined as the fraction of time V𝑚 was above an arbitrary
threshold level. The definition of Δpeak was set as the difference of the two major
components of V𝑚-time probability distribution (i.e. the difference between “resting”
V𝑚 and “active” V𝑚). As for [42], we did not observe clear delineation of the three
sub-classes, nor could we readily differentiate firing vs. non-firing 𝛽-cells via these
metrics (Figure 4.7B). However, we surmised that Fast Fourier Transform (FFT) of
the V𝑚 signal may allow more clear distinction of these classes. Figure 4.7C shows
the number of FFT peaks corresponded with the number of dominant harmonics in
the V𝑚 signal for each representative recording in Figure 4.7A.

Based on this analysis, we set the constraining criteria as follows. Any cell with
less than 100 peaks in the V𝑚 peaks, was considered to be quiescent and thus
discarded. For cells that had more than 100 peaks in their voltage signal, FFT was
performed on the voltage signal to classify them into spiking, bursting, or plateau
cells. Based on our initial analyses, cells with less than 20,000 peaks in the voltage
FFT were classified as plateau cells. Bursting cells were classified as those having
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anywhere above 20,000 FFT peaks but less than 40,000 peaks. Finally, cells with
FFT peaks greater than 40,000 were classified as spiking cells.

Fig. 4.8: A. Percentage of viable cells based on the chosen constraining conditions
for six different cases (1000 runs each). B. Distribution of the sub-classes of 𝛽-cell
from the viable candidates for each of the six cases. HG: High glucose (10 mM).
LG: Low glucose (2 mM). Analyses of the cytosolic calcium traces of each of the
sub-classes of 𝛽-cells in the viable population obtained with high glucose: C. mean
values, D. peak values, E. Number of FFT peaks. Statistical differences between the
groups were determined by one-way ANOVA followed by Tukey’s HSD post-test.

Based on these constraining criteria, we quantified the viable cells that were not
rejected for both glucose concentrations and all 3 cases of heterogeneity (glycolytic,
ionic, both), as shown in Figure 4.8A. The greatest reduction in viable cells was
observed for glycolytic heterogeneity only, thus highlighting the narrow metabolic
parameter range functional 𝛽-cells operate under and its importance for achieving
robust insulin secretion. Another interesting aspect of these data was the number
of active cells at low (“resting”) glucose (2 mM). This feature of basal activity
is unique to human 𝛽-cells, and underlies basal insulin release at the lower blood
glucose concentrations present in humans. Thus, our PoM approach was able to
capture this aspect of human-specific 𝛽-cell physiology.

Further analysis of the viable candidates allowed us to assess the fraction of each
of the 3 PoMs belonging to the sub-classes of 𝛽-cell phenotypes at each glucose
concentration (Figure 4.8B). The lowest fraction of bursting cells was observed
in the low-glucose (LG) cases when both components or only ionic components
were varied. Upon altering glycolytic components alone, plateau cells comprised
the only viable sub-class, thus suggesting the importance of coupling the ionic and
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glycolytic elements to generate the full range of functional phenotypes observable
in human 𝛽-cell populations. Mean cytosolic calcium of the viable cells within
our PoM were not statistically different between spiking and bursting cells, sugges-
tive of less pronounced basal shift of calcium signalling (Figure 4.8C). However,
plateau cells exhibited a mean cytosolic calcium signature distinct from the other
two classes, while peak cytosolic calcium grouped plateau and bursting phenotypes.
(Figure 4.8D). Applying FFT analysis to the calcium signals also showed that the
number of harmonics in the signal could distinguish the sub-classes of 𝛽-cells, thus
suggesting that this may be a viable means of distinguishing functional heterogeneity
in experiments, for which calcium recordings are considerably easier.

4.4 Discussion

In this manuscript, we report the construction of PoMs for three electrophysiologi-
cally active tissues that were calibrated against experimental data from the literature.
PoMs have proven useful in investigation of cardiac electrophysiological variability
and recent studies have furthered the methodology by explicitly incorporating exper-
imental data into the construction of populations of models [43, 6]. In our CM PoMs,
we observed that the fluctuations in the input parameters for the models allowed us
to generate cells with features comparable to those observed in both primary and
hiPSC-derived CMs, albeit with differing coverage of the range of function observ-
able in experiments. In both cardiac PoMs we assumed the main source of variability
is differing expression of ion transporters, and that this variation is responsible for the
observable variation in their V𝑚 and calcium cycling features. In hiPSC-CMs par-
ticularly, this variation is likely to be pronounced given their immature (“fetal-like”)
phenotype and the degree to which this can be matured. Importantly, we observed
that experimentally-defined variation in the input parameters of the cardiac models
resulted in functional output that differed in its range for the two models. That is,
for the adult CM PoM, the range of AP and calcium handling features was broader
than observed experimentally, whereas it was narrower than experimental for the
hiPSC-CM PoM. This is a fundamental observation about the agreement between
two types of data recorded in these cell types. For the adult CM it could be that bio-
logical covariance (which we have not applied in PoM construction) among the ionic
currents reduces the range of reachable AP and calcium features in real cells, or that
the relative scarcity of adult human CM data means that these two classes of data are
not yet fully internally consistent. In contrast, the greater experimental variability
for hiPSC-CM phenotype features suggests either that experimental ionic current
measurements are subjected to overly constraining inclusion criteria. Alternatively,
our hiPSC-CM model formalism may somehow be constrained to be overly stable
with respect to the phenotypic variation resulting from variation in the input currents.
Regardless, these questions are fundamental to understanding how perturbations to
either adult or hiPSC CMs should be expected to impact those tissues in vivo.
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The islet 𝛽-cell PoMs were generated via alterations in both the parameters in-
volved in glycolysis model components as well as the ionic conductance components.
We observed that the number of harmonics in V𝑚 of the simulated computational
cells was enough to distinguish different sub-classes of 𝛽-cells observed experi-
mentally, although we believe the proposed constraining criteria requires further
validation via prospective screening of experimentally obtained data sets. Further-
more, we observed that the functional heterogeneity of the 𝛽-cells is dependent
on the coupling of the metabolic and ionic components, as noted by the number
of viable cells and their sub-types when only glycolytic components were varied.
This, in part, explains why glycolytic bottlenecks in stem cell-derived 𝛽-cells show
non-robust glucose-stimulated-insulin-secretion behaviour [44, 45]. The calibrated
PoMs generated in this study were able to capture electrical oscillations at low glu-
cose, which is a unique feature of human 𝛽-cells (compared to rodents). Thus, the
methodology developed should be applicable for creating human-specific 3D models
of coupled 𝛽-cell clusters with and without partner cells such as 𝛼-, 𝛿-, 𝜖- and pan-
creatic polypeptide cells. When coupled with experimental studies, these 3D models
could be invaluable to understand the effect of heterogeneity on intact islet function,
and to develop sophisticated, robust tissue-engineered platforms for therapeutics.

Here we have demonstrated the use of experimental constraints to first construct
and then calibrate PoMs of three human cell types. The cardiomyocyte PoMs partially
reproduced observable variation in the functional features for their respective cell
types, albeit with clear systematic inaccuracies. The ability of the human 𝛽-cell PoM
to recapitulate the range of function observed in experimental 𝛽-cell recordings
is encouraging for applying this strategy to integrated function of 𝛽-cells in human
islets. Constructing new methods for constraining these PoM approaches will require
continued advancement of single cell assays.
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149, 2000.

12. Laszlo Virag, Norbert Iost, Miklos Opincariu, Jenoó Szolnoky, Janos Szecsi, Gabor Bogats,
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Chapter 5
Realizing Synaptic Signal Transmission During
Astrocyte-Neuron Interactions within the EMI
Framework

Julia Gorman, Konstantin Holzhausen, Joyce Reimer, and Jørgen Riseth

Abstract The tripartite synapse or “neural threesome” refers to the interplay in
the synapse between neighbouring neurons, the synaptic cleft, and the surrounding
glial cells. Despite extensive research, the effects of glial cells, such as astrocytes, on
signal transduction between neurons are not fully understood. The Kirchhoff-Nernst-
Planck (KNP) and Extracellular-Membrane-Intracellular (EMI) models constitute a
promising framework for modeling these kinds of systems. However, they lack the
neurotransmitter-related mechanisms that are necessary to bridge signal transduction
across the synaptic cleft. Here, we propose an extension to the KNP-EMI model by a
spatio-temporal diffusion-based description of the most prominent neurotransmitter,
glutamate, that allows for investigation of the contribution of astrocytes to the func-
tionality of the synapse. We validate our model by showing that the presence of an
astrocyte in the domain affects the glutamate flux across the postsynaptic terminal, as
observed physiologically. The proposed extension offers a sufficiently simple way of
integrating synaptic glutamate dynamics into the KNP-EMI framework. It introduces
the relevant interactions between electrical activity and diffusion processes at the
tripartite synapse that are necessary to assess how astrocytes might contribute to the
functionality of the synapse. This work has implications for future studies involving
glial mechanisms and other charged species within the KNP-EMI framework.
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5.1 Introduction

Circuits in the brain are composed of complex connections of both neurons and
glia. Neurons communicate via patterns of electrical signals that are propagated by
molecules and ions. These signals, called action potentials, communicate information
that gives rise to cognitive function, behaviors, and movements. Action potentials
travel from neuron to neuron across small gaps called synapses. The neuron sending
the signal, the presynaptic neuron, releases specific molecules called neurotransmit-
ters to the receiving neuron, or the postsynaptic neuron. However, neurons are not
the only cells that are found in the synapse. A type of glial cell called an astrocyte
envelopes the synapse and alters information transmission by modulating the neuro-
transmitters as they diffuse across the synapse [1]. Thus, together, the neurons, the
synapse, and the astrocyte form a “neural threesome” [2], or tripartite synapse. The
role of this astrocyte mediated modulation in electrical and chemical interplay is not
well understood.

One of the ways astrocytes are thought to affect synaptic transmission is through
reuptake of the neurotransmitter glutamate. Once an electrical signal reaches the end
of the presynaptic neuron, prepackaged vesicles release glutamate into the synaptic
cleft. After release, glutamate diffuses across the synapse where it binds AMPA
receptors on the postsynaptic neuron, resulting in a net inward sodium (Na+) current
through the ligand-gated AMPA receptor ion channels. As a result, the intracellular
potential starts to increase which triggers the opening of nearby voltage-gated Na+
channels. This channel opening allows for a larger Na+ influx, bringing the postsy-
naptic neuron closer to its threshold for depolarization. If the signal is strong enough,
subsequent ion dynamics across the postsynaptic membranes result in the onset of a
new action potential and signal propagation continues.

As glutamate diffuses across the synapse, astrocytes take up a percentage of the
glutamate ions through high-affinity glutamate transporters [3, 4]. This mechanism
is suggested to be a way of reducing cellular toxicity, as too much glutamate in the
synapse can have excitotoxic effects [5]. Recently, it has been found that astrocytes
also release glutamate to neurons in response to extracellular glutamate cues [6].
Because of this dual mechanism of glutamate uptake and release, astrocytes act as a
buffer to balance excitatory and inhibitory neuronal activity.

Here, we propose a simple mechanistic model of glutamate in the tripartite
synapse that allows for the assessment of these questions within the Kirchhoff-Nernst-
Planck (KNP) - Extracellular-Membrane-Intracellular (EMI) modeling framework.
The KNP-EMI model is a mechanistic mathematical model for excitable tissue in
spatiotemporal resolution. It is stated in the form of a set of coupled partial differen-
tial equations, and includes interactions between ionic transmembrane currents and
electric potentials [7, 8, 9]. In [7], Ellingsrud et al. show that their KNP-EMI model
accurately describes depolarization along excitable membranes. Thus, it constitutes
a truly spatio-temporal model of signal transduction along a cell, for example, along
an axon or a dendrite of a neuron. However, the model in its current form does not
account for neurotransmitters in the extracellular space, nor for neurotransmitter-
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related mechanisms and interactions. For this reason, the KNP-EMI model is not
able to capture the regulation of signal transduction at the synapse.

We propose an extension by introducing glutamate to the model. In order to bridge
the synaptic gap, we identify three relevant biophysical mechanisms: glutamate
release into the cleft by exocytosis from the presynaptic neuron, diffusion in the
extracellular space, and binding to postsynaptic AMPA receptors. All three of these
processes are considered in our implementation. In addition to this, we assume
that glutamate uptake is the fundamental interaction of the astrocyte at the synapse
whereby astrocytes regulate signal transmission. Therefore, our proposed glutamate
diffusion model describes the properties of signal transduction unique to the synapse;
in particular, how astrocytes affect the glutamate gradient and how a changing
glutamate gradient affects signal propagation. Our extension to the KNP-EMI model
features a simplified yet qualitatively complete description of signal transmission
across neurons. The extended model will allow for a comprehensive investigation of
the astrocyte’s role in signal propagation across neurons in a way that takes spatial
effects, such as explicit geometries and local concentrations, into account.

The EMI model constitutes a general framework for modeling excitable tissue
ranging from cardiac cells to neural systems [10]. Besides its broad range of appli-
cation, it allows for the incorporation of explicit morphologies within the system of
interest. In combination with the KNP framework, the KNP-EMI model allows for
the representation of a complicated geometry and detailed electrochemical profiles
[8]. In order to leverage its power, we design our glutamate model under consid-
eration of its integrability into the KNP-EMI model. Although its formulation is
independent of the respective morphology, our implementation assumes a simplistic
geometry in order to show its functionality as a proof of concept.

Our paper is structured as follows. First, we familiarize the reader with the ge-
ometry of the problem conceptually and derive the glutamate model. Subsequently,
we demonstrate a way to estimate the model parameters based on literature val-
ues, restricting our model to hippocampal synapses. After providing implementation
details, we validate the glutamate model by showing that it behaves as intended. Fi-
nally, we discuss the implications of our model within the context of the KNP-EMI
framework.

5.2 Methods

The glutamate model consists of two parts. The first part describes the transport of
glutamate across the synaptic cleft by diffusion, whereas the second part describes
how AMPA receptors react in response to glutamate to trigger a Na+ current across
the postsynaptic terminal. Here, we describe the computational domain and the
governing equations for the glutamate model. We then describe the parameters that
are used within the model, and finally, the numerical methods used in our simulations.
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5.2.1 Representation of the Computational Domain

The tripartite synapse features a variety of membranes that behave differently. The
characteristic behavior of each membrane is determined by the density and type of
functional components it exhibits, e.g. channels, pumps, and receptors. Figure 5.1
shows a schematic of our envisioned computational domain for the full KNP-EMI
model. It resembles a simplified and abstracted two-dimensional realization of a
tripartite synapse setup. The domain is divided into two distinct subdomains: the

Fig. 5.1: Representation of the computational domain in our glutamate KNP-EMI
model. Synthesis of computational domains, channel dynamics, and boundary con-
ditions.

extracellular space, Ωe, and the intracellular space, Ωi. Ωi represents the interior
of the postsynaptic neuron’s dendrite. The interface boundary separating Ωe from
Ωi consists of the postsynaptic terminal, Γpost, and extrasynaptic membrane of the
dendrite, Γd. We assume that Γd is impermeable to glutamate. In contrast, Γpost is a
region with an affinity for glutamate due to the presence of AMPA receptors, which
are only located on the part of the postsynaptic membrane that faces the synapse [11].
The exterior boundary consists of three biophysically distinct types. Γpre denotes
the membrane between the presynaptic neuron and the synapse. Γa represents the
membrane on the astrocyte, which also has an affinity for glutamate due to the
presence of glutamate transporters that clear it from the synapse [4]. The remaining
part of the exterior boundary is open for glutamate to pass, since the neurotransmitter
freely diffuses through the extracellular space out of the synaptic region. We note
that because this report only covers the glutamate model, our computational domain
is for now restricted to the extracellular space, Ω𝑒.
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5.2.2 Mathematical Modeling of Glutamate Dynamics

The glutamate transport is modelled using a pure diffusion equation: find the gluta-
mate concentration 𝑔 = 𝑔(𝑥, 𝑡) such that

𝜕𝑡 𝑔 = 𝐷e𝚫𝑔 on Ωe × [0, 𝑇] . (5.1)

Here, 𝐷𝑒 is the diffusion coefficient for glutamate within the extracellular space.
The glutamate release from the presynaptic terminal and absorption of glutamate on
the various cell membranes are modelled using the following combination of von
Neumann and Robin boundary conditions:

−𝐷e∇𝑔 ·nΓd = 0 on Γd × [0, 𝑇] (5.2)
−𝐷e∇𝑔 ·nΓa = 𝑘uptake 𝑔 |Γa on Γa × [0, 𝑇] (5.3)

−𝐷e∇𝑔 ·nΓpost = 𝑘bind 𝑔 |Γpost on Γpost × [0, 𝑇] (5.4)

−𝐷e∇𝑔 ·nΓpre = −∑𝑖 𝑣𝑖𝑣 𝛿 (𝑡 − 𝑡𝑖) on Γpre × [0, 𝑇] . (5.5)

Note that here, n𝑘 denotes the outward pointing normal vectors of the respective
boundary surfaces. As a consequence, the left hand sides denote the outward fluxes of
glutamate through them. We model glutamate binding to the AMPA receptors as well
as glutamate uptake at the astrocyte’s membrane by first order reaction kinetics. Thus,
𝑘bind specifies the affinity of the AMPA receptor towards glutamate and 𝑘uptake the
absorption rate. The reflecting boundary condition at Γd in Equation (5.2) realizes the
impermeability of glutamate through the extrasynaptic membranes of the dendrite.
Equation (5.5) describes the source of glutamate in our model, which is vesicular
release due to exocytosis. In accordance with Clements et al. [12] and Jonas et al.
[13], we model an instantaneous release of vesicles at release times 𝑡𝑖 . 𝑣𝑖𝑣 denotes the
vesicular spatial profile defined in Equation (5.9). On the remaining open boundaries,
we assume homogeneous Dirichlet boundary conditions

𝑔 |Γopen = 0 . (5.6)

This choice is made for simplicity, and future work will benefit from more realistic
modelling of free diffusion across the open boundaries. Since glutamate is supposed
to be cleared from the synaptic cleft after exocytosis, we assume an initial equilibrium
of 𝑔(𝑥, 𝑡 = 0) = 0.

5.2.3 Modeling AMPA Gating Dynamics

We model the dynamics of the AMPA receptors on the postsynaptic terminal using
a model proposed by Tewari and Majurmdar [14]. The ODE model describing the
AMPA gating dynamics reads
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𝑑

𝑑𝑡
𝑚AMPA = 𝛼AMPA 𝑔

��
Γpost

(1−𝑚AMPA) − 𝛽AMPA𝑚AMPA . (5.7)

Here, the glutamate concentration, 𝑔, couples linearly to the opening rate of the
AMPA receptor, 𝛼AMPA. The ODE model governs the dynamics of the gating vari-
able,𝑚AMPA, point-wise along the boundary Γpost, and depends on the local glutamate
concentration, 𝑔 |Γpost . We intend to initialize the system in its equilibrium state. The
initial state 𝑔(𝑥, 𝑡 = 0) = 0 corresponds to the equilibrium state of the glutamate
model. For 𝑔 = 0, we get 𝑚∗

AMPA = 0 as the stationary state of the gating variable
𝑚∗

AMPA at 𝑡 = 0. Therefore, we choose 𝑚AMPA (𝑡 = 0) = 𝑚∗
AMPA = 0.

The gating variable, 𝑚AMPA, controls an AMPA-specific Na+ current, 𝐼AMPA,
through the postsynaptic terminal. This current is given by

𝐼AMPA = 𝑔AMPA𝑚AMPA
(
𝑉post −𝑉AMPA

)
on Γpost (5.8)

[15, 14], with 𝑉post being the local membrane potential at the postsynaptic neuron
and 𝑉AMPA referring to the reversal potential. In the KNP-EMI model, 𝑉AMPA is
associated with the Na+-specific Nernst potential.

5.2.4 Estimation of Model Parameters

All parameters for the AMPA receptors were chosen in the same way as the original
model by Tewari et al. [14]. Following Clements et al. and Tewari et al., we assume
vesicles with a diameter 𝑑Ves = 40nm, containing glutamate at concentrations of
𝑐Gl

Ves = 60mM. In addition, we assume a homogeneous glutamate surface density
𝜁Gl

Ves across the vesicle’s cross section on the presynaptic terminal. We may now
define a vesicular profile at Γpre, 𝑣𝑖𝑣 , as

𝑣𝑖𝑣 (𝑦) =
{
𝜁Gl

Ves ∀ |𝑦− 𝑦Ves | ≤ 𝑑Ves

0 else,
(5.9)

where 𝑦Ves denotes the center position of the vesicle on the membrane and 𝑦 denotes
the coordinate parameterizing the one-dimensional boundary surface. We assume
that the arrival of the action potential at the presynaptic bouton at any time 𝑡 = 𝑡rel
results in the release of one vesicle. On release, the total mass of glutamate contained
within one vesicle exocytosed across the membrane Γpre within the period [𝑡rel −
𝜖, 𝑡rel + 𝜖], 𝜖 > 0 can be written as

𝑀 =

∫ 𝑡rel+𝜖

𝑡rel−𝜖
𝑑𝑡

∫
Γpre

𝐷𝑒∇𝑔 ·nΓpre 𝑑𝑆

=

∫ 𝑦Ves+𝑑Ves/2

𝑦Ves−𝑑Ves/2
𝜁Gl

Ves 𝑑𝑦 = 𝜁
Gl
Ves 𝑑Ves .
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On average, this total mass is 𝑀Ves = 𝑉Ves 𝑐
Gl
Ves =

4
3 𝜋𝑅

3
Ves 𝑐

Gl
Ves, assuming spherical

vesicles with radius 𝑅Ves = 𝑑Ves/2 . This yields a mean surface density of

𝜁Gl
Ves =

𝜋

6
𝑐Gl

Ves 𝑑
2
Ves . (5.10)

Released glutamate diffuses throughout the synaptic cleft. In accordance with
[13], we choose a diffusion coefficient of 𝐷𝑒 = 3 · 105 nm2 ms−1 for glutamate in
extracellular space. In common reaction kinetic models of synaptic glutamate, the
total clearance rate amounts to 𝑘c = 10ms−1 [15, p.4]. 4/5 of synaptic glutamate is
cleared by glial uptake, which leaves only 1/5 being removed by processes on the
postsynaptic terminal including uptake and binding to receptors [16]. Furthermore,
glutamate gets cleared passively by diffusing out of the cleft. We use these propor-
tions to estimate the surface uptake and binding rate densities 𝑘uptake, 𝑘bind. Since
𝐷𝑒 >> 𝑘𝑐, diffusion is the dominant process governing the synaptic glutamate dis-
tributions. Thus, we assume 𝐷𝑒 →∞ locally when focusing on the reaction kinetics
on the membranes. In this limit, the system is well-mixed and glutamate is homo-
geneously distributed such that 𝑔 ≡ 𝑔𝑐 ∈ R. It behaves like a single-compartment
model, which allows us to directly compare the respective flux terms. In particular,
we require that all of the clearing fluxes add up to 𝑘𝑐, by

1
5
𝑘𝑐 𝑔𝑐 = 𝑔𝑐

∫
Γpost

𝑘bind 𝑑𝑆 (5.11)

4
5
𝑘𝑐 𝑔𝑐 = 𝑔𝑐

∫
Γa

𝑘uptake 𝑑𝑆 . (5.12)

We assume that the membrane properties do not change locally, therefore, we assume
homogeneous surface rate densities. Thus, we have simple expressions for both
surface rate functions,

𝑘bind =
1
5
𝑘𝑐

ℎ𝑡
(5.13)

𝑘uptake =
4
5
𝑘𝑐

𝑤𝑠
. (5.14)

Here,𝑤𝑠 denotes the width of the synaptic cleft and ℎ𝑡 describes the full height of the
synaptic terminals. Table 5.1 summarizes all parameters and their values associated
with our glutamate model.

5.2.5 Numerical Methods

In our validation studies, we solve the glutamate diffusion model numerically using
the finite element method with piecewise continuous linear elements for spatial
discretization and an implicit Euler scheme for temporal integration.
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Table 5.1: Parameters and their values relevant for the glutamate model

Symbol Value Unit Description

𝐷𝑒 3 · 105 nm2 ms−1 Diffusion coefficient in the extracellular space
𝑘bind 5 · 10−3 nm−1 ms−1 AMPAR specific glutamate binding surface rate density
𝑘uptake 4 · 10−1 nm−1 ms−1 Glutamate uptake surface rate density of the astrocyte
𝜁 Gl

Ves 5 · 105 mM nm2 Glutamate release surface density
𝑑V 40 nm Mean diameter of a vesicle
𝑤𝑠 20 𝑎 nm Width of the synaptic cleft
ℎ𝑡 400 𝑎 nm Full height of the synaptic terminals
𝑎 Values according to Clements et al. [12].

Let 𝑉ℎ denote the set of continuous piecewise linear functions restricted to a
discrete triangulation of Ω𝑒, such that 𝑣 ∈ 𝑉ℎ vanish at the open boundaries Γopen.
Then, the discrete variational form of the glutamate diffusion model at time 𝑡 = 𝑛Δ𝑡,
where 𝑛 = 0,1, ..., and Δ𝑡 is the time step, reads: find 𝑔 ∈ 𝑉ℎ such that∫

Ω𝑒

1
Δ𝑡
𝑔𝑣 +∇𝑔 · ∇𝑣 𝑑𝑥 +

∫
Γa

𝑘uptake 𝑔 |Γa 𝑣 𝑑𝑠+
∫
Γpost

𝑘bind 𝑔 |Γpost 𝑣 𝑑𝑠

=

∫
Ω𝑒

1
Δ𝑡
𝑔0𝑣 𝑑𝑥 +

∑︁
𝑖

∫
Γpre

𝑣𝑖𝑣 𝛿
∗ (𝑡 − 𝑡𝑖) 𝑣 𝑑𝑠 ∀𝑣 ∈ 𝑉ℎ .

(5.15)

Here, 𝑔0 refers to the solution at the previous timestep 𝑡0 = (𝑛−1)Δ𝑡, and 𝛿∗ refers
to a distribution that, similar to the dirac delta in Equation (5.5), has the property
that the glutamate released from each vesicle coincides with its total mass when
integrated in time. This distribution may, for example, be a box function which
evaluates to 1/𝛿𝑡 over some interval [𝑡, 𝑡 +𝛿𝑡 ], or a Gaussian function parameterized
by the length scale 𝛿𝑡 .

On the other hand, we implement the AMPA model (5.7) using an explicit Euler
integration scheme:

𝑚AMPA = 𝑚0
AMPA +Δ𝑡

(
𝛼AMPA𝑔

0��
Γpost

(
1−𝑚0

AMPA

)
− 𝛽AMPA𝑚

0
AMPA

)
. (5.16)

The model is implemented and solved using FEniCS [17].

5.3 Results

In the following section, we present the results of our validation study regarding
our glutamate model. Figure 5.2 illustrates our experimental setup. It shows the
glutamate concentrations at three different time points of our numerical solution
in the synapse. We start the simulation with the release of a vesicle from Γpre at
𝑡 = 0.01𝜇s. In our study, we compare two cases: glutamate release located close to
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the site of the astrocyte at the bottom of the presynaptic terminal, and release at the
opposite site of the terminal, far from the astrocyte. Figure 5.2 displays both cases.

At 𝑡 = 0.01𝜇s, upon release of the glutamate into the synaptic cleft, Figure 5.2
shows highly localized concentrations of glutamate near the regions of release at
the presynaptic terminal, indicated by the red regions of high contrast. After 0.1𝜇s,
the pronounced glutamate concentration profiles have become smoother and the
distribution has significantly broadened. At 𝑡 = 0.5𝜇s, the glutamate distribution has
become diffusive, and it is clearly visible that glutamate is cleared from the synaptic
cleft. It should be noted that the depiction in Figure 5.2 is compressed in height. In
fact, the synapse is higher than it is wide by a factor of 20. Note that the apparent
increased transport along the horizontal axis is an artifact of this compressed domain.
In contrast to our expectations, there seems to be no apparent difference between
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Fig. 5.2: Glutamate dynamics in the synaptic cleft. Glutamate distribution in the
synaptic cleft is shown at three different time points. Vesicles are released at 𝑡 =
0.01𝜇s on the presynaptic terminal (left boundary) either near the astrocyte’s location
(bottom) or far away from it near the open boundary (top). Glutamate bridges the
postsynaptic terminal (to the right) by diffusion. For the sake of visualization, the
synapse is compressed in height.

the two distributions suggesting that the astrocyte’s influence on the clearance of
glutamate might be negligible compared to diffusion.

Figure 5.3 summarizes the glutamate fluxes through the membranes of interest
and the resulting AMPA-related Na+ current in a quasi-static approximation of the
postsynaptic membrane potential. Figure 5.3A shows the glutamate flux 𝐽Astro across
the astrocyte’s membrane Γa as a function of time. After the release near the astrocyte
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(golden curve), the net flux of glutamate across the membrane increases rapidly and
starts to decrease again after 0.25𝜇s as the glutamate gets cleared from the synaptic
cleft. In contrast to that, we do not measure a significant glutamate uptake through
the astrocyte at all if the vesicle is released at the opposite end (teal curve). We note
that shortly after the release, 𝐽Astro becomes negative. According to the boundary
condition in Equation (5.3), this corresponds to non-physical negative glutamate
concentrations at the boundary. Since 𝑔 ≥ 0, this observation indicates numerical
instabilities that may be attributed to the Gibbs phenomenon. Despite that, the
concentration and 𝐽Astro quickly stabilize and exhibit the expected behaviour.
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Fig. 5.3: Flux dynamics vs. time in the glutamate model. a): Total glutamate uptake
by the astrocyte. b): Total glutamate flux through the postsynaptic terminal, 𝐽Post, due
to binding to the AMPA receptor. c): Total Na+ current 𝐼AMPA as a result of AMPA
activation caused by the arriving glutamate in case of a quasi-static membrane
potential at 𝑉post = −65mV.

Figure 5.3B depicts the glutamate flux through the postsynaptic membrane, 𝐽Post,
in time. 𝐽Post has important implications for the excitation of the postsynaptic neuron
because it indirectly reflects the activation of the AMPA receptors that control Na+
channels on the membrane. The profile of glutamate uptake through the postsynaptic
terminal is qualitatively similar to that of the astrocyte. On the falling branch of
the curve however, we see that if the astrocyte is locally present, less glutamate
reaches the postsynaptic terminal as a result of active clearance by the astrocyte.
This validates our model with respect to the literature [3, 5, 4].

Figure 5.3C shows the magnitude of the AMPA-regulated Na+ current across
the postsynaptic terminal in time. Thus, it reflects the total activity of the AMPA
receptors on Γpost as glutamate approaches that membrane and binds to the receptors.
𝐼AMPA is calculated from the AMPA gating variable, 𝑚AMPA, using Equation (5.8).
We assume that in the simulated period, the postsynaptic membrane potential has
not deviated too far from its resting potential despite the finite AMPA current. With
this quasi-stationary approximation, we justify 𝑉Post ≃ −65mV, the neuron resting
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potential, and are able to give a coarse estimate of 𝐼AMPA without having to couple
our model. Similar to Tewari et al. [14], we choose 𝑔AMPA = 0.35nS and 𝑉AMPA =

0mV. Negative signs indicate a net Na+ current out of the dendrite instantiating
depolarization across the membrane. As glutamate reaches the postsynaptic neuron,
we see a growing increase in the AMPA-specific Na+ current, as expected. In contrast
to 𝐽Post, 𝐼AMPA does not saturate within the simulated time window. We note that
while less glutamate reaches the postsynaptic neuron in the region of influence of
the astrocyte (Figure 5.3B), unexpectedly, the resulting AMPA current 𝐼AMPA of this
region appears to be more pronounced.

5.4 Discussion

We developed a diffusion-based, spatio-temporal model of the neurotransmitter glu-
tamate in glutamatergic hippocampal synapses. We carried out validation studies
demonstrating that our model reproduces the astrocyte’s role in glutamate uptake
in the tripartite synapse. In addition, we observed that astrocytic glutamate uptake
translates into a decrease in glutamate flux across the postsynaptic terminal, show-
ing that astrocytes temper the excitatory signal that is transmitted to postsynaptic
neurons. This is a widely recognized key role of astrocytes [3, 5, 4]. We also saw
in our model that the binding of glutamate to AMPA receptors in the postsynaptic
neuron results in a net AMPA-specific Na+ current 𝐼AMPA, initiating depolarization in
the postsynaptic neuron. Thus, our model successfully translates synaptic chemical
cues into an electrical signal in the postsynaptic neuron. Unexpectedly, we observed
that the total postsynaptic glutamate flux, 𝐽Post, inversely affects the strength of the
AMPA-specific Na+ current. This effect could be explained by the astrocyte causing
a narrower glutamate distribution, resulting in a locally restricted but higher AMPA
activation. As a consequence, the total Na+ current might be stronger. The glutamate
profiles in Figure 5.2, however, indicate otherwise. Moreover, our quasi-static ap-
proximation of 𝐼AMPA does not resemble the actual Na+ current dynamics accurately.
Using the correct dynamic potentials, e.g. by coupling our glutamate model to the
KNP-EMI model, might yield different results. Finally, we observed characteristics
in our simulation results that indicate issues of numerical stability near the astrocyte
during release. Similar instabilities might be causing the discrepancy in 𝐼AMPA that
we can not explain in the scope of our model. Thus, the next logical step would be
to study the stability and convergence of our methods comprehensively.

Furthermore, we observed a significant difference in postsynaptic activity with
and without the astrocyte. However, the effect is not as pronounced as we would
have expected. Conversely, it appears rather minute. The reason for that might lie
in our choice of the astrocyte’s location in terms of distance from the neurons.
In our model, we have chosen a distance of 50 nm, which is 2.5-fold larger than
the width of the synaptic cleft. As a next step, we suggest situating the astrocyte
closer to the neurons. Lastly, the astrocyte’s role of clearing the synaptic cleft is
expected to be most significant when it is saturated with glutamate, for example,
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in bursting neurons. In this case, excessive concentrations of neurotransmitters can
have a neurotoxic effect. In our study, we only considered single-vesicle release, but
our model accounts for an arbitrary amount. Consequently, with longer simulated
time windows, multi-vesicular release studies resembling spike trains of arbitrary
frequency are an obvious and promising connecting factor for future work.

Other computational studies measuring glutamate flux in a synapse could not be
found in the literature. However, some physiological studies may be used to con-
textualize our results. Although glutamate flux across an astrocyte is not directly
measured in vitro, it can be carried out indirectly by measuring the changing glu-
tamate concentration of a medium containing astrocyte cultures. In this regard, the
studies by Farinelli and Nicklas [18] and Fonseca et al. [19] show similar glutamate
clearance dynamics as our results (e.g., Figures 5.2 and 5.3, respectively). These
astrocytic clearance dynamics are measured over a much longer time period. How-
ever, the observed pattern may be extended to our study in that there is an initial
fast rate of glutamate clearance, followed by a plateau stage during which the rate of
clearance slows as the relative glutamate concentration approaches 0 mM.

A clear extension to our study would be utilizing the model in tandem with
the KNP-EMI model. Our model design integrates well into EMI or KNP-EMI
frameworks by adding the AMPA-specific contribution to the Na+ current, 𝐼AMPA.
In the EMI and KNP-EMI frameworks (e.g. [8]), the choice of the functional form
of 𝐼ion is subject to modelling, usually in form of a solution to a Hodgkin-Huxley
type ODE system [20]. When integrating our model into the KNP-EMI framework,
we suggest setting 𝐼ion = 𝐼AMPA on the postsynaptic terminal (Γpost in Figure 5.1) and
Hodgkin-Huxley based models on the remaining postsynaptic membranes (Γd).

Considering further astrocyte-related mechanisms, such as the dual function of
glutamate uptake and release [6], the KNP-EMI model is expected to be especially
well-suited for modelling glutamate uptake. As a first step into modeling neuro-
transmitters within the KNP-EMI framework, we designed our model with simplicity
in mind. For this reason, our model only features what we identified as the most
relevant processes for signal transmission, excluding presynaptic glutamate re-uptake
and astrocytic glutamate release. These mechanisms should, however, be considered
in a refined model, because they are supposedly relevant for realizing glutamate
buffers in the synapse. Additionally, the dual function mechanism is controlled
in part by intracellular pH levels [21], which may be well handled by the ionic
concentration and diffusion components of the KNP-EMI model.

In summary, we successfully developed a glutamate extension to the KNP-EMI
model in the tripartite synapse. Our model exhibits all the relevant mechanisms
necessary for signal transmission between neurons across the synaptic cleft. In our
model, the astrocyte modulates the signaling molecule concentrations as expected.
Their effect could be more pronounced, but we expect that our choice regarding the
astrocyte’s distance from the synapse had a significant influence on this outcome.
Additionally, the resulting Na+ current behaves contrarily to expectations in response
to the astrocyte’s influence. Future work on our model should address our concerns
regarding this particular parameter choice and the numerical stability of the model.
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Chapter 6
Inducing Flow Instabilities in Aneurysm
Geometries via the Reynolds-Orr Method

Alessandro Contri, Christina Taylor, Justin Tso, and Ingeborg Gjerde

Abstract Ruptured intracranial aneurysms are the leading cause of hemorrhagic
strokes. Although intracranial aneurysms are prevalent in as much as 4% of the
adult population, most aneurysms do not rupture, and their growth and risk of
rupture remains difficult to predict. Previous studies have identified abnormal wall
shear stress patterns and blood pressure spikes, both features of unstable flows, as
key factors in aneurysm behavior. While computational fluid dynamics has been
enlisted to help study risk of rupture, no consensus has been established on how to
impose unstable flow conditions. Here, we use Reynolds-Orr instability analysis to
calculate flow perturbations that are capable of inducing unstable flow in 3D arterial
geometries with and without aneurysms. These perturbations lay the foundation for
future wall shear stress studies by providing mathematically consistent conditions
for time-dependent Navier-Stokes simulations.

6.1 Introduction

Intracranial aneurysms are relatively common in adults, with a global prevalence of
2-3%. Intracranial aneurysm rupture leads to aneurysmal subarachnoid hemorrhage,
which is fatal in about 60% of cases and carries major risk of brain damage and
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disability for survivors [1]. However, only 1-2% of intracranial aneurysms rupture
annually, and most are asymptomatic [2]. The decision to treat unruptured aneurysms
must therefore be carefully weighed against the risk of rupture, a metric that remains
difficult to quantify.

Aneurysm growth and rupture have been linked to local hemodynamic conditions,
with wall shear stress (WSS) primary among them [3]. Computational fluid dynamics
(CFD) studies allow for the high-resolution investigation of WSS in patient-specific
arterial geometries through simulations of the Navier-Stokes equations. Several CFD
studies have investigated the role of WSS in aneurysm rupture with conflicting
results. While some studies have attributed risk of rupture to high WSS at thin and
hard aneurysm walls, more recent studies have found strong relationships with low
WSS at aneurysm rupture points (reviewed in [4]). Meng et al. have noted that both
high and low WSS may increase rupture risk: high WSS causes degeneration of
the cellular matrix and cell apoptosis, while low WSS and recirculation promotes
an inflammatory environment that weakens the arterial wall and drives aneurysm
growth [5].

Several studies have found rapid fluctuations in blood pressure to be a common
risk factor for aneurysm rupture. Wouter et al. found that 43% of ruptures occurred
during stressful events, while Vlak et al. found high population-attributable risks
for coffee drinking and vigorous physical exercise [6, 7]. Matsuda et al. also found
high incidence of rupture in activities associated with the Valsalva maneuver, which
results in sudden pressure changes across the aneurysm wall [8]. These perturbations
in flow are highly relevant to aneurysm rupture, but are not accounted for in most
CFD studies.

These flow instabilities can be investigated using definitions of instability based
on kinetic energy, which originated with Reynolds and Orr [9]. Analysis using these
definitions, as revisited by Scott, provides an exact relation between a base flow
and the evolution of the kinetic energy of a perturbation. The method is nonlinear
with no approximations and yields a well-posed linear symmetric eigenvalue prob-
lem that can be solved with standard methods. In the resulting eigenpairs the flow
perturbations are captured in the eigenvectors, while negative eigenvalues indicate
the potential for instability with respect to kinetic energy. In unstable eigenpairs,
the magnitude of the eigenvalues indicates the initial growth rates of the perturbed
kinetic energy. However, the most energetically unstable eigenpair is a function of
both the magnitude of its eigenvalue and its eigenvector [9].

While the Reynolds-Orr eigenpairs may not exactly reflect physiological flow
instabilities, they provide a reproducible way to induce flow instability. The readily
available mathematical framework behind this approach allows this analysis to easily
be reproduced in different arterial geometries. In this work, we investigate some of
the nuances of using this approach to induce unstable flow on arterial geometries
with and without aneurysms taken from the Aneurisk data set from Emory University
[10].

In the remainder of this paper, we will first discuss the Reynolds-Orr method in
more detail in Section 6.2.1 followed by the details of our time-dependent Navier-
Stokes solver in Section 6.2.2. Next, we will present some of our initial findings on
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using the Reynolds-Orr to induce instability in Section 6.3 before concluding with a
discussion on our findings in Section 6.4.

6.2 Methods

In this section we consider the mathematical equations and the subsequent imple-
mentation of the problem at hand, part of which was previously presented in [11].
The artery is considered as a pipe with a no-slip wall and prescribed pressures at
the inlet and outlets. The absolute pressure is disregarded as it does not change the
relative pressure drop in the model.

6.2.1 Reynolds-Orr Instability

The derivation of the eigenvalue problem from which we hope to detect the most
unstable modes, given the base flow, follows the one presented in [9]. The derivation
is nontrivial for pressure boundary conditions; therefore, we consider here only
Dirichlet boundary conditions for the velocity. Let (u, 𝑝) be the solution to the
following unsteady Navier-Stokes equations:

𝜕𝑡u− 𝜈Δu+u · ∇u+∇𝑝 = f in Ω× (0,𝑇], (6.1)
∇ ·u = 0 in Ω× (0,𝑇], (6.2)

u = g on 𝜕Ω× (0,𝑇], (6.3)
u = u0 on Ω× {0}. (6.4)

Let now the couple (w, 𝑞) solve the same equations (6.4) with the same boundary
condition g, but different initial data w0, such that w0 ≠ u0. Define (v, 𝑜) as the
difference between the two solutions:

v = u−w, 𝑜 = 𝑝− 𝑞. (6.5)

Then, taking the two versions of (6.4) with the different initial data and subtracting
them, (v, 𝑜) satisfy:

𝜕𝑡v− 𝜈Δv+ (u · ∇u−w · ∇w) +∇𝑜 = 0 in Ω× (0,𝑇], (6.6)
∇ ·v = 0 in Ω× (0,𝑇], (6.7)

v = 0 on 𝜕Ω× (0,𝑇], (6.8)
v = v0 = u0 −w0 on Ω× {0}. (6.9)

Following [9], the nonlinear term is rewritten as
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u · ∇u−w · ∇w = u · ∇u−u · ∇w+u · ∇ww · ∇w (6.10)
= u · ∇v+v · ∇w = u · ∇v+v · ∇u−v · ∇v (6.11)

Multiplying (6.9) by v, using (6.11) and integrating over Ω yields

(𝜕𝑡v,v) + 𝑎(v,v) + 𝑐(u,v,v) + 𝑐(v,u,v) − 𝑐(v,v,v) − 𝑏(v, 𝑜) = 0. (6.12)

where (·, ·) denotes the standard 𝐿2 (Ω) inner product and

𝑎(u,v) = 𝜈
∫
Ω

∇u : ∇v, (6.13)

𝑐(u,v,w) =
∫
Ω

(u · ∇v) ·w, (6.14)

𝑏(u, 𝑝) =
∫
Ω

∇ ·u𝑝. (6.15)

Defining now the following space:

V := {v ∈ 𝐻1 (Ω)3 : ∇ ·v = 0 and v = 0 on 𝜕Ω} (6.16)

it can be observed from [9] that for any w ∈ V one have

𝑐(w,v,v) = 0, 𝑏(v, 𝑜) = 0. (6.17)

(6.12) can then be rewritten in the form

1
2
𝜕

𝜕𝑡

∫
Ω

|v|2 = −𝜈
∫
Ω

|∇v|2 −
∫
Ω

(v · ∇u) ·v (6.18)

= −𝜈
∫
Ω

|∇v|2 − 1
2

∫
Ω

v𝑇 (∇u+∇u𝑇 )v. (6.19)

The first term of the equation can be seen as the time derivative of the kinetic energy
of the flow and the right hand side describes its evolution. Following standard
arguments (i.e. integration in time of the left hand side etc.) we can say that the flow
u is energy unstable at time 𝑡 = 0 if there exists a v0 ∈ V such that

−1
2

∫
Ω

v𝑇0 (∇u0 +∇u𝑇0 )v0 − 𝜈
∫
Ω

|∇v0 |2 > 0. (6.20)

At this point we define

𝜆v =
𝐵u (v,v)
𝑎(v,v) with 𝐵u (v,w) = 1

2

∫
Ω

v𝑇 (∇u+∇u𝑇 )w (6.21)

Comparing (6.19) with (6.21) we can reformulate an equivalent instability condition.
Namely, the flow is unstable at 𝑡 = 0 if there is a v0 ∈ V such that

𝜆v0 < 1. (6.22)
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Given that 𝑎(v,v) = 𝜈∥∇v∥2, we have in particular that if ∃v such that 𝜆 =

inf0≠v∈V𝜆v < −1 and thus(
1

∥∇v∥2

)
𝜕

𝜕𝑡

∫
Ω

|v|2 = −2𝜈(1+𝜆v) > 0, (6.23)

the flow is unstable. Recalling Poincaré’s inequality, stating ∥v∥2 ≤ 𝐶𝑃 ∥∇v∥2 ∀v ∈
V, we can deduce

𝜕

𝜕𝑡
log

(∫
Ω

|v|2
)
≥ − 2𝜈

𝐶𝑃
(1+𝜆v). (6.24)

We conclude that the most negative 𝜆v leads to the most unstable mode. However, as
noted in [9], the most unstable mode may not be the most persistent. Additionally,
[9] proves that the solution to 𝜆 = inf0≠v∈V𝜆v solves the eigenvalue problem (𝜆,v) ∈
(R,V) such that

𝐵u (v,w) = 𝜆𝑎(v,w) ∀w ∈ V. (6.25)

The detailed derivation can be found in [9].

6.2.2 Unsteady Navier-Stokes FEM Discretization

We looked to study the evolution in time of the potentially unsteady modes detected
using the method described previously. In order to progress in time we needed to
implement a time-dependent Navier-Stokes solver. To do so, we used a splitting
method, which despite its low accuracy in time is fast and easy to implement from
the computational point of view. The motivation behind splitting schemes is to
consider the first two equations in 6.4 separately. We chose a modified version of
Chorin’s method [12], the so-called incremental pressure correction scheme (IPCS)
[13], which gives improved accuracy compared to the original scheme at little extra
cost.

The IPCS scheme involves three steps. First, we compute a tentative velocity u∗

by advancing the momentum equation (6.4) by a midpoint finite difference scheme
in time, using the pressure 𝑝𝑛 from the previous time interval. We also linearize the
nonlinear convective term by using the known velocity u𝑛 from the previous time
step: u𝑛 · ∇u𝑛. The variational problem for this first step is

((u∗−u𝑛)Δ𝑡,v) + (u𝑛 · ∇u𝑛,v) + 𝑎(u𝑛+ 1
2 ,v) − 𝑏(v, 𝑝𝑛) (6.26)

+(𝑝𝑛n,v)𝜕Ω− 𝜈(∇u𝑛+
1
2 ·n,v)𝜕Ω = (f𝑛+1,v) (6.27)

where

(u,v)𝜕Ω =

∫
𝜕Ω

uvd𝑠, u𝑛+
1
2 = (u𝑛 +u𝑛+1)/2. (6.28)
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Since we are modeling flow in a ”pipe” (the artery) with known inflow and outflow,
the scheme has the hidden assumption that the derivative of the velocity in the
direction of the channel is zero at the inflow and outflow, corresponding to a flow
that is ”fully developed,” or that the flow field doesn’t change significantly upstream
or downstream of the domain.

The second step is to use the computed tentative velocity to compute the new
pressure 𝑝𝑛:

(∇𝑝𝑛+1,∇𝑞) = (∇𝑝𝑛,∇𝑞) −Δ𝑡−1 (∇ ·u∗, 𝑞) (6.29)

Finally, we compute the corrected velocity u𝑛+1:

(u𝑛+1,v) = (u∗,v) −Δ𝑡 (∇(𝑝𝑛+1 − 𝑝𝑛),v). (6.30)

In summary, we solve the incompressible Navier–Stokes equations efficiently by
solving a sequence of three linear variational problems in each time step. The FEM
space chosen to solve the problem is (uℎ, 𝑝ℎ) ∈ (V2

Γ,ℎ
,V1

ℎ
) where, if we let V𝑘

ℎ
denote

the space of 𝐶𝑘 piecewise polynomials of degree 𝑘 on a regular mesh of the domain
Ω, the vector valued polynomial space is

V𝑘Γ,ℎ = {v ∈ (V𝑘ℎ)
3 : v|𝜕Ω\Γ = 0}. (6.31)

6.3 Results

For our numerical experiments we used a single artery mesh both with and without
a aneurysm. These geometries are shown in Figure 6.1.

Fig. 6.1: The artery geometry without (Case 0) and with (Case 1) an aneurysm used
for our numerical experiments.
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As previously stated, eigenvalues with negative sign and magnitude greater than
one are necessary to induce energy instability. Eigenpairs were computed using a
shifted power iteration with LU preconditioning to target eigenvalues near -1. We
observed that without a sufficient pressure drop, eigenvalues less than or equal to -1
were not guaranteed. Using Δ𝑝 = 600Pa (4.5mmHg) and 1000Pa (7.5mmHg) both
yielded at least two eigenvalues less than -1 in both the healthy artery and terminal
aneurysm. Tables 6.1 and 6.2 show the eigenvalues reported by the solver. Figures
6.2 and 6.3 show example perturbations associated with the Δ𝑝 = 600Pa pressure
drop case.

Table 6.1: Eigenvalues for the healthy artery without an aneurysm for different
pressure drop values.

N Δ𝑝=600Pa
(4.5mmHg)

Δ𝑝=1000Pa
(7.5mmHg)

0 -1.116 -1.778
1 -1.091 -1.623
2 -0.874 -1.319
3 -0.775 -1.163
4 0.871 1.265
5 0.964 1.402

Table 6.2: Eigenvalues for the artery with an aneurysm for different pressure drop
values.

N Δ𝑝=600Pa
(4.5mmHg)

Δ𝑝=1000Pa
(7.5mmHg)

0 -1.154 -1.865
1 -1.125 -1.697
2 -0.903 -1.404
3 -0.785 -1.191
4 0.875 1.160
5 0.970 1.279
6 ∗ 1.443

∗ The 600Pa pressure drop did not yield a sixth eigenvalue near ±1.

With the eigenpairs in hand, it remained to simulate the kinetic energy evolution
of the eigenpairs with eigenvalues less than -1. The Navier-Stokes equations are
notoriously difficult to simulate especially in the face of physical instabilities. In the
case of our scheme a severely prohibitive time step was needed to ensure numerical
stability. The prohibitive time step coupled with a lack of computing resources



86 Inducing Flow Instabilities in Aneurysms

Fig. 6.2: Example of the base flow without and with perturbation added in the healthy
artery case for Δ𝑝 = 600Pa.

Fig. 6.3: Example of base flow without and with perturbation added in the aneurysm
case for Δ𝑝 = 600Pa.

restricted us from being able to perform in-depth analysis of the kinetic energy
evolution. However, we were able to calculate the kinetic energy evolution for the
above eigenpairs over a very short time period. Figures 6.4 and 6.5 show the L2
norm of the velocity (the kinetic energy) of the solutions over a time period of 0.1
seconds.

6.4 Discussion

From our initial results, only four eigenpairs seem to induce unstable flow as indicated
by increasing kinetic energy despite there being 16 negative eigenvalues. However,
as shown in Figure 6.4 for the 1000Pa case with 𝜆 = −1.319, it seems possible
for the kinetic energy to initially decrease before increasing. This is not completely
unexpected as [9] showed the kinetic energy can oscillate, though in their experiments
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Fig. 6.4: Evolution of the L2 norm of the velocity in time for healthy artery eigenpairs.

this oscillation was coupled to an overall decay after an initial increase in energy.
Our short simulation time may not have been sufficient to capture instabilities that
require more time to develop. Additionally, as was noted in [9] a larger magnitude
negative eigenvalue does not necessarily guarantee the most unstable mode due to
the instability’s additional dependence on the gradient of the perturbed velocity. In
Figure 6.5 this can be seen in the 1000Pa case by the eigenpair with 𝜆 = −0.785
inducing an initial increase in energy while the eigenpair with 𝜆 = −1.154 did not.

While the restrictive time step required by the Navier-Stokes solver did not allow
us to complete all initial goals of this project, we have been able to show some
preliminary results showing that perturbations computed using the Reynolds-Orr
method can induce energy instability for a given geometry. Future work would
entail longer simulations to confirm whether all negative eigenvalues with sufficient
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Fig. 6.5: Evolution of the L2 norm of the velocity in time for the aneurysm eigenpairs.

magnitude do lead to instability eventually. Additionally, we have completed the
work started in [11] by correcting errors that had previously made when calculated
the eigenmodes. The codes produced here provide the framework needed to continue
studying aneurysm rupture risk through the Reynolds-Orr instability analysis when
provided sufficient computing resources.
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Chapter 7
Impact of Pathological Vascular Remodelling on
Right Ventricular Mechanics

Jiaxin (Katie) Cui*, Mariluz Rojo Domingo*, Ryan Konno*, Claudia A Manetti*,
George Kagugube*, Oscar Odeigah, and Joakim Sundnes
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Abstract Pulmonary arterial hypertension (PAH) is a rare disorder characterized by
elevated blood pressure and pulmonary vascular resistance, often followed by right
ventricular hypertrophy and heart failure. The effect of PAH and its treatments on the
mechanics, function, and remodelling of the right ventricle (RV) is currently not well
understood. To study cardiac biomechanics and functionality as PAH progresses,
we implemented a computational model of the heart simulating right ventricular
maladaptive remodelling. Our Windkessel-based model, which accounts for direct
ventricular interaction and the presence of the pericardium, is utilized to simulate
various disease stages of PAH. We find that the pericardium has a larger effect on
heart performance than ventricular interaction through the septum. We also examined
the effectiveness of two treatments, ventricular assist device (RVAD) and atrial
septostomy, on diseased hearts. We show that while both pulsatile and continuous
RVADs restore cardiac function, pulsatile RVAD improves cardiac output 29.4%
more than continuous RVAD. We also demonstrate that atrial septostomy improves
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cardiac output by 19.5%. Our model can be further extended by simulating the heart’s
response to other treatments such as extracorporeal membrane oxygenation (ECMO),
and by incorporating ventricular remodelling growth simulations and finite-element
ventricular modelling.

7.1 Introduction

Pulmonary arterial hypertension (PAH) is characterized by high blood pressure and
high pulmonary vascular resistance in the arteries in the lungs [1]. As the pressure
and resistance in the pulmonary arteries and capillaries rises, the right ventricular
afterload is elevated. Over time, there is a larger demand for work done by the heart
to achieve the same level of cardiac output as that of a healthy one. To increase
the amount of contractile force generated by the heart, the right ventricle (RV)
undergoes abnormal enlargement and increases its wall thickness, stiffness, and
contractility. This phenomenon, which is observed in almost all PAH patients, is
referred to as right ventricular hypertrophy [2]. Moreover, the heart compensates for
the elevation in pulmonary arterial pressure and resistance via vascular proliferation
and remodelling of small pulmonary arteries [3]. In advanced stages of PAH, the
severe dilation of the RV causes septal bowing, i.e., a leftward shift of the septum
that lowers left ventricular volume and limits left ventricular filling. Hence, left
ventricular output is reduced and, in turn, cardiac output and mean arterial pressure
decrease [4]. All these compensatory mechanisms enable the heart to maintain its
performance in the early stages of PAH; however, sustained structural and functional
changes in the RV can eventually become detrimental to cardiac function and may
even result in right heart failure and death of a patient [5].

Although life-threatening, PAH remains incurable. Treatment strategies are avail-
able to alleviate the vascular symptoms (e.g., vasoconstriction) [6], and to delay
disease progression by unloading the RV. Therapies proven to be effective in PAH
patients include: drugs in the form of vasodilators, inotropes and anticoagulants;
extracorporeal membrane oxygenation (ECMO) devices; mechanical support via a
right ventricular assist device (RVAD); atrial septostomy; or lung transplantation.
[7]. Multiple in situ and in silico investigations focus on PAH, yet there is still a
gap in our understanding of the biomechanic and hemodynamic effect of PAH on
the RV and its subsequent remodeling (and failure). [3, 4, 8, 9, 10] Furthermore,
the progressive remodeling of the RV is inevitably influenced by its surrounding
environment; in other words, the septum, the pericardium, the left ventricle (LV),
and baroreflex must be considered in order to investigate RV performance in PAH
as accurately as possible. Some computational studies have already looked into
changes in heart function with ventricular interdependence under the influence of
pericardium and baroreflex. [11, 12, 13] Nonetheless, most rigorous biomechanical
and hemodynamic models have yet to be utilized for research involving treatments
of PAH and right ventricular remodelling. Our objective was to develop a realistic
computational model that simulates the heart conditions in a PAH setting to gain
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insight into the various maladaptations characteristic of this condition as well as the
effect of PAH treatments on RV mechanics. Our theoretical analysis supplements
experimental research techniques to further enhance our knowledge of PAH ther-
apies and how the progressive adverse remodeling impacts the biomechanics and
hemodynamics of the heart.

7.2 Methods

In this work, we implement a closed-loop, lumped-parameter model of the heart and
the circulatory system [8, 12] to study the impact of increased pulmonary vascular
resistance on RV hemodynamics. This Windkessel-based model captures the effects
of PAH at different severities while accounting for direct ventricular interaction via
the interventricular septum, the pericardium constraint, baroreflex, and the heart’s
dynamic growth and remodelling in response to varying loads. Moreover, our model
is utilized to examine two treatment options for PAH-induced RV dysfunction. In par-
ticular, we investigate the impact of RVAD and atrial septostomy on cardiovascular
hemodynamics in the PAH setting.

7.2.1 Base Model of PAH

Our model of the cardiovascular system combines elements of the cardiac anatomy
with those of the systemic and pulmonary circulations. The pressure, volume, and
blood flow through the circulatory system are represented using a set of ordinary
differential equations. The relationship between the pressure and volume for each
component in the circulatory system can be represented linearly by

𝑉 = 𝐶𝑃+𝑉𝑑 ,

where 𝑉 is volume, 𝑃 is pressure, 𝐶 is the compliance of the vessel, and 𝑉𝑑 is the
volume of the vessel at zero pressure. While 𝐶 and 𝑉𝑑 of the arteries and veins are
typically constant (unless there are physiological or pathological changes), 𝐶 and
𝑉𝑑 of the heart chambers are time-varying periodic functions that represent active
contraction [14]. The circulatory system model consists of individual elastic cham-
bers and a series of resistors and diodes with fixed and variable capacitors branching
from the main circuit (Figure 7.1) [15]. The systemic and pulmonary vasculatures
are divided into their corresponding resistive and fixed capacitive components due to
their elastic nature. Heart valves reinforce uni-directional blood flow, so they are rep-
resented as diodes. In addition, the mitral and tricuspid valves exhibit non-negligible
resistive elements to block blood flow between heart chambers. Systole and diastole,
the two phases of the cardiac cycle, are captured by variable capacitors that represent
the heart chambers.
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Fig. 7.1: Base Windkessel circulation model describing the coupling between the
heart and the systemic and pulmonary circulation, including RVAD and atrial sep-
tostomy treatments.

The volume of each individual compartment is related to the rate of inflow and
outflow via

𝑑𝑉𝑖

𝑑𝑡
=𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡 , (7.1)

where 𝑉𝑖 is the volume of chamber 𝑖, and 𝑄𝑖𝑛 and 𝑄𝑜𝑢𝑡 represent the flow in and
out of the chamber, respectively. We approximate the blood flow at each component,
which is driven by pressure difference, to be linearly dependent on pressure through
the following relation:

𝑄 =
𝑃𝑢𝑝𝑠𝑡𝑟𝑒𝑎𝑚−𝑃𝑑𝑜𝑤𝑛𝑠𝑡𝑟𝑒𝑎𝑚

𝑅
, (7.2)

where 𝑅 is the resistance of the given connection.
Ventricular and atrial pumping characteristics are modelled by modifying time-

varying elastance, 𝑒(𝑡). Mathematically, instantaneous ventricular pressure 𝑃(𝑡) can
be related to instantaneous ventricular volume 𝑉 (𝑡) via

𝑃(𝑡) = [𝑃𝑒𝑠 (𝑉) −𝑃𝑒𝑑 (𝑉)] 𝑒(𝑡) +𝑃𝑒𝑑 (𝑉), (7.3)

where
𝑃𝑒𝑠 (𝑉) = 𝐸𝑒𝑠 (𝑉 −𝑉0), (7.4)

𝑃𝑒𝑑 (𝑉) = 𝛼(𝑒𝛽 (𝑉−𝑉0 ) −1), (7.5)
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𝑒(𝑡) =


1
2

[
sin

(
𝜋
𝑇𝑒𝑠
𝑡 − 𝜋

2

)
+1

]
, if 0 < 𝑡 < 3𝑇𝑒𝑠

2

0.5exp
{ (
𝑡 − 3𝑇𝑒𝑠

2

)
/𝜏

}
, otherwise.

(7.6)

Here, 𝑃𝑒𝑠 is end-systolic pressure, 𝑃𝑒𝑑 is end-diastolic pressure, 𝐸𝑒𝑠 is end-systolic
elastance, 𝑇𝑒𝑠 is time required to achieve end-systole, 𝜏 is the time constant of
relaxation, and𝑉0, 𝛼, 𝛽, are constant model parameters in the end-diastolic pressure-
volume relationship. The parameters of the base model were adapted, based on
Punnoose et al. [8], to capture different stages of PAH (mild, moderate, severe,
and very severe, i.e., cardiogenic shock). We initialized the model with standard
parameters for a healthy heart, and then varied its parameters to match those of
the corresponding phase. When the parameters were altered for each diseased state,
common RV function metrics, such as the stroke volume, the ejection fraction and
cardiac output, changed too. We could thus observe a distinct pressure-volume
relationship for each degree of right-sided heart failure before implementing any
treatments. Overall, the most relevant parameters in the circulation model include
systemic and pulmonary vessel resistance, compliance and elastance. The varying
effects of most of these parameters on the model’s behaviour was further explored
by performing a sensitivity analysis.

7.2.2 Ventricular Interaction and the Pericardium

In this study, we aimed to improve the realism of the previously described lumped-
parameter model by accounting for the interventricular interaction via the septum
wall. The left and the right ventricles act independently of each other; their time-
varying volume-elastance relation is represented by the system shown above in
Equation 7.6. Following Santamore et al. [11], three time-varying elastances (right
ventricular free wall 𝐸𝑟𝑣 𝑓 , left ventricular free wall 𝐸𝑙𝑣 𝑓 , and septum wall 𝐸𝑠) were
considered, so that the interdependence between the two ventricles was simulated
by our model. The pressures of both ventricles at the end of diastole (𝑃𝑒𝑑) becomes

𝑃𝑒𝑑𝐿𝑉 (𝑉) = 𝛼(𝑒𝐵𝑙𝑣 (𝑉−𝑉0 ) −1), (7.7)

where

𝐵𝑙𝑣 = 𝐵𝑙0 +𝑚𝑟𝑙𝑉𝑟𝑣 , (7.8)

and

𝑃𝑒𝑑𝑅𝑉 (𝑉) = 𝛼(𝑒𝐵𝑟𝑣 (𝑉−𝑉0 ) −1), (7.9)

where
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𝐵𝑟𝑣 = 𝐵𝑟0 +𝑚𝑙𝑟𝑉𝑙𝑣 (7.10)

𝐵𝑙0 and 𝐵𝑟0 represent the ventricular coefficients when the volume is equal to zero.
𝑚𝑟𝑙 is the sensitivity of 𝐴𝑙𝑣 to changes in right ventricular volume while 𝑚𝑙𝑟 is the
sensitivity of 𝐴𝑟𝑣 to changes in left ventricular volume. The pressure development in
each ventricle during systole is a function of pressure in the opposite ventricle. For
the end-systolic relation, the pressure at the end of systole (𝑃𝑒𝑠) of both ventricles is
formulated as

𝑃𝑒𝑠𝐿𝑉 =
𝐸𝑠 𝐸𝑙𝑣 𝑓

𝐸𝑠 +𝐸𝑙𝑣 𝑓
(𝑉𝑙𝑣 −𝑉𝑙0) +

𝐸𝑙𝑣 𝑓 𝑃𝑟𝑣

𝐸𝑠 +𝐸𝑙𝑣 𝑓
, (7.11)

𝑃𝑒𝑠𝑅𝑉 =
𝐸𝑠 𝐸𝑟𝑣 𝑓

𝐸𝑠 +𝐸𝑟𝑣 𝑓
(𝑉𝑟𝑣 −𝑉𝑟0) +

𝐸𝑟𝑣 𝑓 𝑃𝑙𝑣

𝐸𝑠 +𝐸𝑟𝑣 𝑓
. (7.12)

Fig. 7.2: Circuit used to simulate cardiovascular system with interaction from San-
tamore et al.[11]

We then proceeded to extend our model to account for the presence of the peri-
cardium, a fibrous sac that encloses the four chambers of the heart. We followed the
implementation from Burkoff et al. [12] in which the pericardial pressure (𝑃𝑝𝑒𝑟𝑖𝑐𝑎𝑟𝑑)
is assumed to be equal to an exponential function of the sum of instantaneous LV
and RV volumes: 𝑃𝑝𝑒𝑟𝑖𝑐𝑎𝑟𝑑 = 𝛼𝑝 exp[𝛽𝑝 (𝑉𝑙𝑣 +𝑉𝑟𝑣)] .
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7.2.3 Right Ventricular Remodelling and Baroreflex

The heart continuously regulates its output to match the needs of the body, but it
also adapts its anatomy and behavior to changes in pulmonary arterial pressure.
During PAH, the heart undergoes long-term deformations in the form of an increase
in contractility, and subsequent augment in right ventricular wall volume, 𝑉𝑤𝑎𝑙𝑙 .
Altered contractility, which is associated with changes in sarcomere length from the
ideal optimal value, is evaluated in our model using the formulation from Arts et al.
[16]. The sarcomere length can be calculated as

𝜆 =

(
1+3

𝑉𝑟𝑣

𝑉𝑤𝑎𝑙𝑙

)1/3
, (7.13)

and the change in contractility required to reach such sarcomere length [17] is
computed as

𝐶 =
1+ 𝑎

1+ 𝑎 𝑒𝑏 (𝐿0−𝐿𝑠,𝑚𝑎𝑥 )
, (7.14)

where 𝑎 = 0.2, 𝑏 = 4𝜇𝑚−1 [16], 𝐿0 is the desired sarcomere length, and 𝐿𝑠,𝑚𝑎𝑥 is the
maximum sarcomere length throughout the cycle. Once 𝐶 has been calculated, wall
volume (𝑉𝑤𝑎𝑙𝑙) and right ventricular contractility (𝐸𝑒𝑠,𝑟𝑣) are respectively updated
in an iterative process. Mathematically, a linear approximation from the previous
iteration is used in both cases: 𝐸𝑛𝑒𝑠,𝑟𝑣 = 𝐶 𝐸𝑛−1

𝑒𝑠,𝑟𝑣 and 𝑉𝑛
𝑤𝑎𝑙𝑙

= 𝐶𝑉𝑛−1
𝑤𝑎𝑙𝑙

.
A more short-term cardiac adaptation to changes in heart rate and contractility is

baroreflex control. This homeostatic mechanism increases the heart rate when arterial
pressure decreases, and vice versa [18]. Changes in the heart rate were simulated
using the linear approximation [13] 𝑇𝑟 = 𝐺𝑏𝑎𝑟𝑜 (𝑃𝑎𝑜 −120) +0.855, where 𝑇𝑟 is the
cardiac period, 𝑃𝑎𝑜 is the systolic aortic pressure and 𝐺𝑏𝑎𝑟𝑜 (the baroreflex gain) is
fixed at 0.005 𝑠/𝑚𝑚𝐻𝑔.

7.2.4 Atrial Septostomy

Atrial septostomy is a palliative treatment for medically refractory PAH. The pro-
cedure involves using a catheter to intentionally create a hole, called an atrial sep-
tostomy defect (ASD), in the interatrial septum. The direct blood flow from the right
atrium into the left atrium increases cardiac output, thus alleviating right atrium
pressure. As a result, the overall outflow resistance and afterload experienced by
the right-side of the heart is reduced, enhancing survival. We account for atrial
septostomy in our model by introducing a new lump-parameter for septostomy re-
sistance, 𝑅𝑠𝑒𝑝𝑡 , and adding blood flow through the interatrial septal orifice governed
by 𝑄𝑠𝑒𝑝𝑡 = 𝐾 𝐴

√︁
|Δ𝑃 |, where 𝐴 = 𝜋𝑅2 is the area of the septostomy in 𝑐𝑚2, Δ𝑃 is

the pressure gradient across the orifice in mmHg, and 𝐾 = 2.66.
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7.2.5 Right Ventricular Assistive Device (RVAD)

PAH often leads to right ventricular failure, so often assistive devices (RVADs) are
required. These devices can be used in a continuous flow capacity, where the flow
continuously provides support to the RV independent of time; or as a pulsating
RVAD, where the flow is time dependent and in sync with the cardiac cycle. Both
continuous and pulsatile flow pumps have previously been tested computationally
and experimentally [9, 19]. Additionally, the RVAD can be implemented in either
the right ventricle or right atrium. To implement the RVAD into the model, we add
an additional flow, 𝑄𝑟𝑣𝑎𝑑 . The flow into the pulmonary artery will then be given by

𝑑𝑉𝑝𝑎

𝑑𝑡
=𝑄𝑝𝑎 −𝑄𝑝𝑣 +𝑄𝑟𝑣𝑎𝑑 . (7.15)

RVAD will take fluid from the right ventricle or atrium, which results in either

𝑑𝑉𝑟𝑣

𝑑𝑡
=𝑄𝑡𝑟 −𝑄𝑝𝑣𝑣 −𝑄𝑟𝑣𝑎𝑑 (7.16)

or
𝑑𝑉𝑟𝑎

𝑑𝑡
=𝑄𝑠𝑣 −𝑄𝑡𝑟 −𝑄𝑟𝑣𝑎𝑑 , (7.17)

respectively. The form of 𝑄𝑟𝑣𝑎𝑑 depends on the type of RVAD. The continuous
flow RVAD only depends on the difference in pressure between the source (the right
atrium or ventricle) and the pulmonary artery. Analytically, this can be approximated
using a linear relationship [8], where𝑄𝑟𝑣𝑎𝑑 is time independent. We also implement
the pulsatile flow pump as described in Gohean et al. [9], which has demonstrated
better performance compared to the continuous flow pumps [19], when properly
synchronized. Now 𝑄𝑟𝑣𝑎𝑑 is time dependent and follows the formulation in Gohean
et al. [9], given as

𝑄𝑟𝑣𝑎𝑑 (𝑡,Δ𝑃) =
{

2𝑉𝑠
𝑇𝑙

(
1
2 −

1
2 cos

(
2𝜋 (𝑡−𝑇𝑑 )

𝑇𝑙

))
if 𝑡 ∈ [𝑇𝑑 ,𝑇𝑑 +𝑇𝑙],

0 otherwise.
(7.18)

where 𝑇𝑑 is the time delay from the start of the cardiac cycle, 𝑇𝑙 is the duration of
the pulse, and 𝑉𝑠 is the stroke volume in 𝑚𝐿. The time, 𝑡, is normalized to the start
of the cardiac cycle.

7.3 Results

We successfully implemented a ventricular hemodynamic model and simulated PAH
based on data from Punnoose et al. [8] to study the effects of this aggressive dis-
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ease on RV hemodynamics. The right and left ventricular hemodynamic parameters
reproduced by our model are reported in Table 7.1.

Table 7.1: Stroke volume (SV), cardiac output (CO), and ejection fraction (EF) from
the model for healthy, severe PAH, continuous RVAD treatment, and pulsatile RVAD
treatment. Stroke volume is given in 𝑚𝑙 and cardiac output in 𝐿/𝑚𝑖𝑛.

Left ventricle Right ventricle
Condition SV CO EF SV CO EF

Healthy 72.722 4.363 0.717 72.722 4.363 0.687
Severe PAH 33.003 1.980 0.617 33.002 1.980 0.209
Continuous RVAD 46.594 2.795 0.646 22.840 1.370 0.155
Pulsatile RVAD 56.302 3.378 0.658 19.901 1.194 0.152

An important indicator of the severity of PAH is RV function and morphology
[20]. Figure 7.3 shows pressure-volume loops (PV loops) corresponding to various
severities of PAH. The shapes of the PV loops, which provide information on cardiac
performance, load and coupling, change with progression of PAH. To simulate the
different stages of PAH, the elastance, resistance and compliance parameters as well
as the heart rate were modified based on values from previous studies [8]. As the
disease progresses, resistance in the pulmonary artery increases, heart rate increases,
and end-systolic elastance increases in the left ventricle, while it decreases in the
right ventricle. For the LV, the normal shape of the PV loop is rectangular, whereas
it is usually rounded for the RV. For both ventricles, the PV loops become more
narrow, which is indicative of reduced stroke volume.

Fig. 7.3: PV loops for healthy and diseased hearts, from mild PAH to PAH-induced
heart failure. Dark blue represents the most severe case, cardiogenic shock (CGS).
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7.3.1 Sensitivity Analysis

A sensitivity analysis was a useful tool to determine the correlation between input
model parameters and the resulting hemodynamic features of the system. By altering
each model parameter, one at a time, we were able to better interpret the model outputs
when the inputs were changed in PAH treatment simulations. The model behavior
changed drastically when the pulmonary arterial resistance (𝑅𝑝𝑎) was altered, as
illustrated in Figure 7.4. The 𝑅𝑝𝑎 values plotted correspond to 0.25, 0.50, 0.75
and 1 mmHg.s/mL. As 𝑅𝑝𝑎 increased (as in PAH), the stroke volume decreased
substantially. The total mechanical energy generated by ventricular contraction also
decreased, since the area encompassed within the PV loops (i.e., the stroke work)
decreased with higher 𝑅𝑝𝑎 values. In addition to pulmonary arterial resistance, other
parameters that also had a considerably high impact on the model outputs were RV
end-systolic elastance and the exponential parameter (𝛽) for the right ventricular
end-diastolic PVR ( 7.5).

Fig. 7.4: PV loops for several degrees of pulmonary arterial resistance.

7.3.2 Ventricular Interaction and the Pericardium

As explained in subsection 7.2.2, we aimed to improve the realism of the model by
including the interaction via the interventricular septum. We implemented three time-
varying elastances with the same values used by Santamore et al. [11], and simulated
different degrees of PAH by changing the values of resistance as in Punnoose et al.
[8], and keeping the same values of elastance from Santamore et al. [11]. Figure 7.5
shows the different pressure-volume (PV) loops of the left and right ventricles when
the interventricular interaction is turned on. The overall behavior of the PV loops is
the same as those without interaction: there is a leftward shift of the LV PV loop and a
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rightward shift of the RV PV loop with increasing PAH severity. This is likely due to
the RV expanding and pushing against the LV, causing the right ventricular volume to
increase and the left ventricular space to decrease, eventually leading to ventricular
septum bowing. Compared to Figure 7.3, Figure 7.5 displays PV loops that shift
more uniformly along an axis as severity increases. One possible explanation for
this behaviour is the use of the same elastance values for the ventricular interaction
simulations at each severity level. This behaviour, however, is not as strongly evident
as in the previous simulations, which could be explained by the fact that we kept
the same elastance from Santamore et al. [11] for each PAH degree, and because
we used a combination of two parameter sets (Punnoose et al.[8] and Santamore
[11]). We can still conclude that the introduction of the interventricular interaction
does not lead to strong changes for this model. This result is in agreement with other
studies that report small effects from the septum [11].

Fig. 7.5: Pressure-Volume loops with different degrees of PAH when the ventricular
interaction via the septum is included. Dark blue represents cardiogenic shock (CGS).

Secondly, the presence of the pericardium represents an additional constraint to
both ventricles. Figure 7.6 shows the effect of the pericardium in a healthy PV loop.
When this element was added to our model, it lead to a reduction in the overall left
ventricular stroke volume and an increase in the end-diastolic pressure of the right
ventricle. The PV loop shifts slightly upward off the end-diastolic pressure-volume
relationship (EDPVR), which is representative of the heart’s ventricular passive
compliance curve. In addition, the stroke volume is smaller and the peak pressure
is lower in presence of pericardium. The stroke volume reduction observed in our
model is consistent with physiological and clinical observations that the pericardium
constricts heart dilation in the diastolic phase.
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Fig. 7.6: Pressure-Volume loops of healthy condition with and without pericardium

7.3.3 Remodelling the Right Ventricle

Including the remodelling effects of the RV resulted in improved performance of
the heart. Computing the change in contractility, as described by Equation 7.14,
yielded improved model output for an increase in pulmonary pressure (Figure 7.7).
Additionally, the arterial baroreceptor reflex system changed the model behavior
in presence of PAH. The heart rate and contractility (heart rate effect shown in
Figure 7.8), which are two parameters that have a significant effect on the model’s
output, are adjusted by the baroreflex to control fluctuations in aortic blood pressure.
Thus, impaired baroreflex control of the heart in PAH would typically contribute to
worse outcome of the disease.

Fig. 7.7: Effect of remodelling the RV on the pressure volume relationship in the left
and right ventricle.



7 Right Ventricular Mechanics 103

Fig. 7.8: Heart rate control, characteristic of baroreflex, has a high impact on the
shapes of the PV loops.

7.3.4 Atrial Septostomy

Consistent with the left- and right-ventricular hemodynamics behavior observed in
Punnoose et al., our atrial septostomy defect simulation with resulting right-to-left
shunt yields minimal leftward shifts in both the right atrial and right ventricular
pressure-volume (PV) loops toward lower volumes and pressures [8]. Simultane-
ously, a rightward shift in the left atrial and left ventricular PV loops reflect increased
filling pressures and end-diastolic volumes as shown in Figure 7.9.

Based on the results from our model, atrial septostomy significantly increased
left ventricular stroke volume as a result of elevated end-systolic pressure and ex-
panded end-diastolic volume. Meanwhile, the left ventricular end-diastolic pressure
and end-systolic volume experienced no significant change with atrial septostomy.
Collectively, these results indicate atrial septostomy causes an increase in left ven-
tricular cardiac output with negligible change in the systemic vascular resistance.
The right ventricular pressure, volume, and stroke volume remained largely the same
with or without atrial septostomy and are thus determined to be minimally responsive
to atrial septostomy treatment.

Prior to atrial septostomy treatment, the left and right atria are isolated, pressurized
elastic chambers, with the right atrium having a higher pressure than the left atrium.
The chamber pressure values are within reasonable ranges of 1 to 7 mmHg for the
right atrium and 1 to 6 mmHg for the left atrium, as the atria are low pressure
chambers meant for gathering blood from veins. After atrial septostomy treatment,
however, we observed an increase of the end-systolic pressure and the end-diastolic
volume in the left atrium as well as a slight decrease in the right atrium end-systolic
pressure and end-diastolic volume. This is likely due to the two atria being connected
via the atrial septal defect post-surgery, driving the pressures in the left and right
atria to an equilibrium.
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Our model observed a decrease in interatrial pressure gradient. This is demon-
strated in Table 7.2 by a 34% elevation in left atrial end-diastolic pressure to match
an 11% decrease in right atrial end-diastolic pressure. This outcome aligns with our
prediction that the two atrial chambers will reach a pressure equilibrium when two
heart chambers are connected via the atrial septal defect.

Fig. 7.9: Effect of atrial septostomy (ASD) on the pressure-volume relationship in
each heart chamber.

Table 7.2: Heart chamber end-diastolic pressures (EDP) with and without atrial
septostomy.

Heart Chamber EDP, no septostomy EDP, septostomy Pressure Ratio
(mmHg) (mmHg)

Right Atrium 3.142 2.795 0.8897
Right Ventricle 2.237 2.046 0.9147
Left Atrium 2.084 2.795 1.3415
Left Ventricle 1.160 1.687 1.4550

7.3.5 Right Ventricular Assistive Device

We find that our RVAD implementation behaves similarly to the one in Punnoose et
al. [8] and Gohean et al. [9] (Table 7.1 and Figure 7.10). Simulated PAH reduced left
ventricular cardiac output, stroke volume and ejection fraction (Table 7.1). This is
evident in Figure 7.10, with a leftward shift in the left ventricular PV loops indicating
left ventricular unloading. This is improved by pulsatile and continuous RVAD at a
flow rate of 3.5 L/min from the right atrium or ventricle, indicated by a rightward
shift in the left ventricular PV loops for both treatments, with the pulsatile flow
performing better than the continuous flow RVAD (Figure 7.10 right). Conversely,
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the right ventricular end-systolic and diastolic pressures increase in the simulated
PAH. As shown in Figure 7.10 (left), a rightward shift in the PAH PV loop is seen,
which is not improved by either the pulsatile or continuous RVAD.

Fig. 7.10: Ventricular PV loops in healthy, severe PAH and treatment cases. The
right ventricular PV loops for severe PAH shift to the left, but are partially recovered
by pulsatile or continuous RVAD (left). Left ventricular PV loops in healthy, PAH
and treated simulations of hemodynamics (right).

7.4 Discussion

In this study, we have modeled the influence of PAH on the mechanics of the
circulatory system at various stages of the disease, based on the results from Punnoose
et al. [8]. A sensitivity analysis demonstrated the significant dependence of our model
on the resistance in the pulmonary artery, but many factors beyond resistance, such
as contractility and stiffness, have an effect on the model too. To improve upon the
base model, the addition of the interaction between the ventricular walls through the
septum [11] and the effects of the pericardium [13] were included. We find a larger
influence from the pericardium, which agrees with previous results [11, 13]. Further,
we investigated long and short term adaptions of the heart to the increase in pressure
of the pulmonary artery, as well as the effect of treatments to PAH. Specifically, the
target of our computational study was to provide insight into how atrial septostomy
and RVAD affect heart function [8, 9].

Our model exhibited hemodynamic effects of atrial septostomy similar to those
observed in Punnoose et al. for all four heart chambers. This validated our im-
plementation to study the effect of atrial septostomy on PAH-induced right-side
heart failure [8]. Results from our simulation indicate that atrial septostomy indeed
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restores the heart to a healthier functional state under the assumption of ceteris
paribus, consistent with clinical observations. The end-diastolic pressure-volume
relationship (EDPVR) on the PV loop represents the passive compliance of the heart
ventricles. With atrial septostomy, the EDPVR remained the same in both the left
and right ventricles, implying that the heart ventricular tissue stiffness is not affected
by the treatment. The end-systolic pressure-volume relationship (ESPVR), which
represents ventricular tissue contractility, remained the same for the left ventricle
and decreased for the right ventricle with atrial septostomy treatment, denoting less
contractility. The introduction of atrial septostomy in the interatrial septum likely
decreased the right ventricle’s need to contract to maintain the same cardiac output
under PAH. Collectively, these data suggest that, while atrial septostomy does not
change the myocardium intrinsic biomechanical properties, the surgical procedure
seems to promote cardiac output, improve heart performance, and reduce heart fail-
ure symptoms. Summed together, our model provided results consistent with current
clinical understanding of atrial septostomy effects on cardiovascular biomechanics,
physiology, and literature.

The RVAD resulted in improved cardiac performance for a severe PAH setting
by restoring cardiac output and ejection fraction in the LV. In our simulations, we
observe better performance from the pulsatile flow compared to the continuous flow
pumps. Despite the improved performance, the pulsatile flow pumps typically suffer
from durability issues [9], so continuous pumps must be investigated too. Using this
model, the influence of both types of pumps on the hemodynamics can continue to
be studied in future research.

Our model was able to capture the effects of PAH on heart function, but there are
some limitations to our work. Our ability to investigate the growth and remodelling
was limited by the fact that we didn’t account for the three-dimensional structural
effects from the heart chambers, which alter the anatomy and behavior of the RV. To
overcome this limitation, our framework could incorporate a 3D finite element model
of the ventricles [21]. This extension of the lumped-parameter model would provide
a more detailed characterization of ventricular mechanics as well as a more realistic
representation of ventricular interaction via the septum. On the other hand, the limited
literature sources with specific experimental data relevant to our study partly affect
the accuracy of our results. There is significant variability in the biomechanical
data between different cardiac studies, which makes it challenging to incorporate
elements from multiple studies and unify them in one model [8, 11]. Conducting our
own in vivo experiments could be useful to obtain more reliable parameters for the
model. That is, experimental measurements would be a key next step to corroborate
the results and develop an improved version of our model.

7.5 Conclusion

In this computational study, we have implemented a closed-loop lumped-parameter
model of the heart and circulatory system for studying the cardiovascular adaptations
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in the RV to PAH. We demonstrated that RVAD and atrial septostomy are effective
treatments to improve left ventricular filling and cardiac output. We also extended
our base model to account for direct ventricular interaction via the interventricular
septum and the presence of the pericardium, showing that the pericardium has
a larger effect relative to the ventricular interaction. Our present implementation
lays the foundation for the addition of more components to the model that would
augment its realism even further. We believe that highly complex computational
models will continue to be critical to achieve our vision of dynamically simulating
and characterizing ventricular mechanics in PAH.
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