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Preface to ”Advances in Sensors, Big Data and
Machine Learning in Intelligent Animal Farming”

Animal production (e.g., milk, meat, and eggs) provides valuable protein for human beings

and animals. However, animal production is facing a number of challenges worldwide such as

environmental impacts and animal welfare/health concerns. Maintaining the good health and

welfare of livestock and poultry is very important in terms of production efficiency, social economy,

and sustainability. In livestock and poultry farming operations, accurate and efficient monitoring of

livestock and poultry information can help us to analyze the health and welfare status of animals.

Early detection of sick or abnormal individuals can help reduce economic losses and protect animal

welfare. In recent years, there has been growing interest in animal welfare. At present, livestock and

poultry farming mainly relies on manual observation to obtain animal information, but the method

is labor intensive and subjective to human errors. The contact method of implanting devices/sensors

into animals to monitor animals’ physiological conditions has been tested widely. The concern of

this contact method is causing animal stress responses and impacting animal wellbeing. Noninvasive

monitoring technologies of computer vision systems can reduce or avoid the impact of observers on

animals and related stress response to animals in the monitoring of animal behaviors and welfare,

while there is a lack of artificial intelligent strategies, e.g., machine learning or deep learning, that

can track animals and extract welfare indicators accurately and quantitatively. Therefore, innovating

engineering strategies, such as computer vision-based systems, to identify issues related to animal

health and welfare automatically in real-time are critical for enhancing animal production efficiency

and welfare. This book therefore aims to gather information and updated research on “Advances in

Sensors, Big Data and Machine Learning in Intelligent Animal Farming”.

Yongliang Qiao, Lilong Chai, Dongjian He, and Daobilige Su

Editors

xi
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Evaluation of an Active LF Tracking System and Data Processing
Methods for Livestock Precision Farming in the Poultry Sector
Camille Marie Montalcini 1,*, Bernhard Voelkl 2, Yamenah Gómez 1, Michael Gantner 3 and Michael J. Toscano 1

1 Center for Proper Housing: Poultry and Rabbits (ZTHZ), Division of Animal Welfare, VPH Institute,
University of Bern, Burgerweg 22, 3052 Zollikofen, Switzerland; yamenah.gomez@vetsuisse.unibe.ch (Y.G.);
michael.toscano@vetsuisse.unibe.ch (M.J.T.)

2 Division of Animal Welfare, VPH Institute, University of Bern, Längassstrasse 120, 3012 Bern, Switzerland;
bernhard.voelkl@vetsuisse.unibe.ch

3 Gantner Pigeon Systems GmbH, 6780 Schruns, Austria; michael.gantner@gantnersolutions.com
* Correspondence: camille.montalcini@vetsuisse.unibe.ch

Abstract: Tracking technologies offer a way to monitor movement of many individuals over long time
periods with minimal disturbances and could become a helpful tool for a variety of uses in animal
agriculture, including health monitoring or selection of breeding traits that benefit welfare within
intensive cage-free poultry farming. Herein, we present an active, low-frequency tracking system
that distinguishes between five predefined zones within a commercial aviary. We aimed to evaluate
both the processed and unprocessed datasets against a “ground truth” based on video observations.
The two data processing methods aimed to filter false registrations, one with a simple deterministic
approach and one with a tree-based classifier. We found the unprocessed data accurately determined
birds’ presence/absence in each zone with an accuracy of 99% but overestimated the number of
transitions taken by birds per zone, explaining only 23% of the actual variation. However, the two
processed datasets were found to be suitable to monitor the number of transitions per individual,
accounting for 91% and 99% of the actual variation, respectively. To further evaluate the tracking
system, we estimated the error rate of registrations (by applying the classifier) in relation to three
factors, which suggested a higher number of false registrations towards specific areas, periods with
reduced humidity, and periods with reduced temperature. We concluded that the presented tracking
system is well suited for commercial aviaries to measure individuals’ transitions and individuals’
presence/absence in predefined zones. Nonetheless, under these settings, data processing remains
a necessary step in obtaining reliable data. For future work, we recommend the use of automatic
calibration to improve the system’s performance and to envision finer movements.

Keywords: low-frequency tracking; commercial aviary; laying hens; false registrations; tree-based
classifier; animal behaviour

1. Introduction

Tracking technologies generate sequences of chronologically ordered location data
and offer a way to monitor movement of many individuals over long time periods with
minimal disturbances. Tracking technologies have become valuable for detecting health
issues in farm animals at an early stage [1–4] and in cage-free poultry farming, for their
potential to select breeding traits that benefit welfare within cage-free systems [5,6] as
well as to provide scientific information for optimal management [7]. However, cage-free
housings are uniquely complex and may introduce numerous challenges for tracking
technologies. For instance, cage-free housings of laying hens often contain a relatively high
concentration of material that can interfere with tracking signals, including metal hardware
(e.g., perches, floor, feeding lines) and multiple stacked horizontal levels that prevent
direct lines of sight require by some automated tracking technologies (e.g., video tracking,
infrared). Furthermore, compared to most other livestock, laying hens are relatively small

Sensors 2022, 22, 659. https://doi.org/10.3390/s22020659 https://www.mdpi.com/journal/sensors
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animals that can be housed in large groups at very high densities, which would likely alter
ultra-high frequency (UHF) radio signals [8]. Compared to most other commonly tracked
livestock (e.g., swine, cattle), laying hens move differently (e.g., flying, jumping between
horizontal tiers) and often faster. These challenges might induce measurement errors (as
defined by the difference between a measured quantity and its true value), both of random
and systematic natures [9]. Random errors are often inevitable and unpredictable, but
their effects can be minimized, for example, by increasing the sample size. On the other
hand, systematic errors are often predictable with consistent causes (e.g., environmental
interference, improper calibration), but their effects are harder to compensate for and can
lead to biases if not appropriately addressed during analysis.

Tracking systems have already been used to examine laying hens within the interior
of a commercial system [10–12]; these tracking systems had to overcome the housing
complexities described above. However, measurement errors were primarily evaluated
within less complex settings (e.g., in small interior or outdoor settings) than commercial
aviaries but focusing on movements of greater precision (i.e., individual location) than
the current effort (transitions between predefined zones). For instance, using an ultra-
wide band (UWB) system, Rodenburg et al. [6] reported an accuracy of 85% in detecting
individuals’ location, and Stadig et al. [13] reported an error of less than 50 cm in 80%
of measurements. These results present great potential for tracking systems to represent
individual positions within free-range areas, as well as a margin to refine the data. Sys-
tematic errors were also investigated, although only within settings less complex than
commercial aviaries. For instance, comparing registrations generated by a UWB system
against video observations, Sluis et al. [14] observed an average overestimation of 40% of
in the distance of broilers moving less than 15 m and an average underestimation of 15% in
the distance of broilers moving more than 30 m. Furthermore, Stadig et al. [13] observed a
larger error in certain areas of the experimental field and a negative influence of rain on the
percentage of successful registrations. These results suggest that various factors, such as
the individual level of activity, specific areas, and weather conditions, could cause errors in
measurement. Although tracking systems within cage-free housing systems are becoming
more popular, they still have challenges to overcome. We therefore studied long-term
tracking in commercial aviaries at the level of visited zones (with five zones) instead of
precise individual locations. In the current study, we used active tags with low-frequency
(LF) tracking and UHF communication that distinguished five zones with key resources,
including the three stacked tiers of a commercial aviary (top floor, nest box, lower floor),
the littered floor underneath, and an outside covered winter garden. This tracking system
is comparable to UWB tracking systems with lower frequencies, with the aim of reducing
possible interactions with the environment, such as liquid and metallic materials [15].

To overcome measurement errors, some studies have mentioned novel placement of
tracking system components [13,16], filtering of registrations that are not possible [13], or
filtering of individual positions that do not move more than the 95% confidence interval
of the system’s positioning errors [17]. When modifying the configuration of the tracking
system is not an option, data processing may be the only alternative to refine and, in some
cases, obtain validated data. Furthermore, tracking data often contain metadata associated
to each registration, which could be used to detect false registrations and increase accuracy.
Due to a potentially large number of available features and interaction effects, manually
defining a rule-based algorithm can be time-consuming and suboptimal, whereas machine
learning may offer a valuable solution for filtering false registrations. Despite potential for
data refinement, there are only a few studies on UWB systems and related technologies that
scrutinize data-processing methods, particularly within the unique settings of housings
of cage-free laying hens. In the current study, we aimed to contribute to the collective
effort of evaluating tracking systems for laying-hen farming, with a focus on the interior
of a commercial aviary system. To achieve this aim, two analysis steps were involved.
First, two data-processing approaches were applied to filter false registrations, including
a simple deterministic approach that filters stays of short durations (SD method) and
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a machine learning approach (ML method) based on a tree-based classifier. The two
processed datasets and the unprocessed dataset were compared against video-observation
results (our gold standard). This evaluation was conducted in terms of the number of
transitions per individual within the predefined zones and individuals’ presence/absence
in each zone every second. Secondly, to better evaluate the tracking system, we studied the
effect of filtering false registrations based on the ML method over a two-month period on
144 tracked animals under three potential influencing factors: different areas of the aviary,
external temperature, and external humidity. We selected these factors because they have
already shown to be associated, to some extent, with tracking-system performance and
could introduce biases in our own work and that of others using comparable technology if
associated with false-registrations.

2. Materials and Methods
2.1. Ethical Statement

The study was conducted according to the cantonal and federal regulations for the
ethical treatment of experimentally used animals and approved by the Bern Cantonal
Veterinary Office (BE-45/20).

2.2. Animals and Housing

As part of a larger study examining effects of on-farm hatching, approximately
4800 chicks were reared in an Inauen Natura rearing barn previously described by
Stratmann et al. [18] and located at the Aviforum facility in Zollikofen, Switzerland. At
seven days of age, focal animals were selected, and at approximately 16 weeks of age,
all animals were transferred to an on-site commercial laying barn containing a Bolegg
Vencomatic Terrace aviary. The aviary system is split into 20 identical pens separated by a
vertical grid, with each pen containing 225 animals and an outside, covered winter garden
that can be accessed through a pop hole (illustrated in Figure 1). Eight of the 20 pens were
used for the current study, with 18 focal animals per pen (a total of 144). On the same
day as the transfer to the laying barn, we mounted a tracking tag enclosed within a cloth
backpack (mass: 15.6 g; height: 14.5 cm; width: 13 cm) on the back of each focal hen. These
backpacks were identifiable from video cameras based on their unique colour combination.
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Figure 1. Housing setup, including the pens and aviary location in the barn, winter-garden zone, pop
holes, and cameras.

2.3. Tracking System

To track hens across different areas within a pen, we distinguished five zones with key
resources, including the three stacked tiers of a commercial aviary (top, nest box, lower), the
littered floor underneath, and the winter garden, as illustrated in Figure 2A. During the laying
phase, transitions between the five zones were assessed continuously for each focal hen by
means of a customized tracking system. For this, three identical stations of a low-power,
active tracking system (®Gantner Solutions GmbH, Schruns, Austria) were installed within
the laying barn, each covering either two or three pens (Stations 3–5: pens 3, 4, 5; Stations 8–9:
pens 8, 9; Stations 10–12: pens 10, 11, 12). Each station involved several components, including
five markers (1 per zone) emitting signals through a cable (creating separately enclosed fields
for each zone; Figure 2B); active tags (mass: 28.1 g) that can receive signals; and lastly, a reader
that communicates through UHF (868 MHz), with the tags and a dedicated computer.
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The receiving strength of the LF signal (RSS) is used to determine theoretical distance
to the antenna loop. At almost every position in any zone, the tag can receive the signal of
multiple markers. This signal last for 50 ms. It is important that during that time, the tag
only receives the signal of one marker; otherwise, signals would overlap and might not be
valid. Therefore, the markers send at different transmission intervals (varying from 1.6 to
2.1 s depending on the zone) a fixed low carrier frequency signal of 0.125 MHz (LF-signal)
that is modulated to allow markers to be differentiated. Within a 10-s interval, a tag could
theoretically receive between five and six signals per marker, but this number will often be
lower, as every marker has a maximum range of only two to three metres. Every time a tag
receives an LF-signal, an algorithm (tag-algorithm) is applied to the registered LF signals
received within the past 10 s to evaluate whether the tagged hen has transitioned to a new
zone. The tag algorithm reports a new transition when a tag receives the absolute strongest
signal value from the same marker twice within 10 s and if the associated zone differs
from the last registered zone (pseudo-code in the Supplementary Text S1). Following the
installation of the tracking-system stations, each pen was calibrated under field conditions
to ensure a correct interpretation of information obtained by the devices. More specifically,
a tracking tag was positioned in each of the 44 predefined critical locations per pen (e.g.,
where two zones border one another) to evaluate RSS against observed distance to the
antenna loop and to adjust the LF signal of specific markers as necessary.

Individual transitions to a zone registered by the tracking system are hereafter called
registrations. More specifically, we will refer to correct registrations (CR) for registered
zones where the animal is located (i.e., true zone as determined by video) and to false regis-
trations (FR) for registered zones not consistent with the true zone for the bird (FR). Among
CRs, we distinguish two types of registrations: (1) registrations that are not associated
with a true transition (corrected registrations) and (2) registrations associated with a true
transition (transitional registrations). Our goal was to obtain only transitional registrations,
and data processing was used towards this objective.

2.4. Video Observations to Detect False Registrations

Two cameras per pen were placed within the indoor portion of each pen in such a manner
that each location where an animal could transition between any of the three indoor zones was
visible. The view did not cover the interior of the pop hole nor the winter garden and thus did
not allow transitions to the winter garden to be filmed. For the generation of the video-based
tracking data as a gold standard, video data were collected over the third and fourth weeks
for an 11-day period simultaneously with the collection of the tracking data. Single animals
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were visually tracked by two trained observers independent of one another in order to classify
each registration as FR or CR. An inter-rater reliability test between the two observers for
137 registrations, including four random hens and four different days, resulted in an inter-rater
reliability of perfect agreement, with all recordings classified correctly by both observers.

For the evaluation of the two processing methods (SD and ML) and the unprocessed
tracking data against video-based tracking data as the gold standard, two sets of registra-
tions were analysed through video, generating two datasets: (1) the training dataset used
to develop the ML method; and (2) the test dataset used to evaluate the two processing
methods, as well as the unprocessed tracking data, against video-based tracking data. As
described in the Section 2.5, the training dataset was used in a cross-validation process to
split the data into validation and training sets and select for the optimal models.

The training dataset was composed of 4274 registrations classified as FR or CR by
means of 241 h of video observations divided into 79 batches, varying from 0.5 h to 7 h,
involving 44 tracking tags over 11 days. The batches were selected based on the visual
representations of individuals’ movement across all days to ensure a broad variation of
movement sequences and a reasonable number of observations across zones, stations, and
tracking tags. To avoid introducing noise in model training, the training dataset did not
contain registrations from the winter-garden zone due to the limited camera view in the
pop holes described earlier. The training dataset comprised 13% FR and 87% CR.

The test dataset was composed of 865 registrations classified as FR or CR by means of
96 h of video observation. More specifically, 48 batches (six/pen) of 2-h video (including
47 randomly selected tracking tags) were randomly chosen over six days and reduced to
42 batches due to technical issues (e.g., backpacks not visible from the cameras). As the test
dataset was used to evaluate two processing methods, including one that did not require
training, the test dataset contained registrations from each of the five zones, including the
winter garden. However, as the classifiers can only be tested on classes included in the
training process, all registrations from the winter garden were processed solely by the SD
method. Registrations in the winter garden were retained in the evaluation of both processing
approaches for two main reasons: first, to avoid any bias towards poorer/greater performance
of the SD method, if that zone would be more easily/laboriously detected by the tracking
system compared to the other zones; second, even if the winter-garden zone is processed by
the SD method when evaluating the ML method, its performance is still influenced by the
ML method, typically when the ML method filters a registration to the litter zone reported
between registrations in the winter-garden zone (as there would be one less transition to the
winter garden). When a registration to the winter-garden zone could not be clearly classified
through video observation (i.e., animal could be either in the pop hole or the winter garden),
CR was used for biological relevance. We decided to define the pop-hole area (illustrated in
Figure 1) as part of the winter-garden zone (and not the litter zone), as exposure to natural
light in the pop hole is more similar to the winter-garden zone than the litter zone. To better
evaluate the tracking system, in addition to the tracking system’s registrations, the test dataset
contained all true transitions observed during video observations that were not reported
by the tracking system (missed transitions). Missed transitions represented 0.6% of the test
dataset. The test dataset comprised 5% FR and 95% CR.

2.5. Evaluation of the Two Data Processing Methods

As the tracking system used in this study evaluated the location of a tag every time
the tag received an LF-signal, longer records have more opportunities for self-correction
and therefore are more likely to be accurately record the location. Therefore, an intuitive
and simple way to process the data is to filter all registrations that last for less than a certain
threshold (SD method). We used a one-minute threshold with the objective of minimizing
loss of actual transitions while maintaining a good representation of the true data.

To account for more of the available information during data processing, we used a
machine learning approach (ML method) based on decision-trees, which, in addition to the
registration duration used by the SD method, employed 13 features of the registrations (de-
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tailed in Table 1), including the RSS, the zone, and the station identities. The zone identities
of the previous and next registrations (of the same tag) were also included to account for
the movement sequence. The durations of the previous and next registrations were also
included, as we expected the duration to be the most important feature for detecting FR. Our
goal was to build a model to process (clean) the data rather than generate predictions about
hen movement patterns. We aimed to isolate the true signal of hen movement, which can be
used in future research to evaluate the drivers of hen behaviour. As such, our model is inde-
pendent of external factors that could be of potential interest for future investigation (e.g.,
weather). Three classifiers (random forest, gradient boosting, CatBoost) based on decision-
trees [19] were used to account for potential non-linearity and interaction effects [20]. The
gradient-boosting classifier is a greedy algorithm that sequentially trains a shallow decision
tree in order to correct the errors of the previously trained tree [21], and the CatBoost model
is a recently developed gradient-boosting algorithm [22,23] that was selected in this study
for its ability to process categorical features during training (algorithms of the classifiers
further detailed in Supplementary Text S2). Following hyperparameter selection through a
3-fold cross-validated grid search (detailed in Table S1 of the Supplementary Materials) and
model training on the training dataset, the performances of the classifiers were evaluated on
the held-out test dataset using three common classifier performance measures [24]: (1) accu-
racy, defined as the fraction of predictions correctly classified by the model; (2) precision
of class X, defined as the proportion of the predicted class X that is correctly classified by
the model; and (3) recall of class X, defined as the proportion of the observed (true) class X,
that is correctly classified by the model. To better contrast predictionsof the three tree-based
classifiers on the test dataset in order to select one for the ML method, we used McNemar’s
non-parametric test for pairwise binary classifier comparison [25] to test the null hypothesis
that two models have similar proportions of errors. The normalized importance of features
was generated for the selected model to understand the model’s reliance on each feature
when producing its predictions. Finally, the ML method used the selected classifier to clas-
sify registrations as FR and CR and then filtered FR from the unprocessed data. However,
due to the limitations of video in covering the pop-hole area, the SD method was applied
here to filter registrations in the winter-garden zone.

Table 1. Record features used to train the model and the normalized importance of features in the
final CatBoost model.

Feature Name Description

previous zone; zone;
next zone

zone identity of the previous/considered/next registered record with
the strongest LF signal, indicating the zone where the individual has

transitioned/is transitioning/will transition to

RSS a measurement of the power present in the strongest received LF
signal (dB)

tracking system ID identity of the tracking-system copy

previous duration;
duration; next duration

reported time of stay in the zone from the previous/considered/next
registered record

zone2 second zone identity with the strongest LF signal

RSS of zone2 a measurement of the power present in the second strongest received
LF signal (dB)

zone3exist binary feature that equals 1 if the tag registers a signal of at least three
different zones during the last 10 s, and otherwise equals 0

next2zone = zone;
previous2zone = zone

binary feature that equals 1 if the registered second zone from the
next/previous record is the same as the occurring zone, and

otherwise equals 0

We contrasted the two data-processing approaches by applying them to the unpro-
cessed test dataset (i.e., including CR and FR). The resulting two processed datasets (ML
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and SD datasets), as well as the unprocessed test dataset, were then compared against the
respective gold-standard dataset (i.e., registrations identified as CR through video observa-
tion). In each case, we evaluated two things: (1) the animal’s location (or more specifically,
their presence/absence in each zone) and (2) the animal’s movement. To evaluate how well
these datasets represented individuals’ presence/absence in each zone at each second, we
compared their associated categorical time series (containing five categories, one for each
zone). The performance was evaluated in terms of accuracy, macro-averaged recall, and
macro-averaged precision (where the macro-averaged recall/precision is the average of
the recall/precision across each zone). To evaluate how well these datasets represented
individuals’ movement, we compared the total number of individual transitions per batch,
per zone in each case. Performance was evaluated with the explained variance score (EV)
and the mean absolute error (MAE), defined as:

EV = 1− variance{yGS − ŷ}
variance{yGS}

, MAE =
1

nsamples
∑nsamples−1

i=0

∣∣∣∣∣yGSi − ŷi

∣∣∣∣∣

where ŷ contains information from a processed dataset and yGS contains the respective
gold-standard information. The EV is used to measure the magnitude of the expected effect
on the number of transitions [26]. The MAE is used to measure, in an unambiguous and
natural manner, the magnitude of the expected average error [27] in terms of the number
of transitions (for a two-hour batch). This analysis was performed with Python version
3.8.5 using the SciKit Learn package [28] for the performance measures and the CatBoost
package [22] for the CatBoost classifier.

2.6. Investigation of Influencing Factors

When comparing large datasets with thousands of hours of tracking per animal,
comparison with video recordings as a gold standard becomes impractical. Therefore, to
further evaluate the tracking system, we used the tree-based classifier from the ML method
to identify FR (IFR) and studied the estimated error rate, defined as the number of IFRs
against the total number of registrations, in relation to specific factors. The estimated error
rate had a value of one when all records were filtered by the ML method and a value of
zero when none was filtered. This approach has some limitations due to probable FRs not
being detected or some being falsely detected. However, by removing the limitation on the
number of days and individuals used, a broader investigation of the systems’ performance
can be conducted. Data processing with the ML method is shown in the Results section to
filter most of the true FRs (recall of class FR: 93%) and to filter mostly true FRs (precision of
class FR: 84%). Therefore, IFRs should highlight most of the FRs from the unprocessed data
and should be composed mainly of FRs. We applied the ML method over a two-month
period, involving 144 animals, during which the hens were kept under similar management
conditions every day, including 15 h of artificial light and six hours with access to the winter
garden. To avoid biasing the data towards a greater error rate when the winter garden
was closed, we excluded all registrations of transitions to the winter garden for periods
when it was closed. We evaluated the estimated error rate in relation to different areas by
reporting the mean ± SD of the estimated error rate across individuals for each of the five
zones in each of the eight pens (40 pen-zone areas). We evaluated the estimated error rate
in relation to external weather variables by fitting a mixed-effects logistic regression (link
function: logit, R package “lme4” [29]) on the ratio of IFR to the total registrations minus
IFR (per hour), with pen identity nested in station identity as a random term and hourly
external humidity (%) and temperature (◦C) as explanatory variables. External humidity
was rescaled by dividing its values by 10. To control for variations barn management and
animal behaviour throughout the day, the hour of the day was also added as a fixed effect.
External humidity and temperature were obtained from the LSZB weather station (~12 km
from the barn) and accessed via the Wolfram alpha API in Python.
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3. Results
3.1. Evaluation of the Two Data Processing Methods

On the test dataset, the three classifiers showed stable (over 100 random seeds) accu-
racy, recall, and precision (Figure S1 of the Supplementary Materials), and the McNemar’s
test showed a similar proportion of errors between each classifier (p > 0.05). Thus, with
an accuracy of 99%, we selected the CatBoost algorithm for the ML method because of its
ability to handle categorical variables in Python. Additionally, 84% of the time that the
model identified an FR, the model prediction was correct (precision of class FR). and 100%
of the time that the model identified a CR, the model prediction was correct (precision of
class CR). Additionally, 93% of the FR observations were classified by the model as FR
(recall of class FR), and 99% of the CR observations were classified by the model as CR
(recall of class CR). The zone identity, RSS, and the previous registrations’ zone identity
were the three most important features, accounting for 21%, 19%, and 13% of the overall
importance of the features, respectively, while duration accounted for 7% (Figure 3A). To
further illustrate the importance of the features, Figure 3B show the RSS and duration
of the test dataset’s registrations, split into CR and FR (from video observations). The
receiving strength of the LF signal was generally higher for the correct registrations of all
indoor zones. We also observed longer duration of stay to be more frequent among the
correct registrations, with the exception of registrations in the lower perch zone, where no
difference in the duration of stay was observed between correct and false registrations.
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The unprocessed, SD and ML datasets all determined an individual’s zone (every
second), with an accuracy of 99%, 98%, and 100%, respectively, and displayed the same
values (99%, 98%, and 100%, respectively) for the macro-averaged precision and macro-
averaged recall. We found the ML and the SD datasets to underestimate the number of
transitions by an average 0.27 and 0.06 transitions per zone, respectively, for a two-hour
batch, in contrast to the unprocessed dataset, which overestimated the number of transitions
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by approximately 0.5 transitions per zone, on average, for a two-hour batch (average
number of transitions per batch, per zone by video observation was 1.8). The percentage of
variance of the ground-truth data recovered by the unprocessed, SD and ML datasets was
23%, 91%, and 99%, respectively, which is further illustrated in Figure 4.
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Figure 4. Number of transitions per individual (per batch, per zone) for the unprocessed, SD and ML
datasets against video-based tracking data and associated EV and MAE scores. Overlapping data
points are represented by darker shading.

3.2. Investigation of Influencing Factors

The estimated error rate across pen-zone areas varies from 0.0 ± 0.0 (e.g., litter area
within each pen of Stations 10–12) to 0.5 ± 0.19 for Pen 8, suggesting that half of the
registrations in the winter garden from Pen 8 were filtered by the ML method. The
estimated error rate per pen-zone area is further detailed in Figure 5. Furthermore, we
found a negative effect of humidity (p = 0.003) on the estimated error rate, with an odds
ratio of 0.96 (95%-CI [0.94, 0.99]), indicating a 4% lower likelihood of obtaining a false
registration with an increase in humidity of 10%. Additionally, we found a negative
effect of temperature (p < 0.001) on the estimated error rate, with an odds ratio of 0.97
(95%-CI [0.96–0.98]), indicating a 3% lower likelihood of obtaining a false registration with
an increase in temperature of 1 ◦C (for further details, see Table S2 of the Supplementary
Materials). The difference between the unprocessed and the processed data (by the ML-
method) is further illustrated in Figure 6 through a visual representation of an animal’s
transitions over eight consecutive days. For instance, observed several transitions filtered
by the ML method between the lower-perch and top-floor zones.
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4. Discussion

We found the presented LF tracking system accurately determined the presence of
animals in a given zone (at the second level), with macro-averaged precision, and macro-
averaged recall of 99% when compared against video observations of the test dataset.
This good performance might be explained by the tag algorithm, which searches for new
transitions, on average, every 0.5 s (i.e., each time a tag receives an LF signal), thus regularly
providing opportunities for correctional records. However, the number of transitions in
a zone generated by the tracking system was overestimated and only explained 23% of
the true variance (as observed by video). Therefore, the unprocessed tracking data did not
constitute a good representation of individual transitions between the five zones, which
could be emphasized by the observed differences in the estimated error rate within specific
pen-zone areas. On the one hand, we observed clear differences in the estimated error rate
of a given zone across different stations (e.g., winter-garden zones in Stations 10–12, Stations
3–5, and Stations 8–9 had a mean estimated error rate varying, across their respective pens,
between 0.07 and 0.14, 0.12 and 0.16, and 0.44 and 0.5, respectively). On the other hand,
we observed differences within pens of the same station (e.g., nest-box zone in Stations
3–4 had an estimated error rate of 0.05 ± 0.07 in Pen 3, 0.3 ± 0.19 in Pen 4, and 0.03 ± 0.05
in Pen 5). The observed differences in the estimated error rate across different pen-zone
areas aligned well with locations described through anecdotal notes made during video
observations describing precise locations where a tracking tag generated a high amount
of FR (by repeatedly switching between two, sometimes non-neighbouring zones) while
the animal was immobile (weak spots). An explanation for the existence of weak spots
may be the pen furnishing blocking the line of sight between tags and signal cables, which
is known to cause signal interference in UWB systems [16]. More specifically, metallic
materials can absorb the signal and distort the electromagnetic field, which could either
block or enhance the signal, rendering RSS a poor representation of the distance to the
signal cable, possibly explain errors between non-neighbouring zones. Our tracking system
was designed to use a lower frequency than a common UWB system in order to avoid
possible interactions with metallic materials, although signals may still be affected.
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Furthermore, the existence of weak spots may be attributed to the calibration process, a
manual and time-consuming step performed independently for each station and iteratively
through each pen. When a tracking tag was detected in an incorrect zone during the
calibration process, the LF values of specific markers were adjusted. As the pens are steel
cages, the LF field generated by each marker can be slightly inhomogeneous. As a result,
when an LF signal value is adjusted, all measurements must be repeated to ensure that
the change in the LF value did not lead to further detection errors. The difficulty lies in
setting the LF values of the markers in such a way that the correct zone is detected in all
locations of the tracking system. In particular, the nest-box zone is a small zone located
between two zones (Figure 2), and a change in the LF value of the marker had a greater
effect on the neighbouring zones because it quickly led to the tracking tag being detected in
the incorrect zone. Therefore, we recommend the use of an automatic calibration process to
improve the system’s performance. To achieve this, within each zone, several tags would
be placed at predefined locations of critical measurement points. Each signal strength
received by any tag from any marker would be registered. An algorithm would be executed
every 10 s (ensuring enough time for adjustment of LF signal values to take place in the
field) on all RSS registered within the past 10 s. This algorithm would identify the most
problematic zone, defined, for example, by the zone with the smallest dB difference in
relation to another zone (across all tags in that zone). If this difference does not exceed the
limit of 1 dB in relation to another zone, the LF signal value of the associated marker is
automatically adjusted. As soon as 100 consecutive runs induce no adjustment of an LF
signal, the calibration is complete. An automatic calibration would save time as only one
person would work on the calibration. This would also offer new opportunities, such as
smaller zones, allowing for registration of finer movements. For instance, in our settings,
it might be possible to differentiate between the nest boxes and the balcony in front the
nest boxes (currently, both are registered as the nest-box zone). Furthermore, automatic
calibration would ensure more homogeneous LF values across markers from the same zone
across all pens, and consequently, more comparable datasets across different stations and
pens would be generated.

Our tracking system’s poor performance in representing individual transitions high-
lights the importance of processing automatically generated datasets. Relevant data-
processing studies are lacking, although they could help to standardize this process to
generate comparable datasets across different studies. The benefit of this work is most
essential in light of rapid development in technology in order to manage and improve
the welfare of animals within commercial livestock systems [1,2,30–35]. We showed that
the data processed by a simple filtering of registrations associated with short durations
(<1 min) of stays was suitable for monitoring the number of transitions per individual per
zone, accounting for 91% of the actual variance (as observed by video). We further reported
a gain in performance using a tree-based classifier to filter false registrations, accounting for
99% of the true variance in the number of transitions per individuals, which could partly
be explained by the additional information provided to the ML method. Indeed, zone
identity and RSS were the two main features upon which the tree-based classifier based its
predictions, while the SD method was based solely on the duration of the stay. Interestingly,
this also suggests that our expectation of the record’s duration being the most important
feature to detect FR was incorrect when other features are included. The current study did
not allow for this comparison when a single feature is used; however, further studies using
a simple rule-based approach should consider the RSS addition to the records’ duration.
The importance of features further suggests that the zone identities of the previous and
next registered record are of greater importance than the duration of stay from the previous
and next registrations. Results concerning the importance of can offer direction on how to
improve similar tracking systems, for instance, by including a threshold of RSS values for
each zone based, for example, on the result of an automatic calibration. Another possibility
would be to include the SD method as part of the tag algorithm, although this would
eliminate the possibility of registering fast transitions between two zones (<1 min).
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The ML method required additional efforts, for instance, more video observations,
compared to the SD method and statistical modelling in R or Python. Therefore, the choice
between both methods relies on a compromise between time accorded in data processing
and the performance of the processed data. In the current study, the SD method recovered
8% less of the true variance in the number of transitions per individuals than to the ML-
method. To put this value in context, we used simulated sampling to estimate the impact
of a comparable loss on the effect size (measured by the Pearson correlation) of a simulated
movement variable, M, on a simulated health variable, H. The two simulated variables
(M and H) followed a standard normal distribution, with a Pearson correlation coefficient
varying from 0.15 to 0.40 to cover potentially interesting ranges of effect sizes when studying
movements in relation to health [36,37] and heritability of behaviour [38–40]. By adding
noise to M (and calling the result M’), we estimated (over 10,000 simulations, per sample
size) the percentage of cases where significance would be lost (p > 0.05), depending on the
initial effect size and sample size. Our estimations suggest that a change in percentage of
the initial variance explained by M’ from 0.99 to 0.91 would change the significance of a
critical test in 26% (or 25%) of cases when applying a sample size of 80 (or 120) and an
initial effect size of 0.25 (or 0.2), respectively (see details in Figure S2 of the Supplementary
Materials). Therefore, using a tree-based classifier to filter false registrations can be greater
value for studies with small sample and effect sizes (e.g., n = 120, effect size of 0.2) than
the filtering approach using stays of short duration as threshold. For large sample sizes or
samples with strong correlations between the measured movement and the trait of interest,
the SD method might produce equally reliable results as the ML method.

Our results further reported a marginal effect of periods of time characterized by
higher humidity or higher temperature, associated with a lower estimated error rate of
transitions to the winter garden. Because air is our medium of signal transmission, when
humidity is changes, the magnetic field is also expected to change. As calibration was
conducted in August 2020, the performance of the tracking system may be optimized for a
period with higher temperature than average. Additionally, as Richards et al. [41] reported,
associations between daily weather conditions and mean pop-hole usage in laying hens,
including an increase in mean pop-hole usage associated with an increase in temperature,
and the influence of the weather conditions on animal behaviour may be explanatory. In
spite of these results, external environmental factors cannot be controlled for and are part of
the experiment. However, these results can aid in interpretation and awareness of possible
limitations for subsequent analyses of these or similar tracking data.

5. Conclusions

The active LF tracking system evaluated in this study determined the presence/absence
of birds in a zone with an accuracy of 99% but overestimated the number of transitions by
birds per zone, explaining only 23% of the true variation (as observed by videos). However,
we showed that filtering stays of short durations rendered the data suitable for monitoring
the number of transitions per individual, explaining 91% of the true variation, and that the
use of a tree-based classifier to filter false registrations recovered an additional 8% of the
true variation. Simulations further suggested that a machine learning approach for data
processing could be of greater value than a simple deterministic approach in studies with
small sample and small effect sizes. Results also suggest that filtering false registrations
may reduce the effect of systematic errors towards certain pen-zone areas and towards
periods of time characterized by lower humidity or temperature values. However, results
also suggest that these factors might, to some extent, remain in the processed data and should
be considered properly in subsequent analyses. In conclusion, this tracking system is well
suited for complex indoor housing (similar to commercial aviaries) to measure the transitions
of individuals and the presence/absence of birds in predefined zones (thus, duration of
stays in zones). Nonetheless, under these settings, data processing remains a necessary step
in obtaining reliable tracking data. For future work, we recommend the use of automatic
calibration to improve the system’s performance and to envision finer movements.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s22020659/s1, Table S1. Selected grid-search parameters for the random forest, gradient
boosting, and CatBoost classifiers. When a parameter is not applicable for a specific classifier, the
“-” notation is used. Table S2. Output of the logistic regression with the proportion of IFR to the
number of registrations minus IFR as response variable and the humidity, temperature, and hour of
day as fixed effects. Figure S1. Precision per class (0: FR; 1: CR), recall per class (0: FR; 1: CR), and
accuracy of the three classifiers over 100 random seeds. Figure S2. Percentage of simulations that lost
significance (p > 0.05) of associated initial effect size (measure by Pearson correlation between two
simulated samples from a normal distribution: M’ and H) after a change in percentage of the true
variance recovered by M’ from 0.99 to 0.91, depending on the initial effect size (varying from 0.16 to
0.4) and sample size (varying from 80 to 280).
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Abstract: Animal telemetry is a subject of great potential and scientific interest, but it shows design-
dependent problems related to price, flexibility and customization, autonomy, integration of elements,
and structural design. The objective of this paper is to provide solutions, from the application of
design, to cover the niches that we discovered by reviewing the scientific literature and studying
the market. The design process followed to achieve the objective involved a development based on
methodologies and basic design approaches focused on the human experience and also that of the
animal. We present a modular collar that distributes electronic components in several compartments,
connected, and powered by batteries that are wirelessly recharged. Its manufacture is based on
3D printing, something that facilitates immediacy in adaptation and economic affordability. The
modularity presented by the proposal allows for adapting the size of the modules to the components
they house as well as selecting which specific modules are needed in a project. The homogeneous
weight distribution is transferred to the comfort of the animal and allows for a better integration of
the elements of the collar. This device substantially improves the current offer of telemetry devices
for farming animals, thanks to an animal-centered design process.

Keywords: wearables design; animal farming; animal-centered design; animal telemetry; modularity;
smart collar; design contributions; additive manufacturing

1. Introduction

Telemetry combines the use of different sensors and wireless communications to
perform physical and/or chemical measurements remotely. Applied to the study of animals,
it allows for the acquisition of animal life data through a device placed on the animal that
sends signals to a receptor [1]. In this way, different issues related to the individual and
their environment can be monitored in a much less invasive way, without having to come
into direct contact with them, except for the placement of the device.

Since the 1960s, radiotelemetry has been used as an instrument to track the position of
animals and study their behavior [2–4]. In the last few years, the development of telemetry
devices in animal studies has provided noteworthy advances in the direction of increasing
the batteries’ lifetime, improving the precision and functionality of systems, miniaturizing
devices, increasing the variety and novelty of data collected, and research in data processing
as well as the use of eco-friendly materials and renewable energy sources [5–10].

Recently, small sensors from mobile and communication technologies and location
systems have gradually been integrated in animal telemetry: accelerometers, magnetome-
ters, cameras, temperature sensors, pressure sensors, etc. They have been combined and
placed in global positioning system (GPS) collars, allowing for the study of ecological issues
around migration, foraging behavior, physiological performance, habitat selection and
social interaction, particularly, of medium and large terrestrial mammals [4,11].
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Therefore, telemetry has become a very powerful tool in the study of animal life for
the purposes of evolutionary, behavioral, and veterinary research; for the monitoring of
animals in their environment; and for the conservation of fauna. It has brought greater
efficiency and objectivity, and has allowed professionals to work with animals that would
have been unthinkable to study in their habitat just a few years ago. In addition, the
automation of animal monitoring ensures the continuity of data collection, which becomes
an obstacle in extreme situations such as the one we currently experience due to Coronavirus
Disease 2019 (COVID-19) [12,13].

In the field of smart livestock, monitoring has led to the improvement in animal
protection and welfare through the monitoring of their behavioral and physiological states,
which represents a step toward the responsible production and consumption of animal
materials. Monitoring allows (i) to improve the traceability of animal welfare; (ii) facilitate
decision-making to which the farmer submits; and (iii) favor the management of the
exploitation [6,9,13–15].

The application of telemetry in animals presents difficulties, mainly related to (i) weight
distribution; (ii) autonomy; (iii) flexibility in design; and (iv) cost of the devices. These
problems have become apparent from the analysis of three types of sources: scientific
publications referring to the physical design of animal telemetry devices [16–24]; scientific
publications referring to the evaluation of animal telemetry [13,25–27] as well as commercial
solutions currently available [28–36].

Most of these problems are highly dependent on design. Design is a process capable
of connecting technology with the real requirements of users, providing the market with
products and services that respond to the diverse cultural and social context in which we
live, which currently requires an indispensable technological adaptation. On one hand,
a good design strategy brings innovation to the processes (i) of contextual and user research;
(ii) detection of needs and definition of functionalities and requirements; (iii) of ideation
and conceptualization; and (iv) finally evaluation. This can help to solve problems meshing
the product, user, and environment as well as planning and formulating multidisciplinary
strategies thanks to the holistic training of the designer, accustomed to working in a team
and in various areas not related to their discipline [37]. On the other hand, design can also
contribute to technical aspects of product development, defining it structurally and formally,
and analyzing and making a good choice of materials and manufacturing processes.

This paper describes the design and evaluation of a low-cost telemetric device for
the study of the behavior of medium and large mammals such as farm animals, which
provides solutions to the problems detected in current devices. We hope to contribute both
at a methodological level and in order to facilitate and extend the use of animal telemetry
for the study of animals and their environment.

2. Materials and Methods
2.1. Design Concept

The structure of a typical telemetry collar is mainly composed of the following parts
(Figure 1):

1. Strap: structural element on which the portability of the device is based;
2. Electronic module: envelope that contains the active part of the device inside. In gen-

eral, collars have a single electronic module that is placed in the lower part of the
animal’s neck, allowing the antenna to be correctly oriented thanks to the action
of gravity;

3. Antenna: it is the component that allows the transmission of the information collected
by the electronic device. The antenna can be external, a wire rope or a more sophisti-
cated independent element such as the one in Figure 1, or internal, integrated into
a printed circuit board (PCB);

4. Coating: sometimes electronic modules and/or antennae are covered with plastic
materials to protect them;
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5. Unions: the connection of the external elements with the strap is usually carried out
by rivets or bolt–nut unions;

6. Drop-Off: this is a mechanism used in the field of wildlife to be able to recover the
device without having to recapture the animal that carries it. These devices can be
electronic or mechanical. The latter are based on the degradation of the material that
composes them; when the material has degraded in the expected time, the collar falls
off and can be recovered by scientists;

7. Closure system: the safest closures are made by means of two bolt–nut connections.

Figure 1. Main parts of a telemetry collar.

2.2. Design Methodology

The design process followed for the development of this telematic device (Figure 2)
was established based on basic design methodologies and approaches: (i) the Double
Diamond of the British Design Council [38]; (ii) the ideology of People-Centered Design of
IDEO [39]; (iii) the Design Thinking process of the D. School [40]; and (iv) of the design
applied to IoT: Cosica [41,42]. These methodologies have been oriented to the experience
of the animal and the human and to the design of wearables, and have been adapted to the
context and ecosystem in which the project was developed.

Figure 2. Methodological process of the investigation.

A collaborative design process was carried out, in which the following had par-
ticipated: designers, electronic engineers, and telecommunications engineers as well as
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veterinary experts, technical personnel who work in continuous contact with animals,
behavioral researchers, and coordinators of animal centers.

2.2.1. Phase 1–Research (Diverge)

The objective of this phase is to collect as much information as possible from users
and the context, in order to subsequently define requirements based on their real needs.
To achieve this, the following strategy is proposed (Table 1).

Table 1. Design strategy followed for the development of Phase 1.

Objective Analysis & Source Method

Obtain information from the telemetric
context in which the project will be

developed; and compile recommendations
and solutions resulting from the

investigative exercise.

State of the art from papers in
scientific journals. Literature review.

Extract considerations to take into account in
relation to environmental conditions and

use cases.

Analysis of the environment of use
through semi-structured interviews

with users.

Synthesis of the information according
to cases of use and location of

the animals.

Define user profiles; and detect their needs. User analysis through semi-structured
interviews with users.

Person method (modeling the
characteristics of the different groups

of users).
Quotes (collect literary phrases that

express the wishes or concerns of users).
Team meetings to synthesize

the information.

Define the morphometric measurements of
the animals that determine the design of the

device; and decide what type of device is
going to be developed according to

its placement.

Morphometric analysis by
semi-structured interviews with users

and morphometric tables.
Information synthesis.

Know what is currently being offered in
terms of telemetric devices and what market

niches or problems currently exist in it.

Market study and structural analysis
from market offer and scientific papers.

Search for products by manufacturers.
Synthesis of the characteristics

belonging to the elements that make up
a standard collar.

Decide what functions are going to be
implemented; and define the electronic

components that the wearable must have.

Functional analysis through meetings
with users and with the team. Information synthesis.

Define a manufacturing strategy that reduces
production costs.

Manufacturing Context studied from
papers in scientific journals. Literature review.

2.2.2. Phase 2–Define (Converge)

After the divergence of the previous phase, where a large amount of information has
been collected, in phase 2, it is intended to define the problem and divide it, in order to
tackle it more easily. To do this, in the first place, the information collected is synthesized
to highlight the most relevant, which helps to correctly focus the ideation process. This
is done through Clustering, grouping the most important revelations in relation to the
problems detected and the design requirements to be considered. Subsequently, designers,
electronic engineers, and telecommunications engineers work together to propose and
define technical solutions to the problems detected and to define the electronic components
that the device will have in order to consider them in the design process. Finally, the
defined problem is divided by presenting 12 design challenges that will guide the next
creative stages.

The structural proposed challenges are:

• Challenge 1 (Body—Strap): Choice of materials and strap size;
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• Challenge 2 (Body—Modules): How can a watertight and flexible union of modules
be made?

• Challenge 3 (Body—Modules): How can a cover–body joint of the module be water-
tight and safe?

• Challenge 4 (Body—Modules): How can the union or registration between the modules
and the strap be made?

• Challenge 5 (Body—Modules): What should the shape of the modules be so that they
do not cause discomfort to the animal?

• Challenge 6 (Body—Cover): How should the modules be protected?
• Challenge 7 (Drop-Off): Adaptation and development of a Drop-Off system based on

the degradation of latex tubes;
• Challenge 8 (Closure): Proposal of a rapid closing system; and
• Challenge 9 (Distribution): Proposal of a correct distribution of the elements along the

strap.

These challenges must be carried out taking into account three transversal challenges:

• Challenge 10 (Environmental conditions): Design of a collar resistant to environmental
conditions;

• Challenge 11 (Integration): Design of a compact collar whose parts are integrated; and
• Challenge 12 (Impact): Design a collar that has the least impact on the animal.

2.2.3. Phase 3–Think and Prototype (Diverge)

This phase aims to solve the challenges defined in the previous phase. The process
carried out to achieve this phase has a highly iterative component (Figure 3). The system of
challenges defined in the previous phase is followed to tackle the problems to be solved in a
structured and defined way. As ideas are generated, they are prototyped and/or evaluated
with users and the team to rule out options or to validate them.

Figure 3. Iterative temporal development that was performed during the ideation process.

2.2.4. Phase 4–Prototype and Test (Converge)

In order to test the proposals: two final prototypes of the collar were made, where all
the variations are represented, and a final evaluation was structured.

Evaluation is one of the key points of any process. The literature on the design of
animal monitoring devices always structures its discourse taking into account a final
evaluation that assesses the results of the use of the new proposed product. However,
in most cases, these results focus only on technological deployment (autonomy, signal
range, failed devices, etc.), and in the case of evaluating the physical design of the device,
these studies serve few and very superficial objectives (for example, the device has been
broken, has caused injuries to animals, or the mortality rate) [16–24]. In addition, these
evaluations are merely quantitative, not giving value to the experience of the professionals.
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Our complete evaluation of the design elements and of the overall design of the collar
was carried out using a mixed methods approach [43–45].

In such a particular context as the one in which we find ourselves, the use of both
quantitative and qualitative evaluation methods can help us (i) to complement the informa-
tion when collecting data on dimensions that have only been evaluated by a single method
(the adequacy of the force applied to close the collar or autonomy); (ii) to generate a more
complete concept of the objectives through the combination (iterative methods with users
have been combined with semi-structured interviews, so that the information obtained
through the iteration has helped us to identify key points to deal in interviews); and (iii) and
to refine the results by triangulating information on the same dimension (weight, ease
of use).

Sources

The collar was evaluated through various sources:

• Experts in the Environment (EE): Managers of animal centers and workers, who act as
potential clients and animal experts. They work with the animals and put the collar
on them;

• Research Experts (RE): Behavioral researchers, also acting as potential clients and
experts in animal interaction in a context of behavioral research;

• Engineers (E), who evaluate technical specifications of the collar in the laboratory; and
• Current Offer (CO), which allows the proposed collar to be evaluated against cur-

rent designs.

Methods

• Laboratory Experiments (LE): Laboratory tests were carried out at different times in the
process to evaluate technical issues such as tightness. Rapid prototyping techniques
were also used to evaluate the physical designs of the parts and the distribution
of weights;

• Iterative Methods with users (IM): Regular contact with experts was maintained.
Through various methods such as meetings, open interviews, small product pre-
sentations, sending samples, etc., information was extracted on their opinions and
judgments. These methods guided the design process and allowed us to detect ele-
ments that should be emphasized in future evaluations;

• Focus Group (FG): A focus group was held with four experts in behavioral science
with extensive experience with animals. The objective of the focus group was to gain
the opinions that research experts have in relation to the proposals and what they can
contribute to their work;

• Real-Life Testing (RLT): The prototypes were evaluated with animals, which allowed
the designers to observe how they relate to the morphometry of the animal. On the
other hand, experts in the environment also observed the behavior of animals in
relation to the collars. The collars were tested on sheep (rasa aragonesa and roya
bilbilitana), goats (murciano granadina and mestiza de Florida), and horses (hispano-
bretón) under the approval of the Ethical Committee of the University of Zaragoza
(PI55/20, 28 October 2020);

• Semi-Structured Interviews (SSI): Semi-structured interviews were carried out with
the experts in the environment to evaluate the alternatives reflected in the prototypes,
which are detailed later; and

• Document Analysis (DA): To evaluate the proposals against the current panorama on
animal telemetry, a table was compiled in which the characteristics of different collars
on the market were compared.

Table 2 shows the objectives evaluated in relation to the sources and the methods used
for their evaluation.
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Table 2. Objectives evaluated in relation to the sources and the methods used for their evaluation.

Objectives to Evaluate Source 1 Methods 2

Elements

Strap

Material
(malleability; and resistance to

environmental conditions)
EE IM + RLT + SSI

Width
(adaptation to the morphometry of

the animal)
EE IM + RLT + SSI

Length
(adaptation to the morphometry

of the animal)
EE IM + RLT + SSI

Modules—Body Shape
(comfort for the animal) EE + E IM + RLT + SSI + LE

Modules—Lid Shape
(comfort for the animal) EE + E IM + RLT + SSI + LE

Coating
Adaptation to the collar E LE

Resistance
(to be worn) EE IM + RLT + SSI

Drop-Off
Robustness EE + E IM + RLT + SSI + LE
Structure

(change proposed) EE + E IM + RLT + SSI + LE

Closure

Structure
(new design) EE + E IM + RLT + SSI + LE

Ease of use EE + RE + E IM + FG + RLT + SSI + LE
Force applied

(required for handling) EE IM + RLT + SSI

Unions
Weight reduction CO DA

Body—Lid sealing E LE
Module—Module sealing E LE

Composition Collar

Weight EE + RE + CO RLT + SSI + DA + IM

Weight distribution EE + RE + CO + E RLT + SSI + DA + IM +
FG + LE

Integration of elements and formal
and aesthetic adaptation EE + RE + CO RLT + SSI + DA + IM + FG

Autonomy CO DA
Design flexibility CO DA

Comfort for the animal EE + RE RLT + SSI + IM + FG
Ease of use EE + RE + CO RLT + SSI + DA + IM + FG
Interaction EE + RE RLT + SSI + IM + FG

1 Source abbreviations: EE (Experts in the Environment); E (Engineers); RE (Research Experts); CO (Current Offer).
2 Methods abbreviations: IM (Iterative Methods with experts); RLT (Real-Life Testing); SSI (Semi-Structured
Interviews); LE (Laboratory Experiments); FG (Focus Group); DA (Document Analysis).

3. Results

As stated before, we aimed to solve four main problems detected in animal telemetry
devices: weight distribution, autonomy, flexibility in design, and price. We proposed the
design of a modular collar that distributes the electronic components in several compart-
ments, connected and powered by rechargeable batteries. The manufacturing of the device
was based on 3D printing.

The distribution of the elements must bear in mind two main premises: (i) distributing
the weight as evenly as possible along the collar so that the animal does not suffer; and
(ii) that the antennae are always in the most convenient position of the collar to allow
proper communications (e.g., GPS/satellite must be at upper position pointing to the
sky). A low-level prototype was created to check and adjust the distribution of the ele-
ments, which was based on the balance of weights. The device needs at least six modules.
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However, to demonstrate the modularity and customization of the proposal, we decided to
prototype a collar with seven modules, where four of them are batteries. This results in the
composition depicted in Figure 4.

Figure 4. Bounded distribution of the elements of the collar (A Strap; B.1 GPS module; B.2 Communi-
cations module; B.3 Sensors module; B.4 Battery modules; C Coating; D Drop-Off; E Closure).

As seen in Figure 5, the main structure of the collars can be divided into (A) strap;
(B) modules, which are divided into body and lid; (C) coating; (D) drop-off; (E) and closure.

Figure 5. Block diagram of collar structure and design options.

Several options are proposed for each of the structural elements in order to evaluate
them (Figure 4).

3.1. Strap

The strap (Figure 4A) is the structural element on which the rest of the components
are mounted. The choice of the material of the strap is a decision that revolves around its
rigidity and its response to handling and weather conditions, since it will not come into
contact with the animal’s skin because of the coating.

The use of two different materials (Figure 5A) was considered: a rubber–canvas
composite material with several interleaved layers and natural leather. The leather strap
was less rigid, more malleable, and adaptable to the movement of the animal, which can
be more comfortable for the animal but also less resistant to pulling or biting, while the
rubber–canvas strap was more rigid and helps define the shape of the collar, reversing the
advantages and disadvantages compared to leather.
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Various strap widths (Figure 5A) were also assessed, one equal to the height of the
modules containing the electronics, so that the collar is more compact and is more protected
from the action of animals; and another a little lower, with the idea of reducing the material
to make it more flexible and comfortable for the animal.

3.2. Modules
3.2.1. Shell

To favor the fractionation of the electronics, they were housed in independent but
interconnected modules. These modules must be watertight in all of their joints and have
a shape that is comfortable for the animal.

The modules (Figures 4B and 6) consist of two pieces: the body and the lid; these are
manufactured by 3D printing in acrylonitrile butadiene styrene (ABS). The body is the
element that keeps its measurements constant, while the lid varies in height depending on
what the module contains. This allows different components to be accommodated just by
changing one measure. In our case, the gap that houses the electronics always maintains its
height (32 mm) and its width (22 mm), combining its depths between 5.4 mm for electronic
modules and 16.4 mm for battery modules.

Figure 6. Modules: (a) flat body with flat lid; (b) rail body with curved lid.

In terms of shape, two types of body (Figure 5B) were tested depending on the width
of the strap: a flat body simply attached on the wide strap, and a rail body that embraces
the narrow strap, generating battlements between module and module. To enhance the
integration of the modules on the strap, the base of the body is provided with a curvature
that accompanies the circumference of the animal’s neck.

As for the lids, a flat version and a more curved one (Figure 5B) are proposed. The flat
lid reduces the material and thickness of the modules to the minimum, while the curved
lid follows the curvature of the collar and generates fewer edges, although the thickness of
the modules increases.

The union between the body and the lid is carried out by means of the adhesive and
sealing of both parts by the chemical reaction that occurs between ABS and acetone in a
tongue and groove that runs along its perimeter. Both body options have a ledge on each
side where a heat shrink tube adheres and compresses. This allows, on one hand, for the
protection of the connection of the modules that is made by wires, and on the other, to join
the modules together. Modules were attached on the strap using double-sided tape.

3.2.2. Electronics

Building blocks of the electronics inside the collar vary according to the target animal
and the monitoring features required (Table 3).
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Table 3. Electronic features depending on the type of monitoring.

Intensive Monitoring Remote Monitoring

Target animals Small-medium sized mammals
(sheep, goat, etc.)

Medium and large sized mammals
(horse, cow, etc.)

Monitoring scenario
Animals are estabulated or in
confined facilities that allow

periodic check in.

Animals are free and move in large
areas not seen for months.

Electronic blocks

1 block with:
Movement and magnetic sensor

SD card for massive sensor
datalogging, Bluetooth for

communication and proximity
sensing (Figure 7).

3 blocks with:
Movement sensor with smart

analysis to extract activity.
GPS (including antenna).

Lora communication.

Battery 6000 mA·h Li-Ion battery made up
by 6 pieces of 1 A·h

4000 mA·h Li-Ion battery made up
by 4 pieces of 1 A·h

Energy
expenditure

Low power (when no movement
detected): 11.2 J/day

Sensor datalogging (5’ proximity
scan and 16 h of movement

recorded): 663.5 J/day
Data downloading

(30’ once per day): 46.8 J/day

Low power (when no movement
detected): 33.7 J/day

Sensor data logging (1 h proximity
scan and 2 h of movement

recorded): 77.7 J/day
GPS data logging

(24 locations/day) and activity
sending (1 h periodicity):

62.6 J/day
GPS data logging

(4 locations/day): 10.4 J/day

Device lifetime 91 days

Smart mode (24 gps/day) +
Activity + BLE –> 236 days
Smart mode (4 gps/day) –>

5.5 years

• Sensing, computing, and datalogging: these were implemented using a microcontroller
(to manage data and rest of the hardware) and small sensors measuring linear and
angular acceleration, sound, magnetic field, etc.

• Communications: these were implemented using different communication modules
depending on the required range, data throughput, and antenna size (e.g., Bluetooth
(short range, high throughput, smallest antenna), VHF (very long range, very little
throughput, large antenna) and Lora (long range, low throughput, small antenna)).

• Location: this can be undertaken using a global navigation satellite system (GNSS)
module for precise and global location or using wireless communication modules for
rough positioning.

• Energy: battery is required to run the electronics and its technology and size defines
the system’s lifetime by dividing the energy available inside the battery by the energy
required by the electronics (calculated as the sum of the products of the power required
by each electronic block inside the device times the time this piece is running).

lifetime =
battery_energy

∑electronic_blocks( running_power × time_running)
(1)

We designed two different electronics that fit inside the collar; all of them fulfilled the
dimensional restrictions of the maximum area of 20 mm × 30 mm.
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Figure 7. Electronic block for intensive monitoring (20 × 30 mm).

3.3. Coating

The coating of the collar (Figure 4C) must have a double function, reinforce it against
climatic conditions and resist the manipulation of the various elements that compose it.
For this reason, conventional heat shrink tubing was used to cover the collar and its ends
were sealed with adhesive heat shrink strips (Figure 5C). Conventional heat shrink was
also used to hide mechanical joints that have shiny elements, in order not to attract the
attention of the animal, its companions or other species.

3.4. Drop-Off

Drop-off systems, typical in the study of wildlife, can be used as a security system in
case the animal is trapped because of the collar, which can be an interesting element to also
incorporate in intelligent farming. The drop-off system (Figures 4D and 8) that the collar
had is similar to that of Telonics commercial solutions [46], since we considered it to be a
successful method as a safety system against hanging. This was based on the degradation
of latex against the action of the environment. This system consists of two latex tubes that
are joined by means of nylon thread to the connecting ends of some pieces fixed to the strap
thanks to a nut–screw connection. Nevertheless, certain novelties that improve the design
of the commercial models on several levels have been introduced in regard to fasteners.
The redesign joins the two elements of the commercial model in a single piece in such a
way that its assembly is facilitated and its robustness is increased. Moreover, it offers the
possibility of combining or choosing between the two structure options, single or double,
in order to adapt the collar to each context and animal species (in some cases the double
option could improve its resistance) (Figure 5D).

3.5. Closure

The closures that are currently used in market devices make the placing of the collar a
complex and time-consuming activity. The most difficult issue that surrounds this element
is that it must attend to the needs of two main types of user: animal (it must resist its force
and have a mechanism that is difficult for them to open) and the veterinarian (it must be
easy and quick to open for veterinarians).

To improve this problem, we developed a closing system (Figures 4E and 9) based
on a magnetic head that locks and unlocks on a pin thanks to the action of a neodymium
magnet. Two concepts were designed (Figure 5E): a version composed of (i) a base with
two pins, a first pin that allows closure and a second pin that keeps the collar fixed without
allowing it to rotate; and (ii) an upper piece that contains the magnetic mechanism and
guides the second pin; and a second version with a single pin to allow us to learn whether
the use of the second pin is really necessary or if, morphometrically, there is not enough
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clearance for the strap to rotate too much on the animal’s neck. This latest version has a top
piece that contains the magnetic mechanism and a base with a single pin.

Figure 8. Drop-off system: two pieces are used at left and a single piece is used at right, in both cases
standard robustness.

Figure 9. Magnetic closure: single pin closure (left) and double pin closure (right).

4. Discussion

The device presented aims to resolve several issues identified in the current animal
telemetry offers: weight distribution, autonomy, flexibility in design, and price. The device
evaluation was carried out using a mixed methods approach [43–45] using quantitative
techniques such as laboratory experiments, current offer comparison tables, as well as qual-
itative (e.g., interviews, focus group, observations) following the Xassess design evaluation
method [43]. This evaluation relies on a high number of prototyping iterations of local
parts, but also of the entire product (Figure 10).

Several experts from different institutions participated in the evaluation of the product:
four veterinarians; three technical personnel who work in continuous contact with animals;
four behavioral researchers; and two managers of animal centers. The collars were placed
on sheep (rasa aragonesa and roya bilbilitana) and goats (murciano granadina and mestizo
de Florida), as seen in (Figure 11), and they have also been placed as part of a horse
(hispano-bretón) halter, demonstrating their adaptability.
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Figure 10. High fidelity prototypes developed to evaluate the range of options available. The
elements that have more than one design proposal are represented in one or the other collar, being
totally interchangeable.

Figure 11. Different animal species with: a commercial collar [36] (left image of each of the pairs,
green collar); and with the proposed collar (right image of each of the pairs, black collar).

4.1. Design Flexibility

The recent popularization of telemetry for animal research has led to the emergence of
increasingly diverse projects with more specific requirements. This means that, on occasion,
the market offers are not adapted to the needs of the project and alternative solutions have
to be sought such as individual customization of the devices. Until recently, these modifica-
tions involved manufacturing processes whose costs made the project unviable [47], having
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a negative impact on the size of the animal samples studied [48] and limiting the variability
of solutions adapted to different animals or to different technical requirements (batteries of
different sizes depending on the needs, adapted communication modules, etc.).

The new concept of modular design of the wearable as well as the particular design of
the modules that we propose highlight the fractioning of the electronics, which allow the
product to be adapted to the project requirements by customizing the components, and
therefore the functions, providing flexibility. This is possible thanks to the modular system
of bodies and lids, which adapts the size of the module to the component it houses.

4.2. Weight and Weight Distribution: Comfort and Autonomy

The main weight of the wearables that are currently available on the market is concen-
trated in the telemetric device itself and this is generally placed at the bottom, so there is no
homogeneous distribution of weight (Figure 11). Our proposal distributes the weight along
the entire strap, distributing the electronic components in at least six modules (Figure 10).
The homogeneous distribution of the elements of the collar also allows the thickness of
the collar to be more homogeneous (Table 4). According to the experts, both results are
translated into greater comfort for the animal.

Table 4. Current offer comparison table: weight and weight distribution.

Device Weight Weight Distribution
(L × W × H mm3)

Our Proposal 210 g (Collar A)
270 g (Collar B)

7 modules: 4 large modules of (30.4 × 40.4 × 11)
and 3 small modules of (30.4 × 40.4 × 8)

Personalized Telonics Collar 238 g 1 module (Approx. 55 × 38 × 28)

Telonics, TGW-4570-4 500–880 g 3 modules (73 × 51 × 37)

Telemetry Solutions, Iridium GPS Collar 125–250 g 2 modules (-)

Tellus, Small Personalizable >600 g 2 modules (76 × 56 × 55)

Advanced Telemetry Systems, G2110E2 Iridium 825 g 2 modules (115 × 80 × 65)

Advanced Telemetry Systems, G5-D Iridium 500 g 2 modules (70 × 50 × 47)

Lotek, Ultimate V6C 176G 278–325 g 1 module (88 × 32 × 30)

Lotek, WILDCELL MG 950 g 2 modules (120 × 86 × 126)

Lotek, PinnaclePro L 630–670 g 3 modules (-)

Ixorigue, GPS Ixotrack 960 g 1 module (83 × 113 × 38)

Open-source collar for terrestrial animals over 8 kg [19] 240 g 1 module (62 × 38 × 32)

The autonomy of the devices is another point of concern. The current autonomy is
often not sufficient and therefore the animals cannot be monitored for the desired time [26].
The size and weight of the electronic device of the commercial collars is determined by
the battery life; the larger the battery, the larger the electronic element and the heavier the
collar. The weight distribution and the modular nature of the proposal show that, although
the autonomy of the battery is increased, the resulting increase in weight and size can be
distributed along the collar (Table 5).
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Table 5. Current offer comparison table: modules on which autonomy depends and operational life.

Device Autonomy Dependent On Operational Life

Our Proposal (at least)
3 modules

Intensive monitoring
Smart mode + Activity +

Bluetooth Low Energy (BLE) +
Sending data—91 days

Remote monitoring
Smart mode (24 gps/day) + Activity +

BLE—236 days
Smart mode (4 gps/day)—2021 days

Personalized Telonics Collar 1 module -

Telonics, TGW-4570-4 1 module
4 gps/day, No Very High Frequency

(VHF)—6.2 years
4 gps/day, VHF 4 h/day—5.1 years

Telemetry Solutions, Iridium GPS Collar 1 module -

Tellus, Small Personalizable 1 module -

Advanced Telemetry Systems, G2110E2 Iridium 1 module VHF on 8 h/day, 12 locations/day—3 years
VHF on 8 h/day, 3 locations/day—4 years

Advanced Telemetry Systems, G5-D Iridium 1 module VHF on 8 h/day, 6 locations/day,
uplinked every 2 days—4 years

Lotek, Ultimate V6C 176G 1 module 60 ppm VHF—776 days

Lotek, WILDCELL MG 1 module 50 min between gps fixes. An SMS message is
sent after 7 acquired gps fixes—2 years

Lotek, PinnaclePro L 1 module

VHF beacon is set to operate for 1 h a day at the
average. The collar transmits through

Iridium after
collecting 18 positions,

7 positions/day—4 years

Ixorigue, GPS Ixotrack 1 module 24 gps/day—1 year

Open-source collar for terrestrial animals over
8 kg [19] 1 module 24 gps/day—103 days

4.3. Structure

The strap forms the main structure of the collar, therefore a correct definition of its
material (leather or rubber–canvas) and width (the same width as the modules or a little
less) is vitally important.

The best material for the strap is leather because it is lighter and adapts better to the
movements of the animals and therefore is more comfortable. Rubber–canvas is stronger
but leather is sufficient for farm animals: the neck is a protected part of the body and they
are herbivorous animals with blunt teeth.

Regarding the width of the strap, a similar reasoning is followed: a narrower width
than the modules is less bulky and provides movement to the collar; and therefore, increases
comfort by being resistant enough for use with farm animals.

4.4. Unions

The union between the different elements of the design is usually made by rivets
and/or nut–screw unions (Table 6), mechanical elements that increase the number of parts
of the product and its weight. Our modules are attached on the strap and it is the coating
that finishes fixing them. This registration is carried out using double-sided tape, which
translates into extra-light joints and with a reduced number of pieces (one piece per module
compared to 6–8 on the market).
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Table 6. Current offer comparison table: union weight.

Device Unions Weight (g) 1

Our Proposal 1.05 g (0.15 × 7 pieces)—7 pieces of double-sided tape

Personalized Telonics Collar 1.2 g (0.15 × 8 pieces)—4 double-sided rivets

Telonics, TGW-4570-4 3.6 g (0.15 × 24 pieces)—12 double-sided rivets

Telemetry Solutions, Iridium GPS Collar -

Tellus, Small Personalizable 30.4 g (7.6 × 4)—16 pieces, 4 base sets with rods, plate and
2 self-locking nuts

Advanced Telemetry Systems, G2110E2 Iridium 22.8 g (7.6 × 3)—12 pieces, 4 base sets with rods, plate and
2 self-locking nuts

Advanced Telemetry Systems, G5-D Iridium 15.6 g (2.6 × 6) 12 pieces, 6 sets of screw + self-locking nut

Lotek, Ultimate V6C 176G -

Lotek, WILDCELL MG 15.2 g (7.6 × 2)—8 pieces, 4 base sets with rods, plate and
2 self-locking nuts

Lotek, PinnaclePro L 31.2 g (2.6 × 12) 24 pieces, 12 sets of screw + self-locking nut

Ixorigue, GPS Ixotrack
It does not use mechanical unions to fix the

module to the strap, however, it does use a shot on the
bottom part of the collar (500 g) to keep it in the correct position.

Open-source collar for terrestrial animals over 8 kg [19] 10.4 g (2.6 × 4) 8 pieces, 4 sets of screw + self-locking nut
1 The weight of the unions in commercial devices has been estimated from the weights of various commercial
mechanical elements. Each piece of a rivet is considered to weigh approximately 0.15 g; each base set with rods,
plate, and 2 self-locking nuts is considered to weigh approximately 7.6 grams; each set of screw + self-locking
nut is considered to weigh approximately 2.6 grams. The rest of the numerical data were extracted from the
characteristics specified by the manufacturers of each device.

4.5. Closing System

The closing of the devices is done mechanically with threaded connections, and
is one of the most critical points in the sequence of use as it takes too long (Table 7).
However, the proposed closure system allows much faster manipulation of the collar.
In addition, it reduces the number of parts of the closure and standardizes the opening tool:
a neodymium magnet.

Table 7. Current offer comparison table: ease of use.

Device Ease of Use

Our Proposal Magnetic closure

Personalized Telonics Collar Mechanical nut–screw closure

Telonics, TGW-4570-4 Mechanical nut–screw closure

Telemetry Solutions, Iridium GPS Collar Mechanical nut–screw closure

Tellus, Small Personalizable Mechanical nut–screw closure

Advanced Telemetry Systems, G2110E2 Iridium Mechanical nut–screw closure

Advanced Telemetry Systems, G5-D Iridium Mechanical nut–screw closure

Lotek, Ultimate V6C 176G Mechanical nut–screw closure

Lotek, WILDCELL MG Mechanical nut–screw closure

Lotek, PinnaclePro L Mechanical nut–screw closure

Ixorigue, GPS Ixotrack Metal buckle.

Open-source collar for terrestrial animals over 8 kg [19] Metal buckle.
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Regarding the structure of the closures, it is considered that both versions are easy
to understand and use and that the force to be applied in the system is correct. However,
the double pin version prevents the strap from rotating on itself unlike the single pin
version. This limits the movements of the collar and makes the data from the inertial
sensors more accurate.

4.6. Integration of the Elements

On many occasions, the elements that make up the wearable are not formally inte-
grated (Table 8), and it is believed that animals that use wearables stand out more among
predators [26]. We propose a device that formally adapts to the context and that inte-
grates the elements, thanks to several design decisions: (i) homogeneous distribution of
the weights, which favors that the visual mass of the collar is distributed throughout it;
(ii) maintain a similar thickness throughout the entire collar; (iii) apply heat shrink tubing
as a coating over most of the collar to homogenize the device; (iv) hide shiny elements;
(v) use an internal antenna to avoid manipulative elements outside; and (vi) use rounded
and smooth shapes that adapt to the morphometry of the animal.

Table 8. Current offer comparison table: integration of elements and formal and aesthetic adaptation.

Device Integration of Elements and Formal and Aesthetic Adaptation

Our Proposal

Elements with similar thickness (8 mm the minimum and 20.5 mm
maximum and the maximum is between a piece of 19 mm and another of
13 mm) distributed along the collar. A single coating. Antenna integrated

in PCB, without external elements. Smooth and rounded finishes.
Curvature in the body of the module that adapts to the neck of the

animal. Hidden shiny elements.

Personalized Telonics Collar

Large main element at the bottom (28 mm). Heat shrinkable in the
Drop-Off area. External antenna. Edges at the top and bottom, although
rounded at the front. Curvature in the body of the module that adapts to
the neck of the animal. Hidden glossy elements except for the closure.

Telonics, TGW-4570-4

Large main element at the bottom (37 mm). It does not use heat shrink,
the coating is sandwich type. Internal antenna. Slightly rounded edges.

Curvature in the body of the module that adapts to the neck of the
animal. Bright elements exposed.

Telemetry Solutions, Iridium GPS Collar

Great main element at the bottom. Heat shrinkable only on modules.
Internal antenna. Modules with irregular shapes. No curvature in the

body of the module to adapt to the neck of the animal.
Bright elements exposed.

Tellus, Small Personalizable

Large main element at the bottom (55 mm). Without cover. Internal
antenna. Modules with slightly rounded edges. No curvature in the body

of the module to adapt to the neck of the animal.
Bright elements exposed.

Advanced Telemetry Systems, G2110E2 Iridium

Large main element at the bottom (65 mm). Without cover. External
antenna. Modules with slightly rounded shapes and edges.

With curvature in the body of the module to adapt to the neck of the
animal. Bright elements exposed.

Advanced Telemetry Systems, G5-D Iridium

Two large main elements at the bottom (47 mm). Without cover. External
antenna. Modules with slightly rounded shapes and edges.

With curvature in the body of the module to adapt to the neck of the
animal. Bright elements exposed.

Lotek, Ultimate V6C 176G

Large main element at the bottom (30 mm). Heat shrinkable coatings in
specific locations. External antenna. Modules with slightly rounded

edges. With curvature in the body of the module to adapt to the neck of
the animal. Hidden glossy elements except for the closure.
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Table 8. Cont.

Device Integration of Elements and Formal and Aesthetic Adaptation

Lotek, WILDCELL MG

Large main element at the bottom (126 mm). Without cover. Internal
antenna. Module with robust and slightly rounded shapes, lid-body

closure not visually integrated. With curvature in the body of the module
to adapt to the neck of the animal. Bright elements exposed.

Lotek, PinnaclePro L
Great main element at the bottom. External antenna. Module with robust

shapes and sharp edges. With curvature in the body of the module to
adapt to the neck of the animal. Bright elements exposed.

Ixorigue, GPS Ixotrack

Large main element at the right side (38 mm). Without cover. Internal
antenna. Module with robust and slightly rounded shapes, lid-body

closure not visually integrated. No curvature in the body of the module
to adapt to the neck of the animal. No shiny elements exposed except

the closure.

Open-source collar for terrestrial animals over 8 kg [19]
Large main element at the bottom (32 mm). Without cover. Internal

antenna. Edged module. With curvature in the body of the module to
adapt to the neck of the animal. Bright elements exposed.

5. Conclusions

Animal telemetry is a topic with a great future within intelligent animal farming, but
where serious design-dependent problems are evident. The objective of the project was
to cover the niches that have been deduced from the study of scientific literature and the
market and to provide solutions from the application of design.

The presented device represents a telemetric option whose design process has put the
user at the center, especially the animal user, through an animal-centered design strategy
that could be followed in future research. In this way, the concept of the GPS collar has
evolved, traditionally chaired by a central module that housed practically all the electronic
elements and that did not attend to the premise that wearable devices must be able to
collect accurate and reliable data without influencing the behaviors and activities of carrier
users [49]. This device solves many of the existing problems in animal telemetry devices
and contributes to improving the current offer on the market:

• Homogeneous distribution of weight in at least six modules;
• Three times lighter than devices on the market with the highest number of modules

(2–3 modules);
• Design flexibility: modularity and 3D printing;
• Modular electronics on demand of the project with customizable functions;
• Extra-light unions with a reduced number of pieces (one piece per module compared

to 6–8 on the market);
• Tightness and resistance to environmental conditions;
• Collar thickness of at least 50% less than that of commercial devices;
• Quick magnetic closure system;
• Wirelessly rechargeable batteries and homogeneous distribution on the collar in case

of higher demand; and
• Formal adaptation to the requirements of the context and visually integrated elements.

The results of this research are of interest to designers and manufacturers of animal
telemetry, technologists, and professionals in the animal and farm sector, since they con-
tribute to the knowledge about animal monitoring through the design of the device itself
and the methodological approach used for its achievement.
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Abstract: Large and densely sampled sensor datasets can contain a range of complex stochastic
structures that are difficult to accommodate in conventional linear models. This can confound
attempts to build a more complete picture of an animal’s behavior by aggregating information across
multiple asynchronous sensor platforms. The Livestock Informatics Toolkit (LIT) has been developed
in R to better facilitate knowledge discovery of complex behavioral patterns across Precision Livestock
Farming (PLF) data streams using novel unsupervised machine learning and information theoretic
approaches. The utility of this analytical pipeline is demonstrated using data from a 6-month feed trial
conducted on a closed herd of 185 mix-parity organic dairy cows. Insights into the tradeoffs between
behaviors in time budgets acquired from ear tag accelerometer records were improved by augmenting
conventional hierarchical clustering techniques with a novel simulation-based approach designed
to mimic the complex error structures of sensor data. These simulations were then repurposed to
compress the information in this data stream into robust empirically-determined encodings using
a novel pruning algorithm. Nonparametric and semiparametric tests using mutual and pointwise
information subsequently revealed complex nonlinear associations between encodings of overall
time budgets and the order that cows entered the parlor to be milked.

Keywords: dairy welfare; hierarchical clustering; mutual information; precision livestock farming;
time budgets; unsupervised machine learning

1. Introduction

Precision livestock farming (PLF) technologies produce prodigious amounts of data [1].
Although the behaviors encoded by such sensors are often much simpler than those that
can be quantified by a human observer, the measurement granularity and perseverance
provided by these technologies creates new opportunities to study complex behavioral
patterns across time and in a wider range of contexts. Observations collected on a single
animal over extended observation windows at high sampling frequencies can, however,
contain a range of complex temporal patterns, such as cyclicity, non-stationarity, autocor-
relation, etc. [2]. Furthermore, when sensors are applied to large heterogenous groups
of animals housed socially in spatially restricted environments, recorded behaviors may
also contain complex interdependencies between animals at the dyadic, triadic, clique,
and herd levels [3–5]. Failing to accommodate all these complex structural and stochastic
features in a conventional model-based approach to statistical inference risks returning
spurious insights into the underlying behavioral dynamics. Developing such a model with
a single PLF data stream can be challenging. Provided multiple data streams, however,
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the logistical challenges presented by model-based analytical frameworks can rapidly
compound, creating significant barriers to cross-sensor inferences, and thereby impeding
researchers from extracting more holistic behavioral inferences from increasingly data-rich
farm environments.

Unsupervised Machine Learning (UML) tools may provide a more flexible and for-
giving approach to knowledge discovery in the context of large sensor datasets [6,7]. Such
algorithms excel at identifying and characterizing complex non-random behavioral pat-
terns lying beneath the stochastic surface of a dataset, while often employing relatively
few structural assumptions about the data [8–10]. Hierarchical clustering-based techniques
offer an intuitive and highly adaptable approach to visualizing high dimensional datasets
that is particularly well-suited to exploratory data analysis [4,9]. Indeed, by reducing the
complex behavioral signals present in a sensor dataset into a series of discrete clusters, such
algorithms may be viewed as an empirical extension of classical ethological techniques.
Discrete data, however, can be challenging to work with in most frequentist and even many
Bayesian frameworks. Estimators based on information entropy, on the other hand, are
purpose-made to quantify uncertainty in discretely encoded data without knowledge of
the underlying distribution, and thus naturally complement hierarchical clustering-based
algorithms [7,11,12].

Clustering algorithms, by virtue of their incredible flexibility, have successfully been
applied to a range of PLF data streams [7,13–18]. In our own previous work, we have high-
lighted the utility of hierarchical clustering-based approaches in leveraging the behavioral
co-dependencies of cows housed socially in large groups, in a production environment, in
order to recover complex temporal patterns in behavior [7]. In these analyses, data mechan-
ics algorithms were able to recover complex nonstationarity in the order in which cows
entered the milking parlor. Some of these changes in queuing patterns could be attributed
to the shift to spring pasture access, but other transient and persistent shifts in entry order
recovered in these encodings were driven by environmental factors not experimentally
recorded [7,19,20]. Entropy-based nonparametric permutation tests were also successful in
recovering preliminary evidence of significant nonlinear associations between encodings
of entry-order patterns and activity patterns recorded using ear-tag accelerometers. In
this paper we will explore how novel ensemble simulation techniques [11] that emulate
and adjust for the complex sources of error in PLF data streams may be used to produced
more balanced encodings of multi-dimensional behavioral data. We also introduce a new
dendrogram pruning algorithm that is able to efficiently repurpose these same ensemble
simulations, to ensure that that the power of hierarchical clustering tools do not exceed the
resolution of the sensor. Finally, we demonstrate the utility of information decomposition
techniques within our existing nonparametric mutual information testing framework, to
better facilitate the visual characterization of complex behavioral patterns across sensor
data sets that might be overlooked in more conventional model-based analyses.

2. Materials and Methods
2.1. Description of Data

To demonstrate the efficacy of our analytical approach, data was repurposed from a
feed trial assessing the impact of an organic fat supplement on cow health and productivity,
through the first 150 days of lactation. All animal handling and experimental protocols
were approved by the Colorado State University Institution of Animal Care and Use
Committee (Protocol ID: 16-6704AA). The study ran from January through July in 2017,
on a USDA Certified Organic dairy in Northern Colorado, enrolling a total of 200 cows
over a 1.5-month period into a mixed-parity herd of animals, with predominantly Holstein
genetics. Cows were maintained in a closed herd in an open-sided free-stall barn, stocked
at roughly half capacity with respect to both feed bunk spaces and stalls. Cows had free
access to an adjacent outdoor dry lot while in their home pen, and beginning in April were
moved onto pasture at night, to comply with organic grazing standards. Cows were milked
three times a day, with free access to TMR between milkings, and were head locked each
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morning to facilitate data collection and daily health checks. For more details on feed trial
protocols, see Manriquez et al. (2018) and Manriquez et al. (2019) [21,22].

In addition to standard production and health assessments, behavioral data was also
obtained from several PLF data streams [19]. Milking order, or the sequence in which
cows enter the parlor to be milked, is automatically recorded as metadata in all modern
RFID-equipped milking systems. Our study cows were milked in a DelProTM rotary parlor
(DeLaval, Tumba, Sweden). At each morning milking, raw milking logs were exported
from the parlor software, and the data were processed in order to extract the single-file
order that cows entered the rotary [23]. A total of 80 milk order records—26 recorded while
cows remained overnight in a free-stall barn, and 54 following the transition to overnight
access to spring pasture—were used to create discrete encodings for parlor entry patterns
via data mechanics clustering (see McVey et al. for further analytical details) [7]. The
dendrograms summarizing the distribution of cow entry-order patterns and subsequent
heatmap visualizations will be subjected to further analysis, without modifications to the
previously reported encodings.

Animals enrolled in this feed trail were also fitted with a CowManager ear tag ac-
celerometer (Agis Automatisering BV, Harmelen, The Netherlands). This commercial
sensor platform, while designed and optimized for disease and heat detection, also pro-
vides hourly time budget estimates for total time (min) engaged in five mutually exclusive
discrete behaviors—eating, rumination, non-activity, activity, and high activity [24,25].
Time budget data was collected on all animals for a contiguous period of 65 days (1560 h).
The observation window began on 17 February, shortly after trial enrollment was com-
pleted, and ended on 23 April, when the grazing season commenced and cows were moved
overnight beyond the range of the receiver antennae. After eliminating the data of cows
that were removed prematurely from the observation herd due to acute clinical illness,
as well as several cows with persistent receiver failure, complete sensor records were
available for 179 animals. In order to focus fully on the logistical challenges of encoding
and characterizing the complex multivariate dynamics of this system, we have chosen to
compress this data over the time axis to consider only the overall time budgets of these
cows, and will leave explorations of the longitudinal and cyclical complexity of this dataset
for future work.

2.2. Improving Empirical Encodings of Overall Time Budget through Simulation

Regardless of its original distribution, data can always be coarsened into a discrete
variable [26]. For complex or poorly defined systems, where appropriate cutoffs (binning
rules) cannot be inferred a priori, an empirically-determined encoding may provide a
more flexible and comprehensive approach to discretizing the underlying behavioral
signals. One algorithm that provides a model-free approach to pattern encoding within the
larger cannon of UML tools is hierarchical clustering. This approach employs a bottom-
up agglomerative strategy to group observational units into discrete clusters of variable
sizes, progressively building a coherent picture of herd-level global structures from the
similarities in behavioral patterns observed between pairs of individuals [9,10]. This series
of progressive pairings can be expressed graphically in the form of a dendrogram, which
serves as a 2D representation of the data’s geometric distribution in its higher dimensional
measurement space, and can subsequently be used in data visualizations to highlight the
most prominent structural features of a dataset [19].

The efficacy of any hierarchical clustering scheme, however, is largely contingent on
the adequacy of the estimator used to quantitatively express the pairwise dissimilarity
between observational units [10]. The Euclidean distance (L2 norm) is the default estimator
used in most applications of this algorithm [9,10,27], including much of the previous
work in precision livestock applications [13,14,18]. The L2 norm is appropriate for many
measurement systems where variance is reasonably uniform across a continuous domain
of support. Time budget data, however, is distributed multinomially, and as such has
significant domain constraints [26]. Put more simply, we know that the minutes logged for
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each behavior must sum to an hour. So, if a cow has ruminated for 60 min, then there can
be no uncertainty in the remaining axes, because we know these values must be zero. These
domain constraints impose co-dependencies between the behavioral axes that become
stronger as observations shift towards the boundaries of the distribution’s support, which
in turn warp the intrinsic variability of each axis contingent upon their location within
the domain.

This statistical tedium also has some intuitive behavioral implications. Suppose we
have two cows, Betty and Bessy, who spend 13 and 14 h a day ruminating, respectively.
How “different” are these values? Since both cows are exceeding rumination rates needed
to sustain a healthy metabolism, we would not anticipate that this difference would have
a significant biological impact on these animals, and may ultimately be explained by
relatively trivial behavioral fluctuations. Now, suppose instead that we have two other
cows, Daisy and Delilah, who spend only 3 and 4 h a day ruminating, respectively. Given
that both these cows are now well below the normal threshold for this behavior, this one-
hour difference may have significant biological impacts. With a simple L2 norm, however,
these two pairs would be given equivalent dissimilarity estimates for this behavioral axis,
and so clearly a better estimator is needed.

Relative entropy, also referred to as the Kullback–Leibler divergence, is a classic infor-
mation theoretic metric specifically designed to contrast discrete probability distributions,
and thus a natural candidate for analysis of time budget data [12]. For any two distri-
butions that utilize the same alphabet of k = 1 . . . K categorical features (i.e.,—use the
same ethogram), relative entropy can be calculated using Equation (1), and converted to a
symmetric distance measure using Equation (2). By utilizing the proportion of time that an
animal invests in each behavior as both a nominal and relative value, this estimator is able
to adjust the relative difference between cows by the absolute position of each observation
relative to the boundary of the domain.

DKL(P||Q) = ∑
k

P(k) log
P(k)
Q(k)

(1)

P = normalized time budget vector f or Cow A

Q = normalized time budget vector f or Cow B

DKL(P, Q) = DKL(P||Q) + DKL(Q||P) (2)

Domain constraints are not, however, the only stochastic feature that need be ac-
commodated when working with time budget data. There is also the measurement error
attributable to the sensor itself. Returning to the previous example, suppose that we also
know that our rumination records are only accurate to ±1 h. Is it then still appropriate to
give more weight to the one-hour difference between Daisy and Delilah, than between Betty
and Betsy? Since both observations are within the bounds of error, attempting to enhance
the underlying biological signal may only succeed in amplifying measurement noise. A
closed-form estimator, however, may not be readily generalizable to the wide range of
measurement error models encountered with PLF sensors. We therefore propose that a
simulation-based approach may offer a more flexible means of accounting for measurement
errors in dissimilarity estimates [11].

The LIT package provides a built-in simulation utility for time budget data that
seeks to mimic the stochastic error structure of the original data while still preserving the
underlying behavioral signal [11]. Data is provided as a tensor, with cow indexed on the
first axis, time indexed on the second, and the component behaviors on the final axis. The
count data at each cow-by-time index is then used to redraw a simulated datapoint from
one of three optional distributions [26]. In the first, the user may sample directly from
a multinomial distribution centered around the normalized observed count vector. This
model assumes that measurement error should shrink as a cow dedicates larger proportions
of an observation window to specific behaviors, and intrinsically prevents estimates from
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being generated outside the domain of support. Variance can be underestimated at the
extremes of the domain, however, if the probability for a behavior is non-negligible, but the
observed count is zero due to under-sampling. This issue may be addressed in sampling
option two, where samples are redrawn from a multivariate beta distribution (MBD), also
known as a Dirichlet distribution, again parameterized using the normalized observed
count. While this sampling strategy slightly biases the simulation towards the center of
the distribution, it prevents under-sampling at the extremes of the domain. Finally, users
may combine these sampling strategies in sampling option three, wherein the probability
vector used to parameterize the multinomial is drawn first from the Dirichlet, in order to
further increase the uncertainty in the simulated data. After simulation has been completed
by redrawing samples at the finest level of temporal granularity supported by the sensor,
the data can then be conditionally or fully aggregated along temporal axis as required for
downstream analysis as a time budget.

This simulation routine was used to create an ensemble of B = 500 simulated overall
time budget matrices that mimicked the stochasticity attributable to a reasonable approxi-
mation of the measurement error of the sensor. Stored as a tensor with replication on the
last axis, the variance of the ensemble of simulations could then be easily calculated for
each combination of cow index and behavioral axis. If the underlying simulation strategy
is a reasonable representation of the noise in the sensor, then these variance terms will then
serve as a sufficient approximation of the relative uncertainty in each data point. We pro-
pose that that this information can then be incorporated into the calculation of dissimilarity
estimates by serving as penalty terms in the calculation of an ensemble-weighted distance
estimator defined in Equation (3).

DEW(P, Q) = ∑
k

(Pobs(k)−Qobs(k))
2

σ2
P∗(k) + σ2

Q∗(k)
(3)

σ2
P∗(k) = Variance o f ensemble o f simulated values f or Cow A f or behavior k

σ2
Q∗(k) = Variance o f ensemble o f simulated values f or Cow Q f or behavior k

The rescaling strategy employed in our proposed dissimilarity estimator is strongly
inspired by traditional analysis of variance (ANOVA) techniques, thereby providing several
insights into its anticipated behavior. First, because the simulations were generated using
the multinomial or one of its analogs, we can infer that these penalty terms will not be
homogenous across the domain of support, but should shrink as observations approach
the boundary. This will allow the ensemble-weighted distance estimator to emulate the
rescaling dynamic achieved with the KL distance; however, rescaling at the extremes of
the domain will ultimately be bounded by our simulated measurement error, so as not to
exceed the precision of the sensor. Second, because we have here emulated measurement
error in our simulation using sampling uncertainty, the central limit theorem will apply [9].
Thus, we can anticipate that as the number of observations per animal increases, the impact
of measurement error on our inferences will shrink, allowing progressively more subtle
differences between animals to come into resolution. Taking this property to its limit,
however, can it be said that with enough observation minutes the differences between
cows can be inferred with near certainty? That intuition, of course, is at odds with our
characterization of a dairy herd as a complex system, and highlights an additional stochastic
element that must be accommodated—the behavioral plasticity of the cows themselves in
response to changes in the production environment [4].

Given the extended observation window of this particular data set, it would be possible
to recalculate time budget conditional on the day of observation, and then use the variance
in daily time budget along each behavioral axis as a penalty term. Such estimates would
collectively reflect heterogeneity in variance attributed to domain constraints, measurement
error, and behavioral plasticity. Such an approach would not, however, be feasible for
datasets collected over shorter time intervals with fewer replications, or in applications
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with behavioral responses where there is no clear hierarchy in the temporal structure of
the same. We therefore propose that our stochastic simulation model can be extended
to also provide a generalizable means to approximate the uncertainty of the underlying
behavioral signal.

As before, the measurement error was simulated by redrawing samples at the finest
temporal granularity provided by the sensor. Prior to compression along the temporal
axis, however, a random subsample of observations days was selected across all cows, and
only these values were used to calculate the simulated overall time budget. If all cows
demonstrated comparable levels of consistency in their daily time budgets, then reducing
the effective sample size of our simulated data sets through a subsampling routine would
increase the ensemble variance estimates. This, in turn, would make our approximation
of measurement error hyper-conservative, but this increase would be uniform across all
cows. If, instead, some cows were less consistent in their time budgets across days, then
the sampling error imposed by the subsampling routine would be greater, resulting in
a larger ensemble variance estimate. Thus, we would expect a stronger penalty to be
applied to cows who demonstrated greater plasticity in their behavioral responses to both
transient and persistent changes in the production environment. For small datasets with a
limited number of replications, the number of subsamples could be set quite close to the
size of the complete sample, and would thus emulate a jackknife approach to variance
estimation [9,10,28]. For larger datasets, however, the subsample size could be set smaller,
to make the resulting ensemble variance estimates progressively more sensitive to the
uncertainty in the underlying behavioral signal.

To evaluate the empirical performance of these dissimilarity estimators, distance
matrices were calculated for the 177 cows with complete CowManager time budget records.
Euclidean distance and KL Distance were calculated using base R utilities, with speed up
options utilizing the Rfast package [23,29]. An ensemble-weighted dissimilarity matrix
was first calculated using simulated values accounting only for measurement error using
the most conservative joint Dirichlet-multinomial sampling scheme, hereafter referred to
as noise-penalized distance. A second ensemble-weighted dissimilarity matrix was then
calculated using the same sampling scheme for measurement noise but aggregated over
a 14-day subsample to account for behavioral plasticity in daily time budgets, hereafter
referred to as plasticity-penalized distance. The LIT package provides users a clustering
visualization utility, which converts dissimilarity matrices into a dendrogram using the
hclust utility in base R with default Ward D2 linkage [23], and the generates heatmap
visualizations of the resulting clustering results using the pheatmap package [30]. Heatmaps
were generated on a grid of cluster values from k = 1 . . . 10 for each of the four dissimilarity
estimators, with complete results provided in Supplementary Materials, the results for
k = 10 clusters are provided. The LIT package also provides users with a plotting utility to
visually contrast the broader patterns between behavioral encodings. Outputs from the
clustering utility are passed in to create a contingency matrix generated using ggplot2 with
cells colored by their corresponding cell count [31]. The heatmap visualizations for each
encoding are then added to the row and column margins of the contingency matrix using
the ggpubr package [32], and arranged such that each row cluster in either heatmap matches
the order of the contingency matrix reading either up-down or left-to-right, allowing for
direct and detailed visual comparison of the discretized behavioral patterns. Comparisons
between the noise-penalized and plasticity-penalized encodings are provided.

2.3. Improving Tree Pruning Decisions through Simulation

An optimal encoding strategy seeks to minimize the loss of relevant information by
retaining as much of the underlying deterministic signal as possible, while hemorrhaging
only noise [26]. In a hierarchical clustering framework, this is achieved by pruning the
dendrogram built from the dissimilarity matrix at the point where the branches cease to
represent differences in the underlying signal. Standard pruning strategies allow users
to either: (1) provide a dissimilarity cutoff, below which value all further branches are
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grouped into the same bin, or (2) extract the first K branches of the tree [9,10]. As with the
default Euclidean distance dissimilarity estimator, this approach may be appropriate for
datasets with relatively homogenous variance structures. For data drawn from intrinsically
heterogenous distributions, however, the branch lengths cannot be directly compared
across the domain of support, making globally-defined pruning rules a suboptimal strategy
for analysis of time budget data.

More fundamentally, a homogenous pruning strategy may be too simplistic for many
PLF sensor datasets, for which the underlying signal often represents a complex composite
of behavioral mechanisms that operate at multiple scales. Although some environmental
factors might be expected to have an impact on cattle behaviors that are uniform across the
herd, other factors might elicit responses that differ in magnitude for different subgroups
within the larger population, or even become isolated within smaller social cliques. For
example, we might expect the number of times cows are moved each day for milking will
place similar constraints on the time left to lie down across all animals, but overstocking
with respect to stall spaces might have a much larger magnitude of impact on the lying
patterns of subordinate heifers than the more dominant older cows [33]. In such a complex
system, we would expect the heterogeneity imposed by the underlying biological signal
to differ in scale across the dataset. Subsequently, in attempting to employ a global cutoff
decision to encode information for such a dataset, we would always be faced with the
difficult decision to either ignore the subtler behavioral patterns present in some branches of
the tree, or else allow noise to contaminate our encoding of other branches with intrinsically
coarser behavioral patterns.

Although all the components that contribute to the signal in a complex livestock
system might be difficult to anticipate a priori, we propose that a more dynamic pruning
algorithm might still be achieved, by again employing flexible simulation-based approaches
to emulate the comparably simpler sources of uncertainty. If each branch of the dendrogram
is viewed as a pairwise contrast between two groups of animals, then we need only to de-
termine whether the bifurcation under inspection represents a difference in the underlying
signal that can be reliably distinguished from noise. If it can, then the two groups should
be split in the final encoding to capture this feature of the data’s distribution. If a branch
falls below the intrinsic resolution of the data, however, then the branch may be pruned so
that all animals are placed into the same cluster, with no loss of meaningful information. By
implementing such a branch-level test recursively, we can gradually work our way down
the tree with adaptive locally-defined pruning decisions.

To evaluate the reliability of the behavioral signal encoded at each bifurcation of the
tree [34], our branch test utility utilizes two mimicries. The first set of simulations are
generated under the alternative hypothesis that assumes a branch contains an underlying
deterministic signal that is only partially obscured by stochastic noise. Thus, we can simply
repurpose the ensemble of simulated data sets used previously to calculate the ensemble
weighted dissimilarity metrics by mimicking the uncertainty in the observed data. The
second set of simulations are generated under the null hypothesis that a given branch
contains only noise. As the null implies that animals demonstrate equivalent patterns of
behavior within the resolution of the sample, this mimicry can be generated quite efficiently
using a standard bootstrapping routine [28], wherein time budgets simulated under the
alternative are unconditionally resampled from amongst all animals in a given branch.
HClustering is then performed independently on each data mimicry in either ensemble,
and the first k branches are extracted to create an ensemble of discrete encodings.

Under the alternative hypothesis, a strong signal should produce a robust tree struc-
ture such that, even after the addition of simulated noise, the resulting encoding would still
closely mirror that of the original observed data. As the stochastic component of a dataset
becomes stronger relative to the signal, these bifurcation points will become progressively
less stable, and the subsequent encodings less reliably aligned with the original data. When
the signal falls below the resolution of the data, the tree structures of the simulated data
would then seldom match that of the original data, and so would become poorly distin-
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guished from encodings generated under the null, with no signal component. We propose
that mutual information, which can be calculated without any additional distributional
assumptions, can be used to quantify the similarity between the observed data and each
mimicked dataset, and subsequently used to determine if simulations under the alternative
are distinguishable from the null [12]. In our study, a bifurcation was determined to be sig-
nificant if less than 5% of the MI values calculated for data simulated under the alternative
hypothesis fell below the 95th quantile of MI values calculated for data simulated under
the null. If a bifurcation was instead deemed insignificant, the branch was pruned and all
cows within it assigned to the same cluster in subsequent encodings.

In evaluating the significance of a bifurcation, it seems intuitive that a k = 2 binary
encoding should be utilized. For complex systems subject to the influence of multiple
competing drivers of behavioral responses, however, a false negative result can occur with
this parameterization if the addition of stochastic noise perturbs the order in which two
significant mechanisms with similar magnitudes of impact are bifurcated. Such trivial
destabilizations of the tree structures can be readily identified in visualizations of the
distributions of MI values calculated against simulations under the alternative, as the
“flip flopping” between bifurcation points produces clear evidence of multimodality (see
Figure 1). To circumvent this issue, the LIT package provides users the option to re-test
any bifurcations deemed insignificant, using a binary encoding with a more granular
discretization (k > 2). This effectively allows the algorithm to “look down the branch” to
absorb any irrelevant flip-flopping between competing signals, thereby preventing spurious
over-pruning that would hemorrhage information on significant behavioral patterns from
the final encoding.

Sensors 2021, 21, x FOR PEER REVIEW 8 of 25 
 

 

Under the alternative hypothesis, a strong signal should produce a robust tree struc-
ture such that, even after the addition of simulated noise, the resulting encoding would 
still closely mirror that of the original observed data. As the stochastic component of a 
dataset becomes stronger relative to the signal, these bifurcation points will become pro-
gressively less stable, and the subsequent encodings less reliably aligned with the original 
data. When the signal falls below the resolution of the data, the tree structures of the sim-
ulated data would then seldom match that of the original data, and so would become 
poorly distinguished from encodings generated under the null, with no signal component. 
We propose that mutual information, which can be calculated without any additional dis-
tributional assumptions, can be used to quantify the similarity between the observed data 
and each mimicked dataset, and subsequently used to determine if simulations under the 
alternative are distinguishable from the null [12]. In our study, a bifurcation was deter-
mined to be significant if less than 5% of the MI values calculated for data simulated under 
the alternative hypothesis fell below the 95th quantile of MI values calculated for data 
simulated under the null. If a bifurcation was instead deemed insignificant, the branch 
was pruned and all cows within it assigned to the same cluster in subsequent encodings. 

In evaluating the significance of a bifurcation, it seems intuitive that a k = 2 binary 
encoding should be utilized. For complex systems subject to the influence of multiple 
competing drivers of behavioral responses, however, a false negative result can occur with 
this parameterization if the addition of stochastic noise perturbs the order in which two 
significant mechanisms with similar magnitudes of impact are bifurcated. Such trivial de-
stabilizations of the tree structures can be readily identified in visualizations of the distri-
butions of MI values calculated against simulations under the alternative, as the “flip flop-
ping” between bifurcation points produces clear evidence of multimodality (see Figure 1). 
To circumvent this issue, the LIT package provides users the option to re-test any bifurca-
tions deemed insignificant, using a binary encoding with a more granular discretization 
(k > 2). This effectively allows the algorithm to “look down the branch” to absorb any 
irrelevant flip-flopping between competing signals, thereby preventing spurious over-
pruning that would hemorrhage information on significant behavioral patterns from the 
final encoding. 

 
Figure 1. Visualization of the test–branch results for the first bifurcation of the Euclidean distance 
time budget dendrogram, cut using the noise-penalized ensemble of data mimicries. In simulations 
under the alternative hypothesis, the addition of noise intended to mimic measurement error has 
destabilized the tree, causing it to “flip-flop” between first isolating cows with more moderate time 
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Figure 1. Visualization of the test–branch results for the first bifurcation of the Euclidean distance
time budget dendrogram, cut using the noise-penalized ensemble of data mimicries. In simulations
under the alternative hypothesis, the addition of noise intended to mimic measurement error has
destabilized the tree, causing it to “flip-flop” between first isolating cows with more moderate time
budgets, and animals at the two extremes of the tradeoff between eating and ruminating. Although
both branches are distinguishable from measurement errors, this ambiguity in bifurcation order has
produced bimodality in the distribution of mutual information estimates against the encoding for
the observed data. Retesting with more clusters allows the algorithm to “look down the branch” to
produce better separation between encodings under the null and the alternative, and thereby avoid
spurious over-pruning.

Full results for the application of our ensemble-cut algorithm to dendrograms gen-
erated using each of the four dissimilarity estimators discussed in the previous section,
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and using both the noise-penalized and plasticity-penalized encodings, are provided in the
Supplementary Materials. A summary of results for the application of the ensemble-cut
algorithm applied to dendrograms generated from the noise- and plasticity-penalized
ensemble-weighted distance metrics, the noise-penalized and plasticity-penalized encod-
ings, respectively, are provided.

2.4. An Information Theoretic Framework for Cross-Sensor Inferences

Equipped with an appropriate encoding to discretely represent the heterogeneity in
overall time budgets within this herd, and provided with the encoding of longitudinal
patterns in parlor entry position from previous work with this data set, a potential question
to ask would be: how does a cow’s time budget, which is largely determined by her
behaviors in the home pen, relate to her behavior in the milking queue? There are a
number of nonparametric and parametric techniques available to evaluate the overall
strength of association between two discrete variables, by evaluating the distribution of
animals in the joint encoding [26]. There is, however, perhaps greater practical utility in
characterizing low and high points within the joint encodings, which would provide more
detailed insights into the tradeoffs between specific behavioral patterns recovered from the
data streams in these distinct farm contexts. Towards this end, information theory offers a
more comprehensive approach to decomposing the stochasticity within discretely encoded
variables, and thus may provide a more holistic approach to evaluating both the global and
local features of a joint encoding, while employing few structural assumptions [12].

First, to evaluate the strength of the overall relationship between two discretized
behavioral responses, the LIT package provides users a permutation-based bivariate testing
utility that uses the mutual information estimator to quantify the amount of information
entropy that is redundant between the two encodings [7,12]. We can anticipate, however,
that the efficacy of this test in recovering significant relationships between the underlying
biological signals will be affected by the resolutions of the encodings. Suppose that a single
latent biological factor impacts the behavioral responses collected by both PLF data streams,
creating informational redundancy between the two encodings. If we cut the trees above
the intrinsic magnitude of its impact on a given behavior, its influence may be overlooked
and mutual information underestimated. On the other hand, if we prune the tree far below
the magnitude of its impact, our inferences can lose power, as bin sizes in the joint encoding
become progressively smaller, weakening the empirical estimation of the joint probability
distribution and thereby increasing estimation error in the MI estimator. The resolution
of our encodings must, therefore, be optimized to match the dynamics of the system, or a
false negative result may be returned. To further complicate matters, however, we cannot
necessarily assume that the magnitude of impact of a given latent factor will be uniform
across behaviors, nor should we expect in a complex farm environment that behaviors will
be influenced by a single latent factor.

To overcome this logistical challenge without falling back on dubious a priori assump-
tions, the LIT package implements mutual information-based permutation tests on a grid,
varying the cluster resolutions across both behavioral axes [7]. Under the null hypothesis
that no significant bivariate relationship exists between data streams, cow ID labels are
randomly permuted within each tree, preserving the marginal distribution of the data
along each axis, but destroying any latent bivariate relationships. These permuted trees are
then cut, and the mutual information of the joint encoding estimated for each combination
of cluster counts on the grid. A p-value is then generated by comparing the observed MI
value of the joint encoding at each grid point against the corresponding distribution of
MI values simulated under the null. Just as a scientist varies the focus of a microscope
to bring microbes of different size into resolution, we can expect that geometric features
of the joint probability distribution imposed by latent deterministic variables, that vary
in scale of impact, will come into and fall out resolution as these meta-parameters are
varied across the grid of cluster counts. To help the user visually identify where such
features have come into resolution, the LIT package also returns a heatmap visualization
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of the observed MI value for each grid point that is centered and scaled, relative to the
distribution of MI values under the null. For behavioral measurements subject to the
influence of multiple biological and environmental factors operating simultaneously, this
exhaustive approach to parameterization enables users not only to build a more complete
picture of a complex behavioral system, but may also provide insight into the hierarchy of
these behavioral responses.

Unfortunately, as the resolution of the encodings is increased, MI estimates not only
become less precise, but they may also become less accurate. Bias is introduced when
empirical estimates of the joint probability distribution become so granular (i.e.,a high
number of bins relative to the total sample size) that regions with low but nonzero proba-
bilities go unsampled. These zero-count bins cause the total entropy calculated from the
empirical joint probability distribution to be underestimated which, in turn, causes the
relative amount of redundant information to be overestimated. Although the magnitude of
this bias is partially dependent on the total sample size, it is also contingent on the structure
of the joint probability distribution itself, namely the number of low-probability cells. Given
that the joint probability distribution under the null, which is randomly permuted to inten-
tionally remove any nonrandom features in the sample, can be expected to have a more
uniform distribution of probability than the observed dataset, we can anticipate that the
magnitude of the bias may differ between these two distributions as the sample becomes
more granular, preventing MI estimates from being directly comparable. To overcome this
issue, the LIT package by default provides entropy estimators based on the Maximum
Likelihood frequency estimates, but allows users to select from a range of bias-corrected
frequency estimates available in the entropy package [35]. Based on the simulation work by
Hausser and Strimmer (2009), the JS “shrink” estimator was used in our study to conduct
bias-corrected mutual information permutation tests [36].

Not only can the impact of latent factors on behavioral measures differ in magnitude,
we can also anticipate that responses may differ in both strength and direction for different
subgroups within the herd. Such nonlinear dynamics are easily captured in a model-free
MI test, but further inspection of the contingency table is needed to fully characterize
such complex bivariate relationships between sensor outputs. If either marginal encoding
has roughly the same number of observations in each bin, then the cell counts in the
joint contingency table can be directly compared, as under the null we would expect
each cells to be equiprobable. For empirically defined encodings, however, bin sizes
can vary significantly to better capture the underlying geometry of the univariate data
distribution. Such differences in marginal probabilities prevent the raw cell counts from
being directly compared. To better identify which cells in an empirically defined joint
encoding are driving a significant overall relationship between two data streams, mutual
information can be decomposed into pointwise mutual information (PMI) values [37].
The LIT package provides users the option in the compareEncodings plotting utility to
color cells in the joint contingency table by PMI estimate, to better facilitate direct visual
comparisons of the encodings. To further enhance visualizations of the joint probability
distribution that significantly differs from expected cell counts under the null, users may
also specify a probability threshold above which PMI values should not be displayed,
which was determined here by simulating PMI estimates under the null by redrawing from
a multinomial distribution using the outer product of the marginal distributions.

Bivariate tree tests were applied to the time budget encodings, using both the noise-
and plasticity-penalized dissimilarity metrics, and pruned using the more conservative
plasticity-penalized mimicry, against the encoding of parlor entry order data produced
using data mechanics clustering from our previous work [7]. A 2:10 × 2:10 grid was used
to determine the optimal resolution for the bivariate relationship, with the optimal meta-
parameters used to create visualizations of the joint encoding, wherein pointwise mutual
information values were used to color cell counts that were significant at the alpha = 0.05
significance level. To further explore latent factors that might explain significant associa-
tions between entry position and time budgets, bivariate tree tests and pointwise mutual
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information tests were also applied separately to the encodings of both PLF data streams
and health records.

3. Results and Discussion
3.1. Improving Empirical Encodings of Overall Time Budget through Simulation

Figure 2 provides a visual comparison of the time budget encodings for the four can-
didate dissimilarity metrics. In each heatmap visualization, individual cows are arranged
along the row axis, and the mutually exclusive behaviors that comprise the overall time
budget are ordered along the columns. Each cell within the heatmap is subsequently
colored to reflect the proportion of time that a given cow is recorded by the accelerometer
system to engage in a specific behavior over the observation window. Few cows dedicated
more than half of their time to any one behavioral axis, which is not surprising, given that
total lying time in this system is split between the nonactive and rumination axes [33]. Time
recorded as eating and time recorded as ruminating were the highest magnitude behavioral
axes, but time spent eating demonstrated far greater range and heterogeneity. Time spent
nonactive was lower in overall magnitude, but still showed a fair amount of heterogeneity
across cows. The active and highly active axes, however, were both quite low in magnitude
and generally demonstrated less systematic heterogeneity across the herd. The order of
cows along the row axis in each heatmap is determined by the dendrogram calculated
for each dissimilarity matrix. The dendrogram can be interpreted as an approximate 2D
representation of the distribution of the cows with the 5D multinomial space of the time
budget, and thus serves to bring out in the heatmap systematic differences in time budget
across the herd. Gaps were added between rows to indicate branches that have been
pruned, such that all cows within a given branch received the same discrete value in the
final time budget encoding.

A cursory appraisal of all four encodings summarized in Figure 2 reveals that, regard-
less of the dissimilarity metric utilized, there was a considerable amount of heterogeneity
in the distribution of overall time budgets across this herd. Looking more closely at the
clustering tree produced from the unweighted Euclidean dissimilarity metric in Figure 2A,
we can see that the higher magnitude eating and rumination axis entirely dominated the
first handful of bifurcations of the dendrogram. Even for users not accustomed to reading
dendrograms, this dynamic is clearly animated by parsing through the grid of heatmap
visualizations provided by the encodePlot utility (see Supplementary Materials). Hetero-
geneity in the moderate-magnitude nonactivity appears to have been largely ignored in
the first half-dozen bifurcations, with the first 10 clusters extracted from this dendrogram
being ultimately quite variable in the nonactivity response. Nor is there clear evidence
that either activity axes influenced the first 10 bifurcations of this tree. This dynamic is
almost certainly attributable to the lack of intrinsic scaling with this estimator. While a
behavioral axis that represents a larger proportion of a cow’s time investments may warrant
additional consideration, these results clearly demonstrate that the Euclidean norm does
so to nearly the complete exclusion of lower-magnitude behavioral axes that might still
convey important ethological information. The Euclidean distance heatmap is also anno-
tated on the row axis with a number of auxiliary data fields for each cow, which included:
age (birth date); calving date; an estimate of peak lactation; nutrition supplementation
treatment, and health status during the observation window (see Supplementary Materials
for details on the encoding of these auxiliary cow attribute variables). A cursory visual
inspection reveals that most clusters appear to be fairly homogenous with respect to cow
age, tenure in the pen, and feed supplementation status. Sick cows, however, appear to
be slightly overrepresented in some groups, namely the smaller branches representing the
more extreme time budget tradeoffs.
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Figure 2. Comparison of overall time budget encodings derived from different dissimilarity metrics.
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In each heatmap cows are arranged along the row axis, and the mutually exclusive behaviors along
the column axis, such that each cell is colored to represent the proportion of time that a given cow is
recorded engaging in a specific behavior. Row gaps have been added within each heatmap to reflect
the first 10 branches of the corresponding dendrogram, which here are numerically indexed reading
from top to bottom (A) Euclidean norm encoding with row annotations representing cow-level
attributes. (B) KL Divergence encoding with row annotations representing log-scaled variance in
observed daily time budgets. (C) Noise-penalized ensemble-weighted Euclidean distance encoding
with row annotations representing the log-scaled ensemble variances. (D) Plasticity-penalized
ensemble-weighted Euclidean distance encoding with row annotations representing the log-scaled
ensemble variances. See Supplemental Materials for full-scale versions of these images.

Looking next at the hierarchical clustering results visualized in Figure 2B, the KL
distance seems to have provided a slightly more holistic encoding of the data that better
balances the input across the five behavioral axes. Again, extremes in eating and rumination
drive the first few bifurcations of the tree structure, but tradeoffs between time spent eating
and nonactivity are considered much earlier in the bifurcation decisions within this tree.
Some systematic heterogeneity was also revealed across the herd in the high activity
axis, despite its lower magnitude. Unfortunately, the KL distance also appears to have
over-stratified cows whose time budgets lie at the extremes. In particular, the cows with
extremely low time spent eating (clusters 6–8) were divided into clusters that are likely too
small and narrowly defined to facilitate cross-sensor inferences in downstream analyses,
and thus may obscure important behavioral dynamics in this dataset. The KL distance
heatmap is also annotated on the row axis with the variance in observed daily time budgets
for each behavioral axis. Given that time budgets have been normalized here and expressed
as proportions, the resulting variance terms were quite small in magnitude (less than
zero), and so have been re-expressed on a log-scale, where an increasingly negative value
represents a smaller relative magnitude of variation. The fact that all five axes ranged
over several orders of magnitude in these variance estimates reveals that there was an
appreciable amount of variability in the time budgets across days. Visual appraisal revealed
very little systematic patterns in this heteroskedasticity across clusters, however, suggesting
that differences in relative plasticity in daily time budget observations may be attributed
more to the individual than to any specific pattern in overall time budget.

The noise-penalized ensemble-weighted distance, visualized in Figure 2C, displays
clustering dynamics that fall somewhere in between the two extremes of Figure 2A,B. Time
spent eating and ruminating still dominate bifurcations nearer the root of the tree, as with
the unweighted Euclidean distance, but the most extreme tradeoffs between these axes
were here pulled off without over-cutting the tree, as with the KL distance. In the later
branches of the tree, however, cows with more moderate time budgets are divided with
greater input from the nonactive and highly active axes. Although the ensemble-rescaled
estimator does appear to have succeeded in curbing the rescaling of dissimilarity estimates
at the extremes of the distribution, the noise-penalized ensemble distance did still bifurcate
several cows with anomalously high values in the eating, ruminating, and nonactive
axes into their own clusters of size n = 1. Although isolating these animals into their
own branches will effectively exclude them from cross-sensor inferences in downstream
analysis, this encoding may still be appropriate if these datapoints represent authentic
outliers that cannot be explained by typical variation in the sensor system. The heatmap
was also annotated on the row axis with the ensemble variance terms used to penalize
the squared distance estimates. We see that, as anticipated, the magnitude of error in
the noise-penalized ensemble variance terms is substantially smaller than the observed
variance in observed daily time budgets, confirming that, with so many samples over an
extended observation window, measurement error was not contributing substantially to
the overall uncertainty in observed time budgets. Closer appraisal of the clear systematic
differences in these ensemble variance terms observed across clusters, however, confirms
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that these penalty terms appear to be effectively mimicking the intrinsic heteroskedasticity
in this multinomial sampling space.

Ensemble variances calculated for each cow via the plasticity-penalized simulation
routine closely matched (R≥ 0.99) the variances in observed daily time budget estimates for
all five time budget axes, thereby validating the efficacy of the jackknifing routine. Figure 3
directly contrasts the first 10 clusters extracted from the dendrograms generated by the
noise- and plasticity-penalized ensemble-weighted distance measures. In this visualization,
clusters are numbered in each heatmap from top to bottom, and so directly align with
the row and column indices of the contingency table. For example, we can easily confirm
from this graphic that the first three cows constituting the first two clusters in the noise-
penalized heatmap were the same cows isolated into the third and fourth clusters in the
plasticity-penalized heatmaps—a determination that can be easily confirmed by zooming in
on this high-definition rendering to compare Cow ID values. Further comparisons revealed
that cluster designations for cows with extremely high time spent eating, extremely low
time spent ruminating, and relatively low time spent nonactive (clusters 5 and 6 in the
noise- and plasticity-penalized encodings respectively) were virtually identical. In the
plasticity-penalized dendrogram, the extremely low eating time cluster (cluster 3) shrunk
by just a few animals, compared with the noise-penalized encoding (cluster 4). Additionally,
after penalizing for behavioral consistency, the cow with the highest time spent nonactive
in the sample (cow 6580) was not isolated as an outlier. This bifurcation was instead shifted
to the cows with more moderate time budgets (clusters 7–10), serving to better distinguish
between cows with relatively high and only moderate times spent eating. The plasticity-
penalized dissimilarity estimator was also notably more generous in assigning cows to the
cluster characterized by slightly higher rates of rumination, while all other axes remained
relatively low (cluster 7), and appeared to place greater emphasis on the nonactive axis
to determine the remaining clusters. Despite these differences, both ensemble-weighted
dissimilarity metrics succeeded in producing encodings that provide a more holistic and
balanced description of this dataset, and ultimately serve to better visualize heterogeneity
in the tradeoffs between all five behavioral axes.

3.2. Improving Tree Pruning Decisions through Simulation

For all dendrograms pruned using the ensemble of simulations that accounted only for
measurement noise, an extremely fine-grained encoding was returned. A total of 39 clusters
were returned for the unweighted Euclidean distance, 31 for the KL distance, and 38 clusters
for the noise-penalized dissimilarity metric. In Figure 4A, the heatmap visualization of the
noise-penalized encodings helps to illustrate just how far down each branch the pruning
algorithm was able to penetrate before the signal was lost to simulated measurement
error. In fact, amongst the first dozen bifurcations in this dendrogram, the only branch not
validated was that which would have isolated the cow with the highest observed time spent
eating (cow 63911) into her own branch. This result is not necessarily surprising, given
the extended observational period over which sensor records were recorded. With over
1500 min of observation for each cow, even in using a relatively conservative simulation
strategy that very likely overestimated the noise intrinsic to this sensor, we should expect
by the CLT that the standard error attributable to measurement error would ultimately
be quite small after averaging over so many sampled timepoints. Subsequently, these
results reinforce that the sensors themselves should impose few limitations on downstream
inferences for this dataset, and that inconsistencies in the environment and the animals
themselves should be the true limiting factor for the resolution of this encoding.
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Figure 3. Visualization produced using the compareEncoding utility. The noise-penalized encoding
is represented on the row axis and the plasticity-penalized encoding is represented on the column
axis. Clusters in either heatmap are numbered from top to bottom, and so align directly with the
corresponding row and column margins of the contingency table reading up-down and left-right
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respectively. Cell counts show that these two encodings are quite similar at the extremes of the time
budget distribution, but differ slightly in cutoffs amongst the more moderate time budget clusters.
See Supplemental Materials for larger versions of these images.Sensors 2021, 21, x FOR PEER REVIEW 17 of 25 
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so many recorded observations over this extended observation window, the accuracy of the sensor 
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Figure 4. Encodings produced by the cutreeEnsemble algorithm. (A) Dendrogram produced by the
noise-penalized ensemble weighted dissimilarity metric cut using the noise-penalized data mimicry.
The extremely fine encoding with 38 stochastically validated clusters demonstrates that, with so
many recorded observations over this extended observation window, the accuracy of the sensor
itself should impose few constraints on our behavioral inferences. (B) Dendrogram produced by the
plasticity-penalized ensemble weighted dissimilarity metric cut using the plasticity-penalized data
mimicry. A courser encoding is returned when uncertainty in time budget observations attributable
to the behavioral plasticity of the animal itself is taken into consideration.
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As expected, the dendrograms pruned with the ensemble of simulations that accounted
for both measurement error and longitudinal consistency of the underlying behavioral
pattern produced encodings that were far more granular. A total of 13 clusters were
returned for the unweighted Euclidean metric, 17 for KL distance, and 14 for both the noise-
penalized and the plasticity-penalized dissimilarity metrics. In Figure 4B, the heatmap
visualization of these pruning results for the plasticity-penalized dissimilarity metric reveal
an encoding that is coarser but ultimately quite well balanced, with the pruning heights
modulated to produce cluster sizes that were reasonably uniform across the domain of
support. Closer inspection revealed that this final encoding largely matched the order of
bifurcations in the original tree, except that this pruning strategy left no animals isolated in
anomalous clusters. It should be noted, however, that the granularity of this encoding is
not entirely intrinsic to this system, but was dependent on the size of the subsample used
to calculate the overall time budget in each simulation. While we can expect cows that were
more inconsistent in their daily time budgets to be subjected to a stronger penalty with
this estimator due to relatively higher rates of sampling error imposed by the subsampling
routine, we can also anticipate that the overall scale of the sampling error imposed on all
cows should grow as the size of the subsample is reduced. This would in turn modulate
how quickly the underlying behavioral signals would be drowned out by simulated noise
within the tree. This suggest that, for larger samples where a greater range of subsample
sizes can be utilized, this simulation value can also be treated as a meta-parameter to tune
the granularity of the final encoding. Given that the plasticity-penalized mimicry was
created for this data set by subsampling only 14 out of 65 observation days, the resolution
achieved in the pruned encodings for all four dissimilarity metrics reinforces that this herd
was overall fairly consistent in their daily time budgets, and that this data set will support
fairly detailed inferences against a strong underlying behavioral pattern.

3.3. An Information Theoretic Framework for Cross-Sensor Inferences

Encodings of the overall time budgets produced using both the noise and plasticity-
penalized dissimilarity estimators, wherein both were pruned using the more conserva-
tive plasticity-penalized ensemble, produced similar behavioral insights when compared
against longitudinal patterns in parlor entry positions across the herd. For the bivariate
analyses run with encodings for all 177 cows with complete records, highly significant
associations with entry order were recovered for both the noise-penalized (p = 0.006) and
plasticity-penalized (p = 0.005) time budget encodings. The bivariate relationship was opti-
mized for both time budget encodings with a five-cluster encodings of entry-order patterns.
The noise-penalized encoding produced the strongest associations with entry order, with
seven time budget clusters, whereas the plasticity-penalized encoding performed better
with a finer encoding of nine clusters, the key difference being the degree of stratification
among animals with the most moderate time budgets.

Visualization of the contingency tables for the optimized encodings colored by their
PMI estimates revealed that the significant overall association between the two data streams
was driven predominantly by animals in the latter half of the milking queue. Figure 5
displays the results for the noise-penalized encoding. We see first that cows that entered
consistently at the very rear of the queue (cluster 1) were significantly overrepresented in
the time budget cluster, characterized by moderate time spent eating, low time nonactive,
and high rates of rumination (cluster 4). Cows that entered nearer the back of the queue
(cluster 2), just ahead of the cows that consistently brought up the rear, were also over-
represented in the same time budget cluster—a trend that was statistically significant for
the plasticity-penalized encoding, but only marginally significant for the noise-penalized
encodings. In fact, very few animals that entered in the front half of the queue were found
to have this time budget pattern, with cows entering just behind the leaders being signifi-
cantly underrepresented in this time budget cluster. One potential interpretation of this
pattern might be that, if these cows were prioritizing time investments in rumination, then
this strategy may include hanging back towards the later part of the queue, where they
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may be able to chew their cud while avoiding the more serious contention for parlor entry
position. Further analysis that could facilitate visualization of the cyclical patterns in this
time budget data would be needed, however, to confirm this suspicion, and will be left for
future work.

Sensors 2021, 21, x FOR PEER REVIEW 19 of 25 
 

 

 
Figure 5. Visualization produced using the compareEncoding utility with cells colored by pointwise 
mutual information estimates significant at the alpha = 0.05 significance level after simulations using 

Figure 5. Visualization produced using the compareEncoding utility with cells colored by pointwise

54



Sensors 2022, 22, 1

mutual information estimates significant at the alpha = 0.05 significance level after simulations using
multinomial resampling. Data mechanics encoding of parlor entry position is presented to the row
margin of the contingency table, wherein the heatmap contains row annotations representing days on
trial and the observation period, such that the pen period corresponds with the observation window
of the overall time budget. The noise-penalized encoding of overall time budget is represented on the
column axis of the contingency table. Pointwise mutual information values reveal that the significant
MI test between these two encodings is driven predominantly by behavioral patterns amongst cows
in the latter half of the milking queue.

While this more moderate tradeoff between rumination and nonactivity demonstrated
a fairly straightforward and progressive trend across the milking queue, which might
readily have been captured by a linear model, more complex dynamics were found for
the time budget cluster characterized by extremely low time spent eating and high time
spent ruminating and nonactive (cluster 6). Cows that consistently entered at the very end
of the queue were significantly underrepresented in this extreme time budget, while the
cows that entered just ahead of them were significantly overrepresented. While an extreme
tradeoff in eating and ruminating might be explained by issues with sensor placement,
that such cows were not evenly dispersed across the herd may instead indicate a biological
driver. Health status naturally comes to mind with such an extreme time budget, and
indeed several previous studies have reported higher rates of health complications amongst
animals in the latter part of the milking queue [38–40]. However, health status alone would
not necessarily explain the inversion in association pattern between these two adjacent
queue groups.

Previous analyses of milk order records have also revealed that, although cows in
general tend to be more consistent in their parlor entry order than would be expected in a
purely random system, cows at both the front and rear of the herd tend to be particularly
persistent their queuing position [38–42]. It remains unclear in analyses of milk order
alone, however, to what degree this pattern is attributable to the cows themselves, and any
broader behavioral strategies (syndromes) that they may have adopted, and how much is
driven by the natural domain constraints intrinsic to this measurement system [7,41]. In
older observational studies of movement patterns in cattle, it has been noted that cow herds
appear to be “led” from both the front and the rear of the queue [43,44]. One interpretation
may then be that sick cows, who cannot maintain a normal time budget, may also be
pushed back by competition for entry position in the milking queue, but they cannot be
pushed behind this small group of cows that may be “leading from the rear”, effectively
serving as a “caboose” for the longer train of animals, as they move between locations to
ensure that stragglers are not left behind. Although this behavioral pattern has not been
reported in previous experimental studies, it would also not be surprising that such a
nonlinear dynamic might be overlooked in analyses relying on linear modeling methods.
Indeed, competition between these two behavioral mechanisms, as part of a more complex
behavioral system, may explain why relationships between parlor entry position, home
pen behaviors, and health status have proven particularly difficult to reliably establish in
previous work [5,40,42].

Follow-up bivariate tests with health records confirmed that cows with health compli-
cations were indeed overrepresented in the later third of the milking queue (see Supplemen-
tary Materials). Mutual information and PMI values did not, however, reveal a significant
link between health status and a finer stratification of these late-entering cows. This result,
which considers only confirmed cases of acute illness, may however be under-powered,
if this behavioral relationship is also influenced by subclinical illnesses not reflected in
these health records. More perplexingly, in bivariate analyses with either encoding of
overall time budget, cows recorded with acute illness were not found to be significantly
overrepresented among the time budget cluster, with extremely low rates of eating. In
Figure 6 we can see that sick cows were, in fact, only significantly overrepresented in the
time budget cluster characterized by relatively low time spent eating, moderate nonactivity,
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and elevated rates of high activity—an association that was significant for both the noise
and plasticity-penalized time budget encodings. Interestingly, in repeating the bivariate
analyses using an encoding of entry-order patterns fit only to animals with no recorded
health events, the same time budget cluster with elevated rates of illness was also found
to be overrepresented amongst cows entering near the end of the queue, just in front of
the “caboose cows” (see Figure 7). Conversely, in this analysis, absent animals with clinical
disease, and animals entering at the very rear of the herd were shown to be overrepresented
in the time budget cluster that was perhaps best-characterized as demonstrating the most
balanced time investments across all five behavioral axes, whereas cows entering just ahead
of the caboose cows were underrepresented in this moderate time budget cluster. These
results may add weight to the suspicion that ambiguities between clinical and subclinical
illness may be obscuring the role of latent health status as at least one key biological link
between home pen and milking queue behavior.
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budget cluster characterized by relatively low time spend eating and low-to-moderate amounts of
time spent nonactive.
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mutual information estimates significant at the alpha = 0.05 significance level after simulations using
multinomial resampling. Data mechanics encoding of time budget data using only cows with no
recorded health events is represented on the row axis, and the plasticity-penalized encoding of overall
time budget is represented on the column axis. Among cows with no acute illness, cows at the very
end of the queue are now overrepresented in the time budget cluster characterized with fairly high
time spent eating (cluster 8). Cows entering just ahead of them are not only underrepresented in this
high eating time cluster, but are also overrepresented in the cluster with relatively low eating time
cluster with low-to-moderate nonactivity (cluster 3) that was independently associated with higher
rates of clinical illness.

4. Conclusions

Time budgets provide a convenient and intuitive means of quantitatively summarizing
the behavioral tradeoffs of animals, but multinomial-distributed data present a number
of analytical challenges. The results of this analytical case study have highlighted how a
novel simulation-based approach may be employed to simultaneously accommodate both
the codependency structures fundamental to multivariate-distributed data formats and the
complex multi-faceted sources of measurement uncertainty that may be encountered across
a broader range of PLF data streams. While such simulations may be more computationally
expensive than closed-form estimators, we have demonstrated that an ensemble of data
mimicries can be efficiently repurposed throughout the analytical pipeline to improve not
only the visualization of these behavioral tradeoffs, but also the compression of such infor-
mation into robust empirically-defined discrete encodings. It should be noted, however,
that the utility of these novel clustering techniques is not restricted to time budget data.
The ensemble-penalized dissimilarity estimator and ensemble-cut algorithm that we have
introduced in this case study are both fundamentally nonparametric. This means that
their implementation is in no way intrinsically restricted to any particular class of data.
Subsequently, the choices that a user makes in constructing an appropriate error simulation
model are restricted only by their own creativity, allowing this analytical framework to
be easily generalized to a much wider array of PLF data streams, and the wider array of
complex error structures that they have to offer.

Additionally, while discrete data is typically seen as an impediment to statistical
analysis in most model-based approaches, we hope that this analytical case study has
served to demonstrate the comparable ease with which insights may be extracted from
encoded data when an information theoretic approach is employed. For large, structurally
complex, and often informationally redundant PLF data streams, an efficient encoding
may be far easier to achieve than a comprehensive model that can fully accommodate the
temporal dynamics of behavioral responses in complex farm environments. This may be
especially true for data sets where all the factors driving such behavioral responses are
not measurable. By avoiding entirely any form of least-squared optimization utilized in
most model-based approaches, we have shown that an entirely model-free approach is
able to recover nonlinear dynamics between entry order and overall time budget, which
likely would have been overlooked if an assumption of linearity had been employed.
Although more formal model-based inferences may be warranted for further analysis of
the underlying causes of this relationship, the exploratory data analysis tools provided by
the LIT pipeline have undoubtably served to create a more comprehensive picture of the
complex behavioral dynamics hiding within these two under-utilized data streams.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s22010001/s1: A zip file containing an RMarkdown document with full documentation
of all code development and files containing all rendered data visualizations. The most current
version of the LIT package can also be downloaded at https://github.com/cgmcvey/LIT, accessed
on 16 December 2021.
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Abstract: The automated quantification of the behaviour of freely moving animals is increasingly
needed in applied ethology. State-of-the-art approaches often require tags to identify animals,
high computational power for data collection and processing, and are sensitive to environmental
conditions, which limits their large-scale utilization, for instance in genetic selection programs of
animal breeding. Here we introduce a new automated tracking system based on millimetre-wave
radars for real time robust and high precision monitoring of untagged animals. In contrast to
conventional video tracking systems, radar tracking requires low processing power, is independent
on light variations and has more accurate estimations of animal positions due to a lower misdetection
rate. To validate our approach, we monitored the movements of 58 sheep in a standard indoor
behavioural test used for assessing social motivation. We derived new estimators from the radar
data that can be used to improve the behavioural phenotyping of the sheep. We then showed how
radars can be used for movement tracking at larger spatial scales, in the field, by adjusting operating
frequency and radiated electromagnetic power. Millimetre-wave radars thus hold considerable
promises precision farming through high-throughput recording of the behaviour of untagged animals
in different types of environments.

Keywords: radar sensors; radar signal processing; animal farming; computational ethology; signal
classification; wavelet analysis

1. Introduction

Behavioural research increasingly requires automated recording and analyses of
animal movements [1]. This is exemplified by emerging methods for high-throughput
monitoring and statistical analyses of movements that enable the quantitative characterisa-
tion of behaviour on large numbers of individuals, the discovery of new behaviours, but
also the objective comparison of behavioural data across studies and species [2,3]. These
quantitative approaches are particularly powerful to study inter-individual behavioural
variability or personalities in animal populations [4]. In livestock, for instance, large-scale
genetic selection programmes are based on the measurements of several hundreds (if not
thousands) of farm animals [5]. Many behavioural tests have been developed to assess
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personality traits in these animals [6], with some applications in breeding programmes,
for instance to discard the more aggressive individuals [7]. However, in these studies be-
havioural measures are frequently obtained from direct observations by the experimenters
or farmers [8], which considerably limits the possibility to quantify behavioural traits at
the experimental or commercial farm level.

Animal tracking methods involving on-board devices, such as Global Positioning Sys-
tems (GPS) [9], radio telemetry [10], radio frequency identification (RFID) [11] or harmonic
radar [12], are hardly suitable for detailed high throughput behavioural phenotyping due
to the limited accuracy and duration of measurements. Best available approaches therefore
involve image-based analyses [13]. So far however, these techniques often require large
computational resources to fit the classification model and to process images [14], and are
sensitive to light variation [15]. Moreover, video processing using machine learning is
typically limited to the detection of one type of target (e.g., the focal animal species), which
means that other potentially important information in the signal (e.g., the presence of a
farmer) is ignored.

Recently, Frequency-Modulated Continuous-Wave (FMCW) radars operating in the
millimetre-wave frequency band have been proposed for the automated tracking of the
behaviour of a large diversity of animals (sow: [16], bees: [17]; sheep: [18]). In this approach,
it was shown it is possible to record one-dimensional movements (distance to radar) of
individual sheep in an arena test [18]. Tracking animals with FMCW radars has the great
advantage of being non-invasive (does not require a tag), insensitive to light intensity
variations, and fast (does not require large memory resource). FMCW radars therefore
provide considerable advantages for the development of automated high-throughput
analyses of behaviour in comparison to more conventional approaches like video and
infrared cells. The radar signal processing does not require fitting a model to detect targets,
which relaxes the need to collect thousands of data before application. In addition, it
offers the possibility to detect targets placed behind a non-transparent wall, which can
be used to hide the tracking device, or to study the effect of physical obstacles on an
animal’s behaviour.

Here we report a millimetre-wave FMCW radar system for the automated tracking
and analysis of the 2D trajectories of freely moving animals. We illustrate our approach
with the analysis of the movements of 58 sheep in an experimental farm. The measurements
were performed during a behavioural test commonly used to estimate the sociability of
individual sheep in genetic selection [8,19]. First, we compared the estimate of the sheep
position with the radar and standard video tracking and infrared cells. Second, using the
radar data we identified new behavioural estimators that could be used for large-scale
behavioural phenotyping. Third we showed that the radar system can also operate for
long-distance tracking, in the field, by adjusting radar emission frequency and radiated
electromagnetic power.

2. Material and Methods
2.1. Sheep

We ran the experiments in July 2019 at the experimental farm la Fage of the French
National Research Institute for Agriculture, Food, and Environment (INRAE), France
(43.918304, 3.094309). We tested 58 lambs (29 males, 29 females) Ovis aries with known
weight (range: 12–31.3 kg) and age (range: 59–88 days). Ewes and their lambs were reared
outdoor on rangelands. After weaning, lambs were reared together outside and tested
for behaviour 10 days later. This delay enabled the development of social preferences for
conspecifics instead of preference for mother.

All the lambs were previously tested in a “corridor test” to estimate their docility
towards humans. Briefly, the test pen consisted of a closed, wide rectangular circuit
(4.5 × 7.5 m) with opaque walls [8]. A non-familiar human entered the testing pen and
walked at constant speed through the corridor until two complete tours had been achieved.
The corridor was divided into 6 virtual areas. Every 5 s, the areas in which the human
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and the animal were located were recorded and the mean distance separating the human
and the lamb was calculated. The walking human also recorded with a stopwatch the
total duration when he could see the head of the lamb to discriminate between fleeing and
following lambs. The reactivity criteria towards an approaching human was constructed
by combining both distance and duration measurements (for more details see [20]). The
higher the resulting variable (i.e., “docility” variable in the present study), the more docile
the animal.

2.2. Arena Test

We measured sheep behaviour in a standard protocol (“the arena test”) used to assess
the sociability of sheep through measures of inter-individual variability in social motivation
in the absence or presence of a shepherd [8,19]. A sheep (focal sheep) was introduced in
the pen (2 m × 7 m) (Figure 1A) (for more details see [21]). Three other sheep from the
same cohort (social stimuli) were placed behind a grid barrier, on the opposite side of the
arena entrance. The test involved three phases (Figure 1B):

- In phase 1, the focal sheep could explore the arena for 15 s and see its conspecifics
through a grid barrier;

- In phase 2, visual contact between the focal sheep and the social stimuli was disrupted
using an opaque panel pulled down from the outside of the pen for 60 s. This phase
was used to assess the sociability of the sheep towards its conspecifics;

- In phase 3, visual contact between the focal sheep and its conspecifics was re-established
and a human was standing still in front of grid barrier for 60 s. This phase was used
to assess the sociability of the focal sheep towards conspecifics in presence of a
immobile human.Sensors 2021, 21, x FOR PEER REVIEW 4 of 19 

 

 

 
Figure 1. Corridor test. (A) Top view of the focal sheep and the social stimuli in the corridor (example image extracted 
from video data). (B) Schematic representation of experimental phases 1, 2 and 3. (C) Image of the FMCW radar frontend 
(phot credit AD). Each rectangle corresponds to patch [22]. (D) Example of a trajectory of a sheep obtained with radar 
tracking after removing the clutter and normalizing the estimated value. The red rectangle represent the pen walls. 
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We measured the displacement of the focal sheep in phases 2 and 3 of the arena test 

(phase 1 is the initiation phase) using three automated tracking systems: (1) infrared sen-
sors, (2) a video camera, and (3) a millimetre-wave FMCW radar. During the measure-
ment, an experimenter also recorded the number of high-pitched bleats by the focal sheep, 
a proxy of sociability [8]. A proximity score was computed as the time spent in each virtual 
area weighted according to the virtual area delimited by the infrared receptor in such a 
way that a high score indicated high proximity to conspecifics [20]. Crossing rate meas-
ured the number of virtual areas crossed during arena test phases 2 and 3. 

Figure 1. Corridor test. (A) Top view of the focal sheep and the social stimuli in the corridor (example
image extracted from video data). (B) Schematic representation of experimental phases 1, 2 and 3.
(C) Image of the FMCW radar frontend (phot credit AD). Each rectangle corresponds to patch [22].
(D) Example of a trajectory of a sheep obtained with radar tracking after removing the clutter and
normalizing the estimated value. The red rectangle represent the pen walls.
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Sets of 2 infrared cells were placed at the height of the sheep’s body and every meter
along the arena test to define 7 virtual areas of 1 m. Analyses of the data resulting from the
activation of the infrared cells by the sheep were performed with Fortran algorithms to
compute longitudinal displacements of the sheep in the device.

2.3. Data Collection

We measured the displacement of the focal sheep in phases 2 and 3 of the arena test
(phase 1 is the initiation phase) using three automated tracking systems: (1) infrared sensors,
(2) a video camera, and (3) a millimetre-wave FMCW radar. During the measurement, an
experimenter also recorded the number of high-pitched bleats by the focal sheep, a proxy
of sociability [8]. A proximity score was computed as the time spent in each virtual area
weighted according to the virtual area delimited by the infrared receptor in such a way
that a high score indicated high proximity to conspecifics [20]. Crossing rate measured the
number of virtual areas crossed during arena test phases 2 and 3.

2.4. Video and Radar Tracking

We compared the efficiency of the radar system and standard video tracking for
monitoring the 2D movements of the sheep. For the video tracking, we placed a camera
on one end of the arena (opposite to entrance side, Figure 1B). The camera was elevated
2 m above ground in order to film the entire arena, producing black and white images
of size 720 p × 576 pixels every 25 ms. Sheep movements were tracked in 2D. For image
processing, we applied a detection algorithm using the state-of-the-art image object detector
tiny-YOLO V3 (You Only Look Once) network, which is a version of the YOLO model
adapted for faster processing allowing 244 images of 0.17 mega pixels (416 × 416 pixels) per
second (on a TITAN X graphics card) [23]. This Convolutional Neural Network (CNN) was
pre-trained on the PASCAL Visual Object Classes Challenge dataset [24]. YOLO detected all
the objects on the image, including the focal sheep, possibly some parts of the background
and the human when entering inside the arena. To differentiate between the sheep and
non-sheep detected objects, we used another CNN, Alexnet, that we parameterized using
transfer learning [25]. A set of 40 sheep and 40 non-sheep images were used to re-train
the network. Finally, for some images the focal sheep was not detected, especially when
it was located at the opposite of the camera. In these cases, the location of the sheep
was extrapolated by continuing the trajectories with a constant speed between the two
known locations.

For the radar tracking, we placed a millimetre-wave FMCW radar (Figure 1C, see tech-
nical characteristics in Table 1) at one end of the arena test (i.e., entrance side, Figure 1B).
The radar was setup outside of the test pen behind a Styrofoam wall transparent to
millimetre-waves [26]. The transmitting antenna array radiated a repetition over time
of a so-called chirp (i.e., a saw-tooth frequency-modulated signal [27]). The chirp was
backscattered by the targeted focal sheep, but also by the surrounding scene which pro-
vides undesirable radar echoes called the electromagnetic clutter. The total backscattered
signal was then collected by the receiving antenna array and processed to mitigate the
clutter and to derive the sheep 2D trajectory from radar data. In the millimetre-wave
frequency range, the detectability of the sheep depends mainly on the bandwidth of the fre-
quency modulation, the beamwidth of the radar antennas, and the radiated electromagnetic
power [27].

Processing of radar data included two main steps. First, we extracted the position of
the animal. Next, we computed behavioural parameters to characterize the movement of
the animal. We extracted the distance of the focal sheep to the radar and its direction in
the horizontal plane of the scene. To mitigate the electromagnetic clutter, we estimated
the mean value and standard deviation of the radar signal in absence of the sheep and we
derived the signal, denoted by D, from the signal S delivered by the radar in presence of
the animal, as follows:

D(t, r, θ) =
S(t, r, θ)− mean(r, θ)

std(r, θ)
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where r is the radar-to-sheep separation distance, mean is the time-averaged radar signal at
the range r and angular position θ, std is the time-standard deviation of the radar signal.
Figure 1D shows an example of position estimations of a sheep over time after removing
the electromagnetic clutter.

2.5. Extraction of New Behavioural Parameters Form the Radar Data

We used the radar estimated 2D trajectories to extract new behavioural parameters
characterizing sheep movements using three approaches.

• 1: Behavioural classes;

We statistically identified broad classes of behaviour using Gaussian Mixture Models
(GMM). First, we divided the trajectories into time windows of 1 s for each sheep and for
each experimental phase. Next, we extracted movement parameters from each window:
average speed, sinuosity (total displacement over distance between the first position and
the last) and total displacement distance. Then, because the social stimuli (i.e., the three
conspecifics) were located at one end of the corridor, we split the speed vector into two
components: along the two lateral walls of the corridor and across the two longitudinal
walls. Finally, to derive behavioural classes we performed a GMM on the extracted
movement parameters for each lamb [28]. The number of classes (i.e., the number of
Gaussians to be used) was determined by comparing models using 1 to 15 classes. We
selected the model with the lowest Akaike score, which represents the model with the
features best explaining the parameter under consideration [29]. The GMM was performed
using the Python package scikit-learn [30]. We estimated the rate of time spent in each
movement classes for the two phases.

Table 1. Technical characteristics of the FMCW radar used for indoor tracking [22] and outdoor tracking [31].

Name Indoor Tracking Outdoor Tracking Note

Operating frequency 77 GHz 24 GHz
This frequency is also called the carrier

frequency of the frequency-modulated signal
transmitted by the radar

Modulation Bandwidth 3 GHz 800 MHz
Frequency interval, centred at the operating
frequency, used for the saw-tooth frequency

modulation of the transmitted signal

Ramp time 256 µs 1 ms Up-ramp duration of the saw-tooth
frequency-modulated signal (or chirp duration)

Repetition time 50 ms 30 ms Period of the transmitted frequency-modulated
signal (or chirp repetition interval)

Number of linear arrays of the
transmitting antenna array 4 1 One linear array composed of 8 × 2 rectangular

patches radiating elements

Number of linear arrays of the
receiving antenna array 8 2 Eight linear arrays composed of 8 rectangular

patches radiating elements

Main lobe beamwidth of the
transmitting antenna array in

the horizontal plane
50◦ 58◦ Angular range (or field of view) of the radar

illumination in the horizontal plane

Transmitted power 100 mW 100 mW

Power delivered at the input terminals of the
transmitting array antenna (the radiated power

is defined as the product of the transmitted
power by the efficiency of the antenna)

• 2: Behavioural transitions;

We determined behavioural changes over time using Ricker wavelet processing [32].
Wavelet processing consists in filtering the sheep position signal using a wavelet as a
filter [33]. The use of wavelet analysis to describe animal behaviour was previously used
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in [34]. This type of filtering is applied to several time scales, thus allowing the detection of
a change in the direction and speed of the sheep, depending on when the changes occur or
the duration of the change. Our aim was to determine the precise moments when the focal
sheep changed its way of moving, which was estimated using the spectrum described by
each scale of the used wavelet. We observed that the number of local maxima in the wavelet
transform coefficients is sensitive to the number of changes in the way of moving and the
size of the wavelet will determine if the change is global or punctual. This estimation of
changes was done on the lateral and longitudinal movement and for the two last phases of
the experiment.

• 3: Space coverage;

We investigated the space occupied across time by the focal sheep using heatmaps
representing the areas the sheep spent time in during the measurements. The use of
heatmaps to describe animal behaviour was previously used in [35]. We partitioned the
arena into a grid of 80 virtual zones of 44 × 40 cm2 each (i.e., 16 partitions along the arena
length and 5 partitions along the arena width). We chose this grid dimension because
it is the width of a small lamb [36]. We counted the number of zones (i.e., the heatmap
score) the focal sheep remained in for more than 200 ms. This count was used to extract
behavioural features for the two last phases of the experiment.

2.6. Outdoor Radar Tracking

We ran outdoor experiments in order to demonstrate the applicability of our radar
system for the tracking of sheep in field conditions. These measurements were done in
an open space with no obstacles (60 m × 15 m asphalt place). A human experimenter
moved within the radar catching area in order to induce animal movements. We tested one
female sheep. To enhance detection range to 40 m, we used a FMCW radar with the lower
operating frequency of 24 GHz. At fixed transmitted power, lower frequencies enable
reduction of the free-space attenuation of the radiated electromagnetic power [27]. The
gain due to the free-space attenuation is 10.13 dB.

2.7. Statistical Analyses

We ran all analyses using the programming environment R [37]. Raw trajectory data
extracted from radar and video measures are available in Dataset S1.

• Analysis of new movement features

We tested the influence of sheep characteristics (docility, and sociability) in interaction
with the two test phases on the proportion of time spent in the behavioural classes using
a generalized Linear Mixed Model with binomial family error distribution. We tested all
possible dual interactions of each variable with the test phase. Three-way Interactions
were excluded to avoid over-fitting of the model [38]. Sheep identity was included as a
random effect. We ran a model selection on all feature combinations (docility, sociability the
phases and their interactions) using the Akaike score. The model with the lowest score was
retained as the best model. When the second best model have an AIC score equivalent to
the best model (i.e., when the difference is lower than 2) an average model was performed
with those that have equivalent AIC. We used a similar procedure to test the influence of
the sheep individual characteristics on continuous wavelet transforms estimated on lateral
and longitudinal movements (Gaussian family error distributions) and heatmaps (Poisson
family error distribution).

• Classification of behavioural types;

To improve the interpretation of the sheep behaviour in the corridor, we reduced
our four movement features (proportion of fast movements, changes in longitudinal and
transversal movements, space coverage) for phases 2 and 3, using a Principal Component
Analysis (PCA). The PCA was performed using the R package FactoMineR [39]. We
explored afterward whether our new automated estimators could be used to replace
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estimators recorded manually using a General Linear Model (GLM, using the R package
stats) approach.

3. Results
3.1. Radar Tracking Is Faster and More Accurate Than Video Tracking

To test the efficiency of the radar tracking system, we compared the data obtained
from the infrared cells, the video and the radar. This efficiency was estimated by comparing
the proximity score estimated using the infrared cell, video and radar detection but also
by using the crossing rate estimated by the infrared cell and the mean speed along the
longitudinal axis estimated by the video and radar detection. We analysed data from
58 individuals (29 males, 29 females). Both data collected by the radar and the video en-
abled to capture information given by infrared cells with high fidelity. Proximity scores and
crossing rates obtained from infrared cells were positively correlated with data obtained
from the radar (Pearson correlation; proximity: r = 0.77, p < 0.001; crossing rate: r = 0.87,
p < 0.001) and the video (Pearson correlation test; proximity: r = 0.91, p < 0.001; crossing
rate: r = 0.34, p < 0.001).

Radar tracking had additional advantages over video tracking in terms of data process-
ing (Table 2). The radar produced two times more measures per second. Radar processing
was also much faster (50 frames per second for radar and 4 for video processing) and
therefore, it may be used for real time analyses. Radar measurement data were of similar
size as video measures (ROM), but required approximately seven times less memory (RAM)
to process. Finally, radar processing did not require a learning phase with important data
collection and a time-consuming training phase that can last several hours just for the
adaptation of the model, or several days if the network is not trained beforehand.

Table 2. Comparison of data processing characteristics with radar and video tracking systems.

Tracking Method Radar Video

Number of measures per second 50 25

Read Only Memory (ROM) for all measures of a sheep 151 Mo 62 Mo

Random Access Memory (RAM) per measure 524 Kb 3.7 Mb

Processing time per measure <20 ms 250 ms

Distance to target centre 1.1 m 1.5 m

3.2. New Behavioural Indicators from the Radar Data

The following analyses were made on the 58 sheep. The 2D radar trajectory data
offered the opportunity for high resolution analyses of sheep movements.

• Behavioural classes: detection of slow and fast movements

In order to classify the different types of movements exhibited by the sheep, we
applied the GMM procedure to statistically identify behavioural classes from the trajectory
data. We found four behavioural classes (Figure 2A):

Class 1 (51.3% of the measures) was characterized by null or slow movements
(“slow movements”);

Class 2 (35.48% of the measures) was characterized by fast movements with low
sinuosity (“fast movement”);

Class 3 (10.2% of the measures) was characterized by fast movements with high
sinuosity (“fast tortuous”);

Class 4 (3.01% of the measures) was characterized by slow movements with high
sinuosity (“slow tortuous”).

Each of the two behavioural classes with strong sinuosity (classes 3 and 4) represented
less than 10% of all data. We thus focused our analyses on slow and fast movements only
(classes 1 and 2). We tested the effects of the individual characteristics of sheep on the rate
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of time spent in each in the two main behavioural classes using GLMMs. The best (using
Akaike criterion) model (See Table S1) retained the docility, sociability indicators and the
phase of the test to explain the two main behavioural classes extracted by the radar, i.e. the
rate of slow movement and fast movement. In phase 3, all the sheep tended to move less
than in phase 2 (estimate = −1.24, std. = 0.008, p < 0.001). In phase 2, highly sociable sheep
moved less than little sociable sheep (estimate = −0.11, std. = 0.015, p < 0.001). This trend
was reduced in phase 3 for both sociable and docile sheep (sociability: estimate = −0.12,
std. = 0.039, p < 0.001 docility: estimate = 0.16, std. = 0.0074, p < 0.001) (Table S1 and
Figure 2).
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of time spent in slow movements and the sociability score of sheep during phase 2 and 3 (see details of models in Table 3).
(D) Correlation between the proportion of time spent in slow movements and the docility score of sheep during phase 2
and 3. N = 58 sheep.

Table 3. Analyses of behavioural classes. Results of the best GLMM (binomial family, after model
selection—see Table S1). The model tested the effects of phase, docility, sociability, and dual interac-
tion of each variable with phase, on the proportion of time spent in fast movements (behavioural
class 2). Lamb identity was included as a random factor. Significant effects (p < 0.05).

Estimate Std. Error z Value Pr (>|z|)

(Intercept) 0.11 0.055 2.08 0.037

Sociability 0.13 0.039 3.47 <0.001

phase 3 −1.24 0.0086 −144.04 <0.001

Docility −0.11 0.047 −2.43 0.015

sociability:phase 3 −0.12 0.0061 −19.90 <0.001

Docility: phase 3 0.16 0.0074 21.31 <0.001
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• Wavelet analysis: detection of erratic behavioural transitions;

Our second approach to describe the sheep behaviour was to quantified changes
in movements (i.e., variation in speed, direction, or both) through time. This was done
using continuous wavelet analyses (Figure 3). We tested the effects of the individual
characteristics of sheep on the frequency of these changes using GLMMs and model se-
lection (Tables S2 and S3). When considering longitudinal displacements (i.e., wavelet Y)
along the arena device (Table 4), we found that highly sociable sheep made more changes
in the pattern of displacement during both phases of test (estimate = 16.98, std. = 4.68
p < 0.001) (Figure 3A,C). In general the movements were less erratic in phase 2 than in
phase 3 (estimate = −91.50, std. = 9.07, p < 0.001). When considering transversal move-
ments (i.e., wavelet X) across the arena device (Table 4), we found that sheep made more
changes in the way of displacement during phase 2 than phase 3 of test (estimate = −53.15,
std. = 8.26, p < 0.001) (Figure 3B,D). However, this trend was reduced for the docile sheep
(estimate = 19.19, std. = 7.11, p = 0.009).
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Table 4. Wavelet analyses. Results of the best GLMM (Gaussian family, after model selection—see
details in Tables S2 and S3). The model tested the effects of phase, docility, sociability, and binary
interactions of each variable with phase, on the number of wavelets. Lamb identity was included as
a random factor. Significant effects (p < 0.05) are shown in bold. Wavelet Y: longitudinal movements.
Wavelet X: transversal movements.

Wavelet Y Estimate Std. Error Df t Value Pr (>|t|)

(Intercept) 514 6.64 110 77.3 <0.001

sociability 17 4.68 110 3.63 <0.001

phase 3 −91.5 9.07 55 −10.1 <0.001

docility −3.12 5.72 110 −0.545 0.587

Sociability:phase 3 −14.4 6.4 55 −2.25 0.05

Docility:phase 3 4.7 7.81 55 0.602 0.55

Wavelet X Estimate Std. Error df t Value Pr (>|t|)

(Intercept) 467 6.04 110 77.3 <0.001

sociability 0.526 4.26 110 0.124 0.902

phase 3 −53.2 8.26 55 −6.43 <0.001

Docility −9.61 5.2 110 −1.85 0.0673

Sociability:phase 3 7.36 5.82 55 1.26 0.212

Docility: phase 3 19.2 7.11 55 2.7 <0.05

• Heatmap analyses: Detection of spatial coverage

Finally we quantified the spatial coverage by individual sheep (number of zones occu-
pied in the arena) using heatmaps (Figure 4). Overall, the sheep used 2.37 (std. 1.03) time
less space in phase 3 than in phase 2. We tested the effects of the individual characteristics
on the number of zones in which the sheep spent more than 200 ms using GLMMs and
model selection. Here we describe the most explanatory model considering AIC, but the
three best models gave a similar trend on the sheep behaviour (see Table S4), so that an
average model was ultimately performed using the models with n difference of AIC lower
than 2 with the best model. Using a spatial resolution of the grid similar to the dimension
of a lamb body size (i.e., dimension: 0.44 × 0.40 m; example Figure 4A) revealed that
sheep tended to use less space in phase 3 than in phase 2 (estimate = −0.765, std. = 0.053,
p < 0.001), and that highly sociable sheep used more space in phase 2 than less sociable
sheep (estimate = 0.048, std. = 0.024, p = 0.043). It also showed that most docile sheep used
less space in phase 2 than less docile sheep (estimate = −0.066, std. = 0.031, p = 0.0389) but
the phenomenon was reduced in phase 3 (estimate = 0.099, std. = 0.046, p = 0.032) (Table 5).
Therefore, the influence of sociability on spatial coverage decreased in phase 3.

Table 5. Heatmap analyses. Results of the best GLMM (Gaussian family, after model selection—see
details in Table S4). The model tested the effects of phase, docility, sociability, and dual interactions of
each variable with phase, on the number of areas where the lamb spent more than 1 s. Lamb identity
was included as a random factor. Significant effects (p < 0.05) are shown in bold.

Heatmap Estimate Std. Error z Value Pr (>|z|)

(Intercept) 2.95 0.037 79.00 <2 × 10−16

docility −0.066 0.031 2.07 0.039

phase 3 −0.77 0.053 14.27 <2 × 10−16

sociability 0.048 0.023 2.022 0.043

phase 3: docility 0.099 0.046 2.15 0.032

phase 3: sociability −0.020 0.038 0.52 0.60
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(B) Relationship between the surface used by the sheep the degree of docility of sheep during phases
2 and 3. See details of models in Table 5. N = 58 sheep.

3.3. Sheep Behavioural Phenotype

We explored whether the new movement features extracted from the radar data could
capture information from behavioural traits measured manually by the experimenter in
the arena test. We focused on docility and sociability. We ran a PCA based on the eight
behavioural measures extracted from the radar data in phase 2 and phase 3: proportion of
fast movements (class 1) out of all movements (class 1 + class 2), longitudinal movements
(wavelets Y), transversal movements (wavelets X) and space coverage (heatmaps). We
retained two PCs using the Kaiser–Guttman criterion [40]. PC1 explained 30.65% of the
variance and PC2 explained 19.31% of the variance (Table 6). The eigenvalues associated to
the 3 first components are: 2.8928914, 1.7375911, 0.9738257. PC1 was positively associated
with all behavioural variables (Figure 5A). Sheep with high PC1 values moved more often
fast, made more changes in the way of displacement, and used more zones than sheep
with low PC1 values. We therefore interpreted PC1 as a “movement” component. PC2
was positively associated with the four behavioural variables of phase 3 and negatively
associated with the four behavioural variables of phase 2 (Figure 5A). Sheep with high PC2
values showed a more important increase of time spent moving fast, of the frequency of
changes in the way of displacement, and numbers of zones occupied between phase 2 and
phase 3 than sheep with low PC2 levels. We interpreted PC2 as a variable of “movement
in response to social isolation”. Using PC1 and PC2, we investigated contribution of the
docility and sociability of the sheep on these components. It showed that the first was
linked to the sociability (estimate = 0.2690, std. = 0.1054, p = 0.0135) and the second was
linked to docility (estimate = 0.28296, std. = 0.1111, p = 0.0137). The link between PC1 and
docility and PC2 and sociability was not significant.
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Table 6. Eigenvalue for each component (PC) of the Principal Component Analysis using the eight
behavioural features extracted using the radar tracking.

Component Eigenvalue Variance Explained

PC 1 2.893 30.65

PC 2 1.738 19.31

PC 3 0.974 13.04

PC 4 0.833 9.27

PC 5 0.564 7.20

PC 6 0.492 6.69

3.4. Outdoor Radar Tracking

To demonstrate that our radar tracking system could be used at larger spatial scales,
in the field, we sat up a radar with a lower operating frequency in an outside corridor
(10 × 60 m; Figure 6A). We successfully monitored the 2D trajectory of one sheep over a
maximum distance of 45 m the backscattering signal was not detectable using one radar
measurement (Figure 6B). The presence of a human to induce sheep movement did not
deteriorate sheep tracking (Figure 6C).
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4. Discussion

Research in animal behaviour increasingly requires automated monitoring and annota-
tion of animal movements for comparative quantitative analyses [2,3]. Here we introduced
a radar tracking system suitable to study the 2D movements of sheep indoor and outdoor,
within a range of 45 m. A summary of the method is shown on Figure 7. The system is
non-sensitive to light variations, compatible with real time data analyses, transportable,
fast processing and adaptable to various species and experimental contexts. Moreover,
it does not require tags or transponders to track animals. It is therefore suitable for the
collection of large sets of behavioural data in an automated way required in many areas
of biological and ecological research, as well as applied ethology for precision farming as
illustrated here.

We recently used FMCW radars to track the behaviour of sheep [18], pigs [16] and
bees [17]. Here, however, for the first time, we demonstrate the applicability of this
approach to monitor 2D trajectories of untagged walking animals within a range of 45 m.
Others methods can be used to estimate the sheep position, such as video detection [24]
which can detect sheep in 2D up to 20 m but with a precision from 50 cm (at 5 m) to 1 m
(at 20 m) and GPS detection [41], but this requires to equip the animals with transponders.
We showed that the radar acquisition system has several advantages over these more
conventional methods, and in particular video tracking. It collects more data per second
(50 measures per second for the radar versus 25 for the video), requires less RAM (524 Kb
for one radar measurement versus 3.7 Mb for one video frame). It also requires 10 times
less processing time (e.g., does not require to train neural networks) and generates less false
detection rates (15% of false detection for video processing and 5.2% for radar processing).
Importantly, the radar is not dependent on brightness and can be used for outside tracking
over long distances by adjusting operating frequencies. It also enables the tracking of
individualized animals without tags, based on the size and shape of the radar echoes of
the different targets.

Our application of radar-based tracking to behavioural phenotyping of sheep shows
that the radar analysis is consistent with current semi-automated analyses (i.e., infrared sen-
sors and video). Using the radar, we found that sheep tend to have a greater displacement
in phase 2 than in phase 3 of the arena test. This agrees with previous studies showing that
sheep are more active when socially isolated from conspecifics [20,21]. Higher behavioural
activity in a social isolation context, for instance through locomotion and vocalization
behaviours, may be interpreted as the way for the isolated animal for searching for so-
cial contact with conspecifics as described in the ewe-lamb relationships [42] or between
familiar lambs [43].
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In addition, the high resolution 2D, in theory 5 cm in range and 6◦ in azimuth, tra-
jectories obtained from the radar enabled identification of new behavioural estimators
that could greatly benefit the fast and automated identification of behavioural phenotypes.
For example, our application of unsupervised behavioural annotation to identify statisti-
cally significant behaviours by sheep in the arena test showed that sheep exhibit less fast
movements in phase 3 than in phase 2. The wavelet analysis, considering the way that the
sheep moves (i.e., referred to here as “way of displacement”) revealed the occurrence of
“erratic” displacements. Here low erratic displacements corresponded to displacements
showing a constant speed whereas high erratic displacements corresponded to a high level
of alternation in slow and fast displacements. These erratic displacements may be linked
to the sociability and/or docility of sheep. Finally, space occupation analysis showed that
individuals exploit narrower areas in phase 3 than in phase 2 of the arena test. All these
results are consistent with previous observations using semi-automated recording methods.
Indeed, social isolation from conspecifics (i.e., phase of test 2) resulted in the expression of
on average higher behavioural activity (i.e., individual variability exists), including dis-
placements, than in presence of conspecifics and a motionless human (i.e., phase of test 3).
The higher displacement activity during social isolation resulted in a higher exploration
of the arena whereas, in presence of conspecifics and a motionless human, lambs showed
limited displacement. The combination of these new automatically computed estimators
appears to be complementary to behavioural traits of interest that were until now measured
(i.e., for instance no or slight relationship with sociability or docility) and could be used for
more detailed characterization of animal behavioural profiles. Note, however, that this first
study is based on relatively low sample sizes (58 individuals) and further measurements
are needed to verify the biological trends observed on a much larger number of sheep.

Beyond the case study of the arena test described here, our system could be tuned
to suit a large diversity of animal sizes and experimental contexts. Several ways can be
considered. For instance, the range and resolution of detection could be improved using
different radars. Here, we had to place the radar at 1 m from the arena fences in order
to illuminate and monitor the entire arena. Antennas with larger beamwidth may allow
placing the radar on the arena fences. Moreover, the detection was limited to a few meters,
but it is possible to detect a sheep at tens of meters using a radar operating at a lower
frequency (24 GHz) and/or transmitting higher electromagnetic power. It is also possible
to improve radar detection by using more antennas. Indeed, by multiplying the number of
antennas, we multiply the number of signal estimations and then the noise from the radar
can be decreased. The same radar technology could be used to track individuals in groups
over longer distances in open fields, for instance to explore the mechanisms underpinning
social network structures and collective behaviour [44]. The processing of the radar signal
can also be improved for tracking large number of sheep simultaneously by using deep
radar processing but this would require the use of a large amount of annotated data to
train the neural networks [45]. Individual tracking within groups could also be improved
with non-invasive passive tags that depolarize radar signal in specific directions [46]. Note
that at the moment, we do not know the long-term effects of the use of millimetre waves
on these animals and this should be investigated in further studies.

5. Conclusions

We demonstrated the feasibility of tracking a sheep in a restricted area using a
millimetre-wave FMCW radar. This detection is possible even if each wall of the arena
backscatters the transmitted electromagnetic signal. This radar tracking system can also be
advantageously used to extract features that are correlated to the movement of the sheep
and can estimate if it is erratic, fast and the space occupied in the corridor. In contrast
to other short-range tracking methods, our radar detection approach does not require
pre-annotated data and can be applied in real time. This flexibility holds considerable
premises for tracking the behaviour of animals of various sizes and environments in a wide
range of contexts and research fields.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21238140/s1, Table S1: Model selection for behavioural class analyses. Null model, best
model, second and third best models are displayed. Table S2: Model selection for X wavelet analyses
(latitudinal movements). Null model, best model, second and third best models are displayed.
Table S3: Model selection for Y wavelet analyses (longitudinal movements). Null model, best model,
second and third best models are displayed. Table S4: Model selection for heatmap analyses (low
spatial resolution). Null model, best model, second and third best models are displayed. Dataset S1:
list of the sheep trajectory during the behavioural test and list of all behavioral score.
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Abstract: In this study, new low-cost neck-mounted sensorized wearable device is presented to help
farmers detect the onset of calving in extensive livestock farming by continuously monitoring cow
data. The device incorporates three sensors: an inertial measurement unit (IMU), a global navigation
satellite system (GNSS) receiver, and a thermometer. The hypothesis of this study was that onset
calving is detectable through the analyses of the number of transitions between lying and standing of
the animal (lying bouts). A new algorithm was developed to detect calving, analysing the frequency
and duration of lying and standing postures. An important novelty is that the proposed algorithm
has been designed with the aim of being executed in the embedded microcontroller housed in the
cow’s collar and, therefore, it requires minimal computational resources while allowing for real
time data processing. In this preliminary study, six cows were monitored during different stages of
gestation (before, during, and after calving), both with the sensorized wearable device and by human
observers. It was carried out on an extensive livestock farm in Salamanca (Spain), during the period
from August 2020 to July 2021. The preliminary results obtained indicate that lying-standing animal
states and transitions may be useful to predict calving. Further research, with data obtained in future
calving of cows, is required to refine the algorithm.

Keywords: cow; extensive livestock; sensorized wearable device; monitoring; parturition prediction

1. Introduction

The study and monitoring of livestock has always been a subject of great interest.
Indeed, quantitative measurement of animal behaviour is an important tool for under-
standing their reproduction, survival, welfare, and interaction with other animals [1].
Animal activity is one of the most important indicators associated with animal health
and welfare [2], and animal behaviour is an indicator of the well-being and health of
cows [3]. Detecting changes in the behaviour and activity of cows is a good preventive tool
to determine the animal’s health status [4].

Every year an average of 8.5% of perinatal calves are lost due to natural abortions,
stillbirths, and complications during parturition (calving) [5], which translates into higher
economical costs and reduced animal wellbeing. Ideally the calving process should be
carefully overviewed by experts to avoid or correct any problems that may arise (e.g.,
dystocia). Even today, the analysis of cow behaviour and calving detection is mainly
carried out by experienced workers through unaided monitoring. These approaches are
however expensive and time consuming, and not effective for extensive livestock farming,
where many animals are kept under grazing in the open air on large areas of surface.

An automated solution based on cow data collection from sensors could provide better
calving predictions. This will allow the farmer to better identify those cows that require
intensive supervision and to focus on caring for cows with upcoming calving, reducing
possible risks and improving the health and wellbeing of the animals.

Sensors 2021, 21, 8060. https://doi.org/10.3390/s21238060 https://www.mdpi.com/journal/sensors
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Internet of things (IoT), an already mature and effective technology, can help improve
the efficiency and productivity in agriculture and livestock production systems [6]. IoT has
initially spread into the agriculture and farming industry, and mainly aims to supervise
the well-being of animals, thus enhancing the profitability of farms by increasing produc-
tivity [7]. Most connected livestock solutions are developed for cattle, especially cows, due
to the valuable price of such animals [8].

Precision livestock farming (PLF) aims to manage individual animals by continu-
ously monitoring their health, welfare, production/reproduction and/or environmental
impact in real time [9]. This is achieved through real-time image [10,11] and/or sound
analyses or by wearable devices with sensors that monitor physical (position, direction
of movement, speed . . . ) [12–15], and physiological variables (heart rate, breathing rate,
temperature . . . ) [16–18] of each animal.

Different physiological and behavioural parameters associated with calving can be
monitored through sensors. The analysis of the internal temperature and its evolution,
usually measured in the vulva, the rectum, or the rumen of the animal, is one of the
most accurate calving predictors [19]. It has been demonstrated that a decrease in vaginal
temperature equal or greater than 0.3 ◦C in cows bearing singletons can predict calving
within the next 36 h in 83.3% of cases and up to 100% within 60 h [20]). However, the
core temperature of the animal is difficult to be measured in a non-intrusive way, and the
available commercial solutions require intensive veterinary care to install and to check the
correct location of the measuring device. This approach is therefore not preferred for use
in PLF.

An exhaustive meta-analysis of the different publications related to calving detection
in cows is showed in [21]. It concludes that automated monitoring and detection of calving,
as well as of dystocia incidents, is possible. However, behavioural changes associated
with calving vary between individual animals. Behaviour associated with feeding and
rumination descent gradually in the two weeks leading up to calving and is drastically
reduced during calving [22]. The duration of rumination descends up to 33% the day
when calving takes place in comparison with the previous day. This behaviour could be
successfully measured using ear or neck-mounted devices [23–26].

Another indicator of calving is the increase in lying bouts (LB). This behaviour is
associated with the restlessness that the animal feels due to the imminency of the calving.
The frequency of lying bouts and their mean duration increase greatly as the calving event
approaches, starting already 48 h before and being maximized on the day of calving [26].
This increase [6] (from 9.3 ± 1.31 LB/day four days before calving to 13.0 ± 1.02 LB/day
the day of calving) is especially important in heifers, but also multiparous dam show more
activity prior to calving, and can be observed on average 6 h before calf birth [27].

Lying bouts can be easily identified using a leg-mounted accelerometer [28], but
detection is much more challenging using ear or neck-based sensors due to the similarities
in the signals from the accelerometer when the animal is standing and lying. A recent
study [29] reported the use of a neck-based accelerometer to distinguish between those
states by detecting the characteristic movement associated with the transition between
states. After calving, the number of steps per hour stays elevated, whereas lying bouts tend
to gradually decrease as the animal transitions between pre and postpartum states.

Tail-raising patterns have been observed to change in the 24 h prior to calving [30,31]
and can be monitored using tail-mounted accelerometers. This new approach is however
not viable for long-term monitoring due to the weight limitation of these devices, overall
reduced stability, and possible damage to the skin of the animal [32].

In calving prediction by traditional methods, the farmer makes a visual inspection
of the cow to know its status. This is an error-prone task in which even experts may fail
to provide an accurate prediction of calving date. In extensive farming, animals move
freely in a wide area, which makes it more difficult for the farmer to properly monitor
and manage pregnant cows. An automated solution based on cow data collected from
sensors and processed by algorithms, can provide better delivery predictions than visual
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observation. This will allow the farmer to have a more accurate estimation of the expected
calving date of the cow and to identify those cows that require intensive supervision due to
the proximity of calving. It will make possible both reducing the workload of farmers, who
can focus on caring for cows with upcoming calving and improving the health of the cow.

In this paper a low-cost neck-mounted sensorized wearable device was designed and
an algorithm was developed to detect the onset of calving of cows in extensive livestock
farming. This work was divided in three main phases: (1) development of a wearable
solution for data collection based on different sensors; (2) data collection in extensive
livestock farming by using the aforementioned solution and human-based observations;
and (3) development of algorithms to detect the onset of calving and creation of a decision
function based on the frequency and duration of lying and standing behaviour (lying bouts).

This paper is organized as follows. Section 2 presents the sensorized wearable device,
the software developed to collect data from different cows by human observers, gives an
overview of the collected data, as well as the methodology followed during this study
and introduces the proposed algorithm for parturition detection. Results and discussion
of this algorithm are presented in Section 3. Finally, Section 4 shows the conclusions and
future work.

2. Materials and Methods

The goal of the first phase of the study is the development of a solution for recording
large quantities of behavioural information, which will later be combined with human
observation of the animals. The captured information will be used for the development,
validation, and quantification of algorithms for calving prediction.

A new low-cost sensorized wearable device was developed and integrated into a
collar, which can be placed around the cow’s neck. The developed device incorporates
three sensors: an Inertial Measurement Unit (IMU), a GNSS and a thermometer. Human
observers helped with monitoring, labelling, and recording the animals’ state using our
own development PC software. The designed collars were tested on cows from an extensive
livestock farm in Salamanca (Spain), during the period August 2020–July 2021.

2.1. Sensorised Wearable Device

The sensorized wearable device is a collar which is placed on the animal’s neck. The
collar houses a nRF52840-dongle (Nordic Semiconductor, Trondheim, Norway) microcon-
troller, three sensors (thermometer, 9-axis IMU—3-axis accelerometer, 3-axis gyroscope and
3-axis magnetometer—and GNSS), a microSD card breakout board (AdaFruit, NY, EEUU)
for data storage and lithium batteries. Figure 1 shows the overall architecture of the collar.
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range of −55 to 125 ◦C (accuracy ± 0.5 ◦C) is placed in such a way that contact between
the skin of the cow and the sensor occurs. The microcontroller acquires the 9–12 bits
configurable Celsius temperature measurements using a unique 1-wire interface, which
only requires one port pin for the communication. The IMU integrated in the collar is
the ICM-20948 (InvenSense, Berkeley, CA, USA, EEUU), which is a low-power 9-axis
motion tracking device embedding a 3-axis gyroscope, a 3-axis accelerometer, and a 3-
axis compass. A SAM-M8Q (U-blox, Thalwil, Switzerland) receiver is used for precise
geographic positioning of the animal and is configured to work in PSM (Power Save
Management) mode to minimize power consumption. Both the IMU and the GNSS
communicate with the nRF52840 microcontroller using I2C at 400 KHz. The microSD card,
which allows the storage of data from the sensors, communicates with the microcontroller
using SPI. Four lithium ion NCR18650GA (Sanyo, Osaka, Japan) batteries of 3.7 V and
3350 mA were used to power the device.

Figure 2 shows the developed collar. To avoid damage to the electronic components
and the batteries, a protective box was designed and produced using additive manufac-
turing in a 3D printer (Ultimaker® 2+). The polymer selected was ABS, a low-cost plastic
material with good mechanical properties. The cover box has two areas (Figure 2a,b). The
lower part contains the electronics, whereas the upper area houses the batteries. This design
facilitates the replacement of the batteries in the collar without affecting the electronic
components. To waterproof the container, a 2 mm diameter nitrile rubber O-ring was fitted
in the junction between the two covers. The box was attached to the neck of the cows using
an adjustable leather belt (Figure 2c), which allows for a good fit on animals of different
sizes. The material of the belt is soft, which maximises the animal’s comfort.
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Figure 2. Collar developed for data collection. (a) PCB with electronic components; (b) collar batteries
and temperature sensor; (c) collar with belt placed on the cow’s neck; (d) IMU axis orientation in
the collar.

All electronic components of the collar were configured to work in low power mode, to
minimize power consumption, and to extend battery life. The data from the accelerometer
and the gyroscope embedded in the IMU were sampled at a frequency of 17.6 Hz. The
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temperature and geolocation information (longitude, latitude, altitude, and speed) were
collected at 1 Hz. The orientation of the IMU axis is shown in Figure 2d.

Initial tests were performed using BLE 4.2 for the communication between the board
and a computer where data was registered. Due to high power consumption, however, it
was decided to store the information onboard instead, using a microSD card. This approach
increased the average collar battery life to up to 15 days.

Each datapoint includes the information from the sensors and a timestamp, using the
format described in Table 1. The data are then saved to the microSD card using binary
format. To minimize data loss if the collar runs out of batteries or fails, a new file is created
every hour.

Table 1. Raw data collected by the sensorized collar and saved in the microSD card.

Variable Datatype Units

Timestamp int32 ms since Unix Epoch
Temperature IMU float32 degrees C

Temperature DB18B20 float32 degrees C
Longitude (Lon) int32 degrees (×10−7)

Latitude (Lat) int32 degrees (×10−7)
Altitude above sea level (Alt) int32 m (×10−3)

Speed int32 m s−1 (×10−3)
Acceleration axis X (ax) float32 ×g
Acceleration axis Y (ay) float32 ×g
Acceleration axis Z (az) float32 ×g

Rotation X axis (gx) float32 degrees s−1

Rotation Y axis (gy) float32 degrees s−1

Rotation Z axis (gz) float32 degrees s−1

Although the data transmission is no longer performed wirelessly, the collar still
makes use of BLE: during collar initialization a timestamp will be exchanged between the
collar and the laptop, which allows for later data synchronization. A keepalive message is
also sent periodically (every minute), from collar to laptop, using BLE, to allow the human
observer monitoring the cow to detect if the collar is still operative or another action is
required (e.g., replacement of batteries).

2.2. Data Annotation with Computer Software

Direct visual observations were used to collect states and actions of cows in their
natural environment at the cattle farm. A PC-based software (Figure 3a) was designed
and developed to help the user register the observed state of multiple cows. The program
includes the following functionalities:

Collar initialization

During collar initialization, a timestamp is sent to the collar using BLE. This timestamp
will be used for the synchronization of the sensor data collected by the collar and the states
and actions of the cows recorded by the human observer.

Collar management (Figure 3b)

According to the European Commission, individual identification and registration of
bovine livestock is mandatory to ensure full traceability and, consequently, enhance food
safety and better safeguard animal health. The application uses an alpha-numeric code
as the cowl’s ID. Similarly, each device is identified by a unique 64-bit collar ID, which
corresponds to the serial number of the microcontroller housed in the collar.
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During operation, it was noted that human observers sometimes had difficulty identi-
fying cows when recording actions, especially over long distances or when animals were
close to each other. To solve this, each manufactured collar was printed with a different
colour (Figure 2c shows a red collar). Collar management allows registering and assigning
a new collar to an animal, unregistering, or reassigning an existing one and updating the
colour of the collar.

Collar scanner (Figure 3c)

This feature allows to check active collars within the BLE’s range, by listening to a
keepalive message containing the ID that the devices send every minute. The discovered
collars are listed on an overview and their status is changed to active (Figure 3c). The
application prevents the annotation of data from not active collars.

Data annotation (Figure 3d)

It allows the annotation, by a human observer, of the status and the action the cow
is performing. Additional observations can also be recorded. All annotated data and
observations are stored on the PC. Once the annotation activity is finished, the software
automatically generates a file containing the recorded information. Two predetermined
sets of states have been considered:

• General behaviour. The tags considered are: “Grazing/Eating”, “Ruminating”, “Neu-
tral” and “Walking”.

• Standing behaviour. The tags considered are: “Standing” and “Lying” position.

This reduction was necessary to identify transitions between lying and standing posi-
tions (lying bouts) which would not be registered in the general behaviour tag set, where
the neutral state can happen both standing and lying (if the cow is doing nothing else).

Import data:

Once the operator recovers the collar and obtains the sensor data files stored in the
microSD, the application allows the generation of a final file, using the timestamp in
both files to combine and synchronize the data from the collar with the data from the file
containing the visual observation data (stored in the PC). This synchronized data set is
used to develop our own parturition prediction algorithm described in Section 2.3.2.
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2.3. Calculation
2.3.1. Animals, Facility and Data Collection

For this study, ten collars were developed. However, cow monitoring was limited to a
maximum of three animals simultaneously in order to improve the quality of the annotated
data. The rest of the produced collars were saved as replacements, to minimize dead
times and data loss in case a collar stopped working. The monitored beef cattle belong
to an extensive livestock farm located in the municipality of Carrascal de Barregas, in the
province of Salamanca, Spain.

During the study, collars were fitted to six cows (see Table 2). For eleven months
(August 2020–July 2021) two experienced observers (one working in the morning shift
and the other during the afternoon shift) annotated the actions of the animals for a total
of 6 h every day. It is to be noted that although the observers were following the animals
continuously, some situations introduced uncertainty in the data, for example, when cows
stampede from one location to another. To mitigate the data deterioration, observers left
the annotations blank when detecting these situations. To record the different states a
laptop running the application previously presented was used while maintaining a clear
line of sight with the animals. Every week, the data stored in the microSD card of the collar
was downloaded, and the batteries were replaced. A detailed overview of the cow-wise
distribution of the data is presented in Table 2. As datapoints were dumped in the SD
card on an hourly basis, it is straightforward to know the number of hours we got data
from. The total quantities shown in Table 2 accumulate the number of hours the collar was
recording data (raw data) and the number of hours the observer labelled behaviours for
every studied cow.

Table 2. Cow-wise distribution of the data.

Cow Raw Data Collection
Period(dd/mm/yyyy)

Calving Date and
Hour Hours of Raw Data Hours of Labelled

Data

01 24/08/2020–17/02/2021 01/12/2020 13 h:30′ 1.634 212
02 24/08/2020–25/05/2021 24/02/2021 08 h:30′ 3.417 510
03 01/03/2021–15/06/2021 05/05/2021 16 h:45′ 1.720 279
04 05/10/2020–12/07/2021 25/05/2021 13 h:35′ 2.957 470
05 08/02/2021–30/07/2021 11/07/2021 20 h:15′ 1.130 159
06 24/08/2020–27/01/2021 - 1.887 147

Total 24/08/2020–30/07/2021 - 12.745 1.777

The schema of data acquired with the collars is shown in Table 3. In total, more than
855 million (855,319,572) raw datapoints have been recorded, of which approximately
114 million (114,167,178) are labelled.

Table 3. Schema of raw data collected by the collars.

DB18B20 GNSS IMU

TimestampTemp Lon Lat Alt Speed ax ay az gx gy gz Temp

Previous research work related to monitoring of pregnant cows around calving,
(Jensen, 2012) and (Titler et al., 2015), has been focused on the period immediately around
the time of calving (one and four days, respectively). This approach however is not practical
for application where monitoring is less frequent, such as extensive livestock farms where
large herds are held. Therefore, our research was focused on the long-term monitoring of
the pregnant animals, which extended up to two months after calving. Using this approach,
we could analyse the individual behavioural change during different stages of pregnancy,
which previous research has proved can differ greatly between individuals [21].
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The labels used for data annotation are presented in Tables 4 and 5. These two
sets of labels distinguish the two datasets introduced before, namely general behaviour
and standing/lying behaviour. Considering both label sets, approximately 1.777 h of
cow behaviour have been annotated by two experienced observers (working part-time in
morning and afternoon shifts).

Table 4. General behaviour annotations.

ID Action

A1 Grazing-Eating
A2 Ruminating
A3 Neutral
A4 Walking

Table 5. Standing/lying behaviour annotations.

ID Action

B1 Standing
B2 Lying

The distribution of the annotated actions is presented in Figure 4 for general behaviour
actions and in Figure 5 for standing/lying behaviour.
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General behaviour (Table 4) action prediction [33] has been explored during the study
as additional input for calving prediction. Furthermore, data already gathered allows for
further investigation in this field without the need of additional human-labelling. However,
the general behaviour label set can lead to an imperfect classification of standing/lying
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behaviour (lying bouts) of the cow when transformed, as some actions can only be carried
out in one posture (e.g., walking-standing), but other may occur both standing and lying.

For this reason, a second set of labels (Table 5) only accounting for lying and standing
postures has been used to ensure a correct classification of these two postures when needed
due to the importance of lying bouts detection for calving detection (as discussed in the
introduction).

The annotated data from human observations show a small delay between the change
of action of the cow and the annotation of this new action due to the response time of the
observer and their need to operate the annotation software. For this reason, the datapoints
recorded two minutes before an action change were ignored. This time period was chosen
as a balance between loss of data and minimizing mislabelled data in the dataset. As cows
did not change actions with high frequency in the recorded labels, two minutes resulted in
enough certainty without losing a significative volume of data for each action.

As discussed previously, the sensor readings from the collars and the annotations from
the observers can be joined using the timestamp of each data point to form the final dataset.

Three datasets were generated using the recorded data:

• Non-annotated data from the devices. These data have been proved to be useful for
unsupervised and semi supervised learning tasks.

• General behaviour annotated data (Table 4). This dataset could be used to classify and
predict the animal actions based on new reading from the devices.

• Standing/lying behaviour annotated data (Table 5). This dataset, although smaller
compared to b, serves for statistical learning tasks, as well as semi-supervised learning
techniques.

The experiments and algorithms have been developed using Python 3.7 [34] along
several libraries, mainly: Pandas [35], Keras [36], Numpy [37], and SciPy [38]. Figures have
been plotted using the Seaborn [39] library.

2.3.2. Parturition Prediction Algorithm

Calving prediction is the main objective of this pilot study. To usefully notify parturi-
tion, it is necessary to detect it with enough anticipation using a low-memory algorithm
suited for the microcontroller.

The number of transitions of the animal between lying and standing has been em-
pirically proved to be a good indicator of parturition in different studies [27,40,41]. This
measure serves as an indicator of the proximity of calving due to the relative increase of
its value in the 8 to 2 h before the parturition event. Furthermore, a notable decrease in
the number of lying bouts in the hours after calving is also observed. However, these
works study intensive dairy cattle, while our work studies extensive beef cattle, with the
according significantly less restricted environment since calving barns are not used. A
new low-memory algorithm based on classification of two cow postures (lying and stand-
ing), from the collar sensors readings has been developed. To classify these behaviours,
accelerometer readings, commonly used to distinguish between lying and standing, as well
as GPS altitude readings were initially considered. However, GPS readings were discarded
due to insufficient sensor resolution.

In [21] is indicated that is more difficult to distinguish between a lying and standing
position with a neck-based accelerometer since the two positions show similar accelerom-
eter readings. Leg-based accelerometers show a distinct crossover of two axes and can
easily be utilized to determine a standing or lying position. However, we have analyzed
accelerometer signals read by our neck-mounted collars on the Y and Z axes (Figure 6).
This figure shows that the analysis of the accelerometer signals provided by the cow’s
collar, allow us to clearly distinguish cow lying position (green colour), and cow standing
position (blue colour). These results are similar to those presented in [29] to classify the
cow posture as standing or lying.
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Our algorithm for cow posture classification (lying/standing) based on accelerometer
readings has been implemented based on an heuristic threshold [27]. This approach is
focused on simplicity and is based on the different distributions of acceleration recordings
along the Y axis depending on the posture of the animal. Figure 7 shows the distribution of
all available data labelled with the standing/lying action (11 months of data collection).
Accelerometer Y-axis readings (left) indicates that standing behaviour is characterized
by a larger mean (denoted by a grey triangle) than those recorded with the animal lying
down. Accelerometer Z-axis readings (right), indicates that standing position have a larger
interquartile range than the lying ones.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 16 
 

 

 
(a) (b) 

Figure 7. Y-axis and Z-axis accelerometer signal distribution while standing and lying of all data annotated with standing 
and lying postures. (a) Y-axis; (b) Z-axis. 

To achieve “a low-memory algorithm”, the accelerometer data is resampled from 
17.6 Hz to 0.27 Hz as our experiments have proven that this data rate is enough for the 
algorithm. This way, memory requirements during the sliding window operations de-
creases and battery life of the device increases. Based on these appreciations and given 
the series of readings from the Y-axis of the accelerometer at discrete timestamps t୧, de-
noted by 𝑓௔௬(𝑡௜), the following algorithm has been developed: 
1. First, a rectangular sliding window of the last 15 min is used to count the number of 

readings in the Y-axis between a given superior and inferior threshold, 𝑡ℎ𝑟௦௨௣ and 𝑡ℎ𝑟௜௡௙, respectively. The values of these thresholds are obtained from the distribu-
tion shown in Figure 7 to maximize the difference in the resulting count while 
standing and lying. This operation results in a function 𝑓௖௢௨௡௧(𝑡) (1) given by: 

𝑓௖௢௨௡௧(𝑡) =  ෍ ൣ𝑡ℎ𝑟௜௡௙ < 𝑓௔௬(𝑖) < 𝑡ℎ𝑟௦௨௣൧௧
௜ୀ௧ ି ଵହ ௠௜௡௨௧௘௦ , (1) 

2. Next, 𝑓௖௢௨௡௧(𝑡) is thresholded to obtain a binary signal 𝑓௦௧௔௡ௗ௜௡௚(𝑡) (2) depending 
on the value of the function in each instant relative to a threshold 𝑡ℎ𝑟௦௧௔௡ௗ௜௡௚. This 
way, any value greater than 𝑡ℎ𝑟௦௧௔௡ௗ௜௡௚ will be denoted as 1 (standing), while values 
smaller than the threshold will be converted to 0 (lying). 

𝑓௦௧௔௡ௗ௜௡௚(𝑡) = ቊ1 (𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔)     𝑖𝑓 𝑓௖௢௨௡௧(𝑡) > 𝑡ℎ𝑟௦௧௔௡ௗ௜௡௚ 0 (𝑙𝑦𝑖𝑛𝑔)            𝑖𝑓 𝑓௖௢௨௡௧(𝑡) ≤ 𝑡ℎ𝑟௦௧௔௡ௗ௜௡௚ , (2) 

3. This binary function 𝑓௦௧௔௡ௗ௜௡௚(𝑡) is converted to a discrete transition signal 𝑓௟௕(𝑡) 
(3) taking the absolute value of the difference between 𝑓௦௧௔௡ௗ௜௡௚(𝑡) at any given time 
and its immediately previous value with each transition from standing to lying 
down and vice-versa represented by a 1. 𝑓௟௕(𝑡) = |𝑓௦௧௔௡ௗ௜௡௚(𝑡) − 𝑓௦௧௔௡ௗ௜௡௚(𝑡 − 1)|, (3) 

4. Finally, with this discrete transition signal 𝑓௟௕(𝑡) computed, another rectangular 
sliding window is used to count the number of transitions that took place in the 
previous 5 h of each reading. This function 𝑓௣௔௥௧௨௥௜௧௜௢௡(𝑡), acts as a proxy to predict 
parturition based on the lying bouts occurrence increasement before calving. 

Figure 7. Y-axis and Z-axis accelerometer signal distribution while standing and lying of all data annotated with standing
and lying postures. (a) Y-axis; (b) Z-axis.

To achieve “a low-memory algorithm”, the accelerometer data is resampled from
17.6 Hz to 0.27 Hz as our experiments have proven that this data rate is enough for
the algorithm. This way, memory requirements during the sliding window operations
decreases and battery life of the device increases. Based on these appreciations and given
the series of readings from the Y-axis of the accelerometer at discrete timestamps ti, denoted
by fay(ti), the following algorithm has been developed:
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1. First, a rectangular sliding window of the last 15 min is used to count the number
of readings in the Y-axis between a given superior and inferior threshold, thrsup and
thrin f , respectively. The values of these thresholds are obtained from the distribution
shown in Figure 7 to maximize the difference in the resulting count while standing
and lying. This operation results in a function fcount(t) (1) given by:

fcount(t) =
t

∑
i=t−15 minutes

[
thrin f < fay(i) < thrsup

]
, (1)

2. Next, fcount(t) is thresholded to obtain a binary signal fstanding(t) (2) depending on
the value of the function in each instant relative to a threshold thrstanding. This way,
any value greater than thrstanding will be denoted as 1 (standing), while values smaller
than the threshold will be converted to 0 (lying).

fstanding(t) =
{

1 (standing) i f fcount(t) > thrstanding
0 (lying) i f fcount(t) ≤ thrstanding

, (2)

3. This binary function fstanding(t) is converted to a discrete transition signal flb(t) (3)
taking the absolute value of the difference between fstanding(t) at any given time and
its immediately previous value with each transition from standing to lying down and
vice-versa represented by a 1.

flb(t) =
∣∣∣ fstanding(t)− fstanding(t− 1)

∣∣∣, (3)

4. Finally, with this discrete transition signal flb(t) computed, another rectangular slid-
ing window is used to count the number of transitions that took place in the previous
5 h of each reading. This function fparturition(t), acts as a proxy to predict parturition
based on the lying bouts occurrence increasement before calving.

fparturition(t) = ∑t
i=t−5 hours flb(i), (4)

3. Results and Discussion

As indicated in Table 2, cow number 03 calved on 5 May 2021 at 4:45 PM. Figure 8
shows the values of function fparturition(t) in the last five hours calculated with a rolling
window for cow 03, for a week (from 4 May to 11 May), using the proposed algorithm for
parturition prediction. A notable increase of this function is observed near the parturition
instant, signalled with a vertical red dotted line.
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Figure 8 represents the function fparturition(t) during a week. This figure shows that it
is during the hours before calving (2~3 h) when this function takes the highest values, reach-
ing the maximum at the instant of calving. Furthermore, a horizontal dotted green line in
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Figure 8 denotes a value that is only surpassed during the calving event ( fparturition(t) = 10).
This value could be used as a trigger of the parturition detection for this cow 03. It is noted
that this signalled value differs between individuals since there is variance between the ac-
tivity and energy expenditure of each animal, and therefore this value has to be dynamically
calculated (for each cow) on the collar based on previous readings.

As indicated in Table 2, during the data collected over a period of eleven months (Au-
gust 2020–July 2021), five cows calved. Figure 9 shows the mean of function fparturition(t)
in the last five hours calculated with a rolling window, and generated from the algorithm
showed before (from the five calving events that took place). To calculate this mean, the
values of this function have been aligned on the moment of parturition (0 h relative to
calving). It is observed in Figure 9 that the mean value of the function fparturition(t) in-
creases two hours before the calving of the cows. This increase allows us to determine
that the cow is close to parturition. As previously mentioned, the parturition trigger value
of 10 signalled in Figure 8 is only applicable to cow 03. This can be shown in Figure 9,
where the fparturition(t) signals from the rest of the cows have brought the signal mean
value slightly down.
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The heuristic-based algorithm we have developed traces lying bouts with enough
resolution to detect their increase in a time frame, which can be used to detect cow calving.
This is accomplished without the need to calculate a calving indicator index that requires
tracking the step count and the time spent lying down by the animal as in [27], mainly due
to this variables stability when compared with the number of lying bouts near calving.

A very important aspect of the developed calving detection algorithm is its simplicity.
This algorithm must be programmed in the microcontroller housed in the collar placed on
the cow’s neck, which represents a significant limitation in the microcontroller’s computing
and memory fields. Furthermore, a coarse estimate of the calving date in the receiving
end of the calving prediction is also useful to use in conjunction with the algorithm, as it
ensures the rejection of any naturally inviable false positive from the algorithm (i.e., calving
detection one month before and after mount).

The dataset used in previous studies [27,40], usually includes data in a small temporal
window around calving (1–5 days). The data collected in our study enable the back test of
algorithms in a much more extensive temporal window, something essential to validate any
algorithm that would run in a real-world environment, such as the proposed sensorized
wearable device.

Although the proposed algorithms of this study are focused on calving prediction, the
developed sensorized wearable device and the collected data enable the development of
different algorithms that could be of great help to farmers both in extensive and intensive
livestock. Additionally, the generalist design of the presented wearable device could be
equally helpful to develop hardware solutions oriented to different animals, benefiting their
caretakers with the localization data from the collar, the suite of sensors that it incorporates,
and other algorithms that could be implemented within the device.
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4. Conclusions and Future Work

In this paper, a low-cost neck-mounted sensorized wearable device to continuous
long-term monitoring cow data has been presented. To incorporate the ability to detect
cow parturitions with enough anticipation using only this device an algorithm has been
developed. This algorithm can detect an increment in the number of times the cow stands
up and lies down (lying bouts) using a signal calculated from the accelerometer’s readings.
To test the proposed algorithm, data collection using the cow neck-mounted devices and
annotations from in-situ human observers has been carried out for eleven months (August
2020–July 2021). The data gathered by the neck-mounted collars correspond to six different
cows monitoring in extensive livestock farming.

This preliminary study (of six cows, with five calving events), provides evidence that
cow approaching parturition shows an increase in lying bouts behavioural pattern that can
predict calving on average two hours before calving. To confirm these results, however,
more pregnant cows need to be monitored and further research is required to refine this
algorithm. The long-term character of the data acquired will allow for individualization
of the thresholds for calving detection by calculating the baseline “restlessness level” of a
particular animal. This could be used by the collar to generate an alert system to warn the
farmer of the onset of calving.

The low-cost of this device (≈100 € for small-scale production) would benefit most
large livestock holdings by greatly reducing the number of hours the human experts must
manually monitor individual animals. Economies of scale would allow the unitary price
of the collar to be lowered even more, which would allow massive adoption even for the
monitoring of large herds. However, smaller farms with less resources would also benefit
from the reduced cost of the device, which lowers the entry barrier into a technology such
as this, thus allowing for its adoption.

Future work will focus in two separate points. The first one, data related, requires
the acquisition of calving data from a larger number of cows to validate the developed
algorithm and to develop a new data driven algorithm that learns from the available data
from different cows (both from the same breed and from different breeds, to deal with
the variance between different species). This new algorithm could be dedicated to the
classification of standing and lying behaviour or to the detection of the birth event as a
time series task. Furthermore, the data already gathered from the animals long before
calving and therefore related mostly to the normal activity of the animal would allow
for the development of algorithms that analyse cow behaviour (grazing, ruminating, etc).
A deviation of the normal behaviour of a particular animal due to sickness, heat, or an
abortion could be signalised to the farmer.

The second point englobes the development of a new neck-mounted collar with IMU,
GNSS and wireless low energy, and long-range communication using the LoRa protocol.
This wireless communication would allow farmers to physically localize cows in extensive
livestock farming, as well as receiving notifications of the detected parturition event,
reducing the workload associates with parturition, and preventing dystocia in unattended
calving. The energy autonomy of the device is an aspect of great importance in terms
of its practical utility. In the tests carried out, it has been identified as an improvement
parameter. For this, solar-powered technology is being incorporated in order to increase
overall autonomy.
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Abstract: The speed and accuracy of phenotype detection from medical images are some of the most
important qualities needed for any informed and timely response such as early detection of cancer or
detection of desirable phenotypes for animal breeding. To improve both these qualities, the world is
leveraging artificial intelligence and machine learning against this challenge. Most recently, deep
learning has successfully been applied to the medical field to improve detection accuracies and speed
for conditions including cancer and COVID-19. In this study, we applied deep neural networks, in
the form of a generative adversarial network (GAN), to perform image-to-image processing steps
needed for ovine phenotype analysis from CT scans of sheep. Key phenotypes such as gigot geometry
and tissue distribution were determined using a computer vision (CV) pipeline. The results of the
image processing using a trained GAN are strikingly similar (a similarity index of 98%) when used
on unseen test images. The combined GAN-CV pipeline was able to process and determine the
phenotypes at a speed of 0.11 s per medical image compared to approximately 30 min for manual
processing. We hope this pipeline represents the first step towards automated phenotype extraction
for ovine genetic breeding programmes.

Keywords: generative adversarial network; machine learning; automated medical image processing;
deep neural network; animal science; CT scans; computer vision

1. Introduction

Increase in global food demand has led to livestock breeders seeking to produce
breeding lines more able to match economic demand which have genetic advantages to
primary traits such as growth speed and reduced feed intake. With agricultural animals
providing 18% of global calories and 39% of global protein intake, they are still an essential
part of global nutritional requirements [1]. One of the methods in making livestock more
advantageous is to selectively breed them for commercial traits such as growth rate [2],
milk quality [3], weather [4] and disease resistance [5]. Recent improvements in genomic
technologies such as detection of single nucleotide polymorphisms (SNPs) and whole
genome sequencing [6] have allowed unparalleled insight into the driving factors which
guide animal phenotypes [7] and successful genomic breeding selection has been able
to identify traits which are not only desirably economically, such as improved livestock
social behaviour and carcass composition [5], but also identify novel cosmetic or welfare
indicators such as predicting horn phenotypes in Merino sheep [8]. As the number and
biological complexity of known phenotypes are increasing, there is a call to innovate new
ways to detect phenotypes faster and more accurately [9] in addition to detecting and
preserving those of potential future relevance [10].

Non-invasive imaging techniques, such as computed tomography (CT), magnetic
resonance imaging (MRI) and ultrasound, can provide detailed data from which pheno-
types can then be extracted [11,12] and used in breeding programmes. One major benefit
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of using these non-invasive imaging techniques is that internal phenotypic data, such as
muscle and fat distribution [13], organ size and limb morphology, can then be incorporated
more swiftly into genetic breeding programmes for live breeding animals [14]. Out of the
commonly used non-invasive imaging techniques, CT scanning provides the highest reso-
lution (1–2 mm). One hurdle which can impact extraction of useful phenotypic information
is the processing and analysis of these images which can be time consuming and there-
fore costly, especially if there is a need to re-analyse historic databases to measure newly
emerging phenotypes.

Machine learning and artificial intelligence have been successfully implemented to
increase phenotype detection speed and accuracy within many different medical areas
including brain cancer detection, COVID status in lungs and classification of organ de-
formities [15–17]. Recently the same technology has been applied to areas of agricultural
science such as detection of bovine tuberculosis status based upon milk spectral data [18,19].
Briefly put, these networks work by passing data such as images, or segments thereof,
through a series of layers containing artificial neurones which determine the likelihood of
visually similar animals such as pigs, sheep or horses on a scale of 0 (absent) to 1 (present).
The type of network commonly used to perform this image to binary diagnostic is a con-
volutional neural network where, as the layer depth increases, many datapoints (such
as pixels) are condensed into fewer datapoints (likelihood of, e.g., pig, sheep or horse
presence). The subject field of artificial intelligence, machine learning and deep learning
using neural networks is extremely broad, and this research article only aims to provide a
broad overview in order to demonstrate its application in agriculture and to not discuss
these in depth, although many excellent reviews exist for further reading [20–23].

To perform image-to-image translations a similar type of neural network is required, al-
though rather than condensing pixel information into a few datapoints, the shape of the layers
more closely resembles that of an hourglass laying on its side (Figure 1a). This hourglass shape
allows the network to perform general purpose image-to-image translation and even increase
resolution of blurry input images [24]. By pairing this image-to-image transforming network
with a second convolutional neural network (Figure 1a), the discriminator, which compares
and scores the images produced by the image transforming network and tries to discrimi-
nate between fake and ground truth results, a self-training system can be produced. These
two-component image translational networks are termed generative adversarial networks
(GANs) and have traditionally been used for a variety of image translational tasks including
sketch-to-photo, smile-to-frown, and non-bearded-to-bearded [24–26]. More recently, GANs
have been applied to medical images to remove noise from low-dose CT, generate tissue
structure from blood vessel networks, correct motion artefacts, produce CT images from MR
images and synthesise new image data [27–29].

By combining GANs with another machine learning technique, computer vision (CV),
any images generated by the GAN can then be analysed to extract data of interest in
a fully automated way (Figure 1b). Computer vison is a research field which aims to
extract understanding or context from images and can use both traditional mathematical
regression techniques as well as deep learning classification networks [30,31]. Application
of CV can range from simple inspection of food quality and ripeness by counting the
number of pixels within images of fruit and vegetables which fall within certain colour hue
ranges [32,33] up to more complex tasks such as identifying road signage or pedestrians to
guide automated driving systems [34].

We use both smart techniques (GANs and CV, Figure 1a,b, respectively) to aid processing
and analysis of agricultural medical images of sheep. This research aims to first implement
a GAN to perform ovine CT processing steps involving global information manipulation
such as object and organ removal since within the image are multiple objects (scanning cradle
and padding) and organs (testes) of varying size, morphology and orientation. Then, with
the processed image containing only key features, attempt to extract phenotypes relevant for
breeding programmes using CV techniques in an automated process.
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Figure 1. Combined GAN-CV pipeline for phenotype extraction. Neural networks can be trained to perform image-to-image
translations such as in (a) where a raw ovine CT scan is passed through a generator network, a series of convolution, batch
normalisation and ReLu activation function layers, to produce a “fake” image. Skip connections apply regions from the
encoded to the encoded images and improve object border definition. By reducing differences between the real and the
fake images (green dashes) the autoencoder also learns to better produce fake images independently. A second neural
network, the discriminator, then determines if an image is considered real or fake. By pairing the two neural networks
to work against each other, an adversarial component emerges, where the generator tries to produces images to fool the
discriminator and the discriminator tries to determine if these images are real or not. Phenotype extraction is performed on
both real and fake images (b) to determine tissue composition and shape before being compared to confirm accuracy.

2. Materials and Methods
2.1. Ovine Ischium Scan Collection

A single cross-sectional 2D image was taken through the top of the leg at the point
of the ischium for each lamb using a Somatom Scope (Siemens, located at the SRUC-
BioSS CT unit in Edinburgh, Scotland) with a slice thickness of 10 mm for a variety of
breeds including Beltex, Blue Texel, Charollais, Hampshire Down, Meatlinc, Shropshire,
Southdown, Suffolk and Texel as performed by Bunger et al. [12]. The images at this stage
are referred to as “raw” images throughout the paper as they are unprocessed. All CT
images produced from the scans are exported in the “Digital Imaging and Communications
in Medicine” (DICOM) format, a unified filetype for medical imaging techniques. Such
DICOM images contain additional data regarding the subject, such as age, sex and location,
in addition to collection parameters such as equipment and scanning methodology used.
Image dimensions used for this study were 512 × 512 pixels of an intensity value between
0 (black) and 2550 (white) where 0 typically represents low-density matter such as air and
2550 represents extremely dense matter such as metal.

2.2. Determination of Tissue Pixel Intensities

Pixel intensities corresponding to respective tissues of fat, muscle and bone were
calculated based upon comparison with dissected tissue as explored by Bunger et al. [12].
Pixel intensity windows for fat, muscle and bone were 800–1000, 1000–1100 and 1100–1750,
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respectively. This group’s previous research allowed us to incorporate set pixel intensity
windows for each tissue type into the CV pipeline easily.

2.3. Manual Image Processing and Phenotype Analysis

All images had been previously labelled by manual phenotype extraction. Parts of the
image superfluous for downstream phenotype determination including scanning cradle
and testes were removed using STAR software routines [12] using the method described by
Glasbey et al. [35]. Images produced from this processing are considered as “ground truth”.
From the ground truth images, tissue phenotype could then be extracted by calculating
tissue distribution within the experimentally determined windows. Other phenotypes
such as gigot length were measured manually by measuring the distance from the centre
of the ischium bone cross-section to that of the femur bone cross-section in a “click and
drag” fashion. Processing the images in this fashion took approximately 30 min.

2.4. GAN Model

GANs are two-component systems which have a generator component G to generate
images and a discriminator component D to determine if the image is real or fake. The
generator G takes an input image to translate into an output image y and can operate
in either an unconditional fashion where random noise z is supplied or in a conditional
fashion where an input image x or random noise z is supplied, G: {x or z} → y. The
discriminator D determines if the image produced is “real” or “fake” and helps train the
generator G to produce images which can pass as “real”. GANs thus attempt to optimize
the following function [36]:

min
G

max
D

V(G, D) = Ex,y [log D(x, y)]+

Ex,z [log (1− D(x, G(x, z))]
(1)

Further improvement of the generator G can be incorporated by including a function
to minimise the absolute pixel differences between “real” and “fake” images [25].

min
G

LL1(G) = Ex,y,z[y− G(x, z)] (2)

Which results in the following final model:

G∗ = min
G

max
D

V(G, D) + LL1(G) (3)

2.4.1. GAN Training

The GAN network trained in this study is an implementation of AUTOMAP [37]
and Pix2Pix [25] which has been optimised for use with paired image datasets [38]. This
particular GAN was chosen for this study as it was designed from the ground up to process
paired sets of images, such as those commonly found in the medical field where an image
can be altered to produce a “before” and “after” whilst maintaining the same subject
ID and type, e.g., sheep–sheep, human–human, in a conditional synthesis process. This
is in contrast to other popular GANs, such as CycleGAN and DCGAN, which perform
unconditional synthesis by capturing key style concepts, from large batches of example
images to translate images between two highly different abstract style concepts such as
horse-to-zebra, photograph-to-Van Gogh or sketch-to-cat [39,40].

A dataset containing 126 raw and ground truth image pairs of mixed breed ovine CT
scans taken from 2019–2020 were used for GAN training (Supplementary File S1). DICOM
pairs were first split into training (n = 101) and validation (n = 25) datasets (80% and 20%,
respectively). The raw and ground truth pairs of DICOM filename IDs were first given
a suffix of “_0” or “_1”, respectively, to act as identifiers. All file extensions were then
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modified to ensure compatibility with the DICOM processing libraries used in this study.
The script used to train the GAN, along with the full list of GAN settings used for this
study, is available within Supplementary File S2. Key settings for training the GAN were
as follows: random translation = 0, epochs = 100, weight for L1 reconstruction loss = 0,
weight for L2 reconstruction loss = 10.0, weight for softmax focal reconstruction loss = 1.0,
weight for total variation = 10−3. Following training, both the L1 (absolute pixel difference)
and L2 (mean squared error) were approaching stable values (Supplementary Figure S1).

2.4.2. Image Processing Using Trained GAN on Unseen Data

Thirty-two raw CT scans (Supplementary File S3) taken from 2018–2019 and belonging
to the breed Charollais were passed through the trained GAN model to produce “predicted”
images that were given a suffix of “_2” to clearly differentiate between the raw and ground
truth counterparts (Supplementary File S2).

2.5. CT Scan Similarity Comparison
2.5.1. CT Scan Histogram Comparison

Alternative image manipulation techniques, such as removing pixels above or below
certain intensities, were not suitable for processing the CT scans in the DICOM format as
the pixel intensities of image objects needing to be removed overlapped with that of the
subject’s tissue. Furthermore, pixels in certain areas could not be removed since subject
orientation was not constant. Due to the large irregular pixel area changes needed to
process the images, a deep neural network that can perform image-to-image translations
was deemed to be of potential use. This can be visualised by comparing the pixel intensity
histograms of both the raw and ground truth images below in Figure 2 (generated as part
of the computer vision pipeline in Supplementary File S4).

2.5.2. Calculation of Image Similarity

Mean squared error (MSE) and structural similarity index (SSI) metrics were used
to compare the raw and ground truth images with the resulting predicted images. Mean
squared error is a full pixel-wise reference metric with values closer to zero being better; it
is the sum of the accumulative mean squared difference across each pixel location between
a pair of images. This technique, however, is extremely sensitive and seemingly large
amounts of MSE can be accumulated by very minor shifts in the image, as perceived by
the human eye, such as slight rotations or horizontal and vertical translations [41]. A
newer, more holistic and subtle approach which avoids the extreme position sensitivity of
MSE is calculating the SSI, which analyses local similarities in structure, luminance and
contrast to more closely mimic how the human eye perceives similar images [42]. Both
MSE and SSI were calculated for each pairwise comparison of image classes (raw, ground
truth or predicted in this study) using the SciKit Image python image processing library as
documented in Supplementary File S4 [43].

2.6. Phenotype Measurement Using Computer Vision

Automated phenotype extraction from ground truth and predicted (processed) images
was performed using a pipeline which incorporated known pixel intensity value thresh-
olding for each component of the carcass, based upon manual dissection, for each tissue
type in combination. Geometric phenotypes were computed predominantly using the area,
contour and perimeter functions within the CV library SciKit Image [43]. In addition, a set
of bespoke functions were also written to detect probable tissue pixel intensity windows of
fat, muscle and bone if no known set values were available, or if the images being analysed
were from different sources. All steps of phenotype extraction using computer vision are
documented in Supplementary File S4.
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Figure 2. A representative pixel intensity histogram of raw and ground truth image shows large
variance. By comparing the raw and ground truth pixel intensity histograms it can be visualised
that they a) share certain areas of similarity (as seen at the peak between 1000 and 1250) but also
b) contain regions which have different non-zero abundances (within the peak between 750 and
1000). As there are no regions where pixel intensity is either present or not present, images cannot
be processed by simply flattening pixel intensities which lie between certain values. This type of
non-linear transformation is a task in which neural networks perform well.

2.6.1. Tissue Distribution

The areas of all tissues within the ground truth and predicted images were calculated
using the SciKit Image contour function for later use in determining percentage tissue
composition. Tissue masks for each image were applied by first setting pixel intensity
values (fat, muscle, bone) outside the respective tissue windows to zero and then setting
values within the window to max (2550). Fat, muscle and bone % of each image were
determined by comparing the number of pixels that fell within each of the respective tissue
masks to that of the area of all tissue. By visualising each of the tissue masks independently,
muscle and fat distribution could be observed in addition to locations of key physical
features such as bones for further geometric phenotype analysis.

2.6.2. Skeleton Geometry

One key phenotype used for estimation of muscularity is the ratio of the length and
width of the gigot muscle. These dimensions are typically measured by hand from the
CT scan image but, by using CV models, we can extract this information automatically
from the bone tissue mask image by implementing SciKit Image area and crofton perimeter
functions [44]. Since small pieces of grit and sand may appear in the bone mask, due
to high density as detected by X-rays, only bone mask objects over 200 pixels in both
area and perimeter are referenced. Then, to avoid including spinal bone tissue, the four
largest objects in the most +Y direction are assumed to be the features of interest and are
placed into pairs according to their position along the X axis. The distance in pixels is then
calculated between each pair of bones to determine gigot length. A line perpendicular to
that between the bone pairs is then used to find the furthest non-zero positions within the
muscle tissue mask and thus determine gigot width.
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2.7. Computing Hardware and Software

The training of machine learning models can be an intensive computational task which
typically requires powerful graphics processing units (GPUs). As such, all computation
was performed on an NVIDIA DGX Station workgroup server [45]. The DGX workstation
provided supercomputing performance with one out of a total of four TESLA V100 GPUs
being used for computations underpinned by an Ubuntu operating system. All code
was run within a Compute Unified Device Architecture (CUDA) 10.1 docker container
which allows parallelisation of general-purpose processing to be applied to the powerful
GPUs. Within this container, the open source learning framework Chainer was used
to accelerate creation of the neural networks [46]. The GAN trained in this study is an
implementation of AUTOMAP [37] and Pix2Pix [25] which has been optimised for use with
paired image datasets [38]. Predicted images produced by the GAN were then processed
using a bespoke python script run within a Jupyter notebook (Supplementary File S4). The
notebook contains code within cells which can either (a) run individual steps and generate
intermediary output figures (slower) or (b) calculate metrics and compare images without
visualising any medical images (faster).

3. Results

The trained model was able to transform the raw images with a high degree of
accuracy and perform the large image area manipulations, such as scanning cradle and
testicle removal, needed to produce images similar to the manually processed ground
truth images. The accuracy of these transformations was confirmed by visual inspection
of predicted images and measurement of image similarity metrics including MSE and SSI.
Phenotypic traits such as fat, muscle and bone tissue distribution and both gigot length and
width were then automatically extracted from the predicted (transformed) images using
CV techniques. All values calculated using this pipeline area are recorded in an output file
(Supplementary File S5).

3.1. CT Scan Processing Using Trained GAN

Raw CT scans not previously seen by the GAN were processed using the trained
model at a speed of 0.11 s per scan. Predicted and ground truth images and pixel intensity
histograms were first compared visually to initially assess GAN suitability and ensure
that they were visually similar (Figure 3). Quantitative metrics such as MSE and SSI were
further determined to accurately assess the success of the GAN for processing the CT scans
(Figure 4).

3.1.1. Images Produced from Trained Model

The trained model was able to perform the major structural alterations within the
image dataset needed to transform the raw CT scans into something which, by eye, strongly
resembled the ground truth images as shown below in Figure 3. Image IDs 1732, 9638
and 8353 were chosen to illustrate this transformation since, on visual inspection, they
contained the largest area of features needing to be removed (large testes and a large
scanning cradle).
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thing resembling manually processed ground truth images (middle column). Non-quantitative vis-
ual inspection of predicted results (right column) indicated that images produced by this GAN are 

Figure 3. Representative comparison of raw, ground truth and predicted CT scan images. A trained
generative adversarial network (GAN) was used to process raw CT images (left column) into
something resembling manually processed ground truth images (middle column). Non-quantitative
visual inspection of predicted results (right column) indicated that images produced by this GAN are
similar to ground truth counterparts. The GAN showed good capabilities in automatically handling
the large image transformations needed to remove image objects such as testes and scanning cradle.
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Figure 4. Quantifying a high degree of quantified similarity between ground truth and predicted images. Comparing a
representative pixel intensity histogram of a ground truth and predicted image (left) showed a high degree of overlay and
that peaks were present in similar areas at similar amplitudes, indicating a similar distribution of pixel intensities within
each image. Structural components of image groups were compared (right) using mean squared error (MSE) and structural
similarity indexes (SSIs) which revealed a) high average MSE (58,674 ± 17,766 and 58,008 ± 17,319, n = 32) with low average
SSI (0.49 ± 0.025 and 0.48 ± 0.024, n = 32) between raw vs. ground truth and raw vs. predicted image groups, respectively,
b) low average MSE (1028 ± 1201) and high average SSI (0.98 ± 0.0035) when comparing ground truth vs. predicted images.
These high SSI and low MSE values confirm the suitability of a trained generative adversarial network to perform highly
accurate ovine CT image processing.
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3.1.2. Image Similarity Metrics Confirm a High Degree of Similarity

Just as raw and ground truth image histograms were compared previously, likewise
the ground truth and predicted images were compared in a similar fashion which revealed
two histograms, highly similar, showing a large proportion of overlap and a high degree
of similarity from visual inspection. The likeness of the raw, ground truth and predicted
image sets (n= 32) was compared pairwise using MSE and SSI. Both raw vs. ground
truth and raw vs. predicted showed the lowest image similarity values with an average
MSE of 58,674 ± 17,766 and 58,008 ± 17,319 and with average SSIs of 0.49 ± 0.025 and
0.48 ± 0.024, respectively, indicating a high degree of image dissimilarity. On the other
hand, comparing images in the ground truth and predicted datasets showed a much lower
average MSE (1028 ± 1201) and a far higher average SSI of 0.98 ± 0.0035, indicating a
far greater similarity and indicating high accuracy of the trained model in mimicking the
manual processing of CT scan images.

3.2. Automated Phenotype Extraction

The image processing library SciKit Image was successfully implemented to provide
CV capabilities in the automated phenotype extraction pipeline. In this study, phenotypes
of interest included fat, muscle and bone tissue abundance as well as leg geometry such as
length and width (Supplementary File S4).

3.2.1. Leg Tissue Composition

Tissue abundance and distribution of fat, muscle and bone, within the single 2D image
analysed, were calculated by counting pixels which fell within experimentally determined
tissue pixel intensity windows compared to the total tissue area. Binary visualisation of
these tissue value windows allowed rapid profiling of tissue distribution as seen below in
Figure 5. Using this method, tissue abundances were calculated for each medical image in
terms of both area and percentage composition (Figure 6). On average, the area of bone,
muscle and fat across the dataset was 6488 ± 533, 44,274 ± 4051 and 5712 ± 1377 mm2.
Carcass tissue composition percentage-wise for bone, muscle and fat was 11.52 ± 0.78,
78.41 ± 1.90 and 10.07 ± 2.03%.

3.2.2. Gigot Length and Width Phenotype Extraction

By applying CV functions from the SciKit Image library such as area, perimeter and
location restraints to objects in the bone tissue mask, the position and centre of key features
were detected, and gigot length and width determined automatically as part of the CV
script (Supplementary File S4). This process is visualised below in Figure 7. Left and right
gigot lengths were 164.45 ± 8.72 mm and 166.38 ± 9.71 mm with widths being 137.55 ±
10.53 mm and 143.99 ± 12.42, respectively.

3.2.3. Phenotype Extraction Accuracy

Phenotypes from both predicted and ground truth datasets were extracted using
the computer vision pipeline and compared to determine the suitability of predicted
images for phenotype determination as seen below in Figure 8. Across all phenotypes, the
average values were on average 101.44% that of the ground truth value with a standard
deviation of 12.90% (n = 32). Muscle % was the most accurate predicted phenotype with
estimated values between 93.67 and 106.65%. On the other hand, calculated fat area was
the least accurate predicted phenotype with estimated values between 42.50 and 156.18%
(following incomplete ovine testes removal from image ID 8346, fat-related phenotypes
were not included in accuracy calculations as testes are calculated as fatty tissue. All other
phenotypes for this image were recorded normally such as muscle area, bone area and
gigot geometry).
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Figure 5. Representative tissue distribution of fat, muscle and bone within tissue area of predicted images. The results of
the trained generative adversarial network were analysed by examining total area (top left) and by applying pixel intensity
threshold windows to separately visualise fat (top right), muscle (bottom left) and bone (bottom right). The total number
of pixels that fell within these pixel intensity windows determined the volume of the respective tissue types in the sample
since 1 pixel = 1 mm2.
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for phenotype determination as seen below in Figure 8. Across all phenotypes, the average 
values were on average 101.44 % that of the ground truth value with a standard deviation 
of 12.90 % (n = 32). Muscle % was the most accurate predicted phenotype with estimated 
values between 93.67 and 106.65 %. On the other hand, calculated fat area was the least 
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Figure 7. Automated identification of key features and determination of gigot length and width from predicted images.
Using the bone tissue mask (top left) from the predicted image generated by the GAN, key features can be identified (top
right). The centroid of each object within each feature area can be calculated (bottom left) to then measure distances and
determine gigot length (LL, RL bottom right). By taking the perpendicular equation of the line which connects the two
pairs of bones, the width of the gigot (LW, RW, bottom right) can be calculated by discovering the first and last non-zero
values of these positions within the muscle tissue mask. Left and right gigot lengths on average were 164.45 ± 8.72 mm and
166.38 ± 9.71 mm with widths being 137.55 ± 10.53 mm and 143.99 ± 12.42, respectively.
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Figure 8. Comparing values of predicted and ground truth phenotypes. Prediction estimation accuracy was determined by
comparing phenotype values generated from both predicted and ground truth datasets using the computer vision pipeline.
Across all phenotypes, predicted values for each image were on average 101.44% that of the ground truth value with a
standard deviation of 12.90% (n = 32).

4. Discussion

Continued reduction in DNA genotyping cost over time has resulted in mainstream
integration of genomic selection into genetic improvement programmes for a number of
domesticated animals. The increase in availability of genotypes leads to the need to identify
the correlated phenotypes, as subtle or rare as they may be [10]. One technology which
shows great promise in detecting these subtle phenotypes is the use of trained neural net-
works and CV. The processing and extraction of key data from medical images in the past
have been typically performed manually by trained and experienced professionals. How-
ever, more recently, emergence of trained artificial intelligence networks has contributed
to increased analysis throughput and accuracy of phenotype determination, such as the
increased use and accuracy of neural networks for cancer and disease detection compared
to the results of medical professionals [15,16,47,48]. By implementing similar techniques
in the field of animal breeding, we hope to enhance the speed and accuracy of phenotype
detection to streamline swift integration into genetic improvement programmes.

As part of this automated pipeline, a generative adversarial network was first trained
to perform the necessary image-to-image translation required for automatically processing
previously unseen CT scan images for subsequent phenotype extraction using CV at a
speed of 0.11 s per image, this speed is far greater than the approximate 30 min required to
manually process the image. The resultant images processed in this manner had an SSI of
(0.98 ± 0.0035) when compared to the manually processed ground truths according to their
structural similarity index and were visually indistinguishable. Automated phenotype
extraction from predicted CT images was then performed by subdividing each image into
the respective tissue masks to display the fat, muscle and bone volume and distribution.
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By using key feature detection within the bone image mask, distances between ischium
and femur bone cross-sections were calculated to determine the geometric phenotype of
gigot length and width. Phenotype values determined using the computer vision pipeline
were on average 101.4 % that of the ground truth value with a standard deviation of
12.90% (n = 32), indicating a high level of accuracy across the population.

One of the potential limitations of this study was the small training dataset (m = 126)
as development of neural networks typically uses datasets numbering in the thousands.
However, this limited dataset did not cause any major issues in accuracy as ground
truth and predicted images showed an SSI of 0.98 ± 0.0035 and were indistinguishable
by eye. One possible reason for such high accuracy with this limited dataset was that
all subjects within the CT scans were constrained to similar postures. This hypothesis
was later confirmed by re-introducing artificial random movement (such as rotation or
vertical/horizontal shifts) into the images used for GAN training, resulting in a higher
validation loss, poorer network performance and blurry resultant images (Supplementary
Figures S1–S9).

Unfortunately, using this limited dataset resulted in one of the unseen images contain-
ing a small amount of testis tissue following processing with the GAN which was then
incorrectly quantified as fat tissue. In the future, as more images are integrated into the
model, we believe that the accuracy of the GAN shall improve which shall directly improve
the precision of the CV phenotype determination pipeline.

5. Conclusions

In summary, we believe this research represents the first case of using an automated
phenotype detection pipeline on agricultural animal medical images. This was achieved
by using a combined GAN-CV pipeline to analyse agricultural medical images in a fully
automated fashion. By feeding a paired image dataset into a GAN, we were able to perform
the various image processing steps needed to produce a predicted image, containing only
the relevant tissues, with accuracies of 98% which rivalled that of manual processing and
at a fraction of the cost. Phenotypes were then extracted or calculated from these predicted
images by applying CV techniques as part of an automated pipeline.

We hope to immediately expand this highly accurate GAN-CV pipeline to process
and extract phenotypes from other key CT scan sections such as the 8th thoracic vertebra
and 5th lumbar vertebra positions. Further on, we hope to develop a pipeline to process a
complete set of layered CT images to produce an accurate 3D model from which a multitude
of phenotypes can then be extracted, such as spine length and vertebra number, and detect
phenotypes which are best explored in 3D space such as organ morphology [49,50]. By
continuing this research we will further expand the automated extraction of phenotypes
from agricultural medical imaging data and use the findings to guide genetic and genomic
breeding programmes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/s21217268/s1, Performance of generator and discriminator networks under varying degrees
of random translation (Figures S1–S6), Raw, ground truth and predicted images produced from
the networks with varying degrees of random translation (Figures S7–S9), Training images (File
S1), Script for GAN training (File S2), Unseen images (File S3), Computer vision python notebook
(File S4), Results table (File S5), Trained GAN model (File S6).
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Abstract: In recent years, many imaging systems have been developed to monitor the physiological
and behavioral status of dairy cows. However, most of these systems do not have the ability to
identify individual cows because the systems need to cooperate with radio frequency identification
(RFID) to collect information about individual animals. The distance at which RFID can identify a
target is limited, and matching the identified targets in a scenario of multitarget images is difficult.
To solve the above problems, we constructed a cascaded method based on cascaded deep learning
models, to detect and segment a cow collar ID tag in an image. First, EfficientDet-D4 was used
to detect the ID tag area of the image, and then, YOLACT++ was used to segment the area of the
tag to realize the accurate segmentation of the ID tag when the collar area accounts for a small
proportion of the image. In total, 938 and 406 images of cows with collar ID tags, which were
collected at Coldstream Research Dairy Farm, University of Kentucky, USA, in August 2016, were
used to train and test the two models, respectively. The results showed that the average precision
of the EfficientDet-D4 model reached 96.5% when the intersection over union (IoU) was set to 0.5,
and the average precision of the YOLACT++ model reached 100% when the IoU was set to 0.75. The
overall accuracy of the cascaded model was 96.5%, and the processing time of a single frame image
was 1.92 s. The performance of the cascaded model proposed in this paper is better than that of the
common instance segmentation models, and it is robust to changes in brightness, deformation, and
interference around the tag.

Keywords: cow identification; EfficientDet; YOLACT++; cascaded model; instance segmentation

1. Introduction

Using machine vision and video surveillance equipment to automatically analyze the
behavior of dairy cows, obtain their physiological and health information, and provide data
support and decision-making bases for precision breeding and management has gradually
become a research hotspot [1–4]. Machine vision systems have the advantages of no contact,
low cost, and low stress [5]. However, the lack of stable and reliable image-based individual
identification methods and technologies seriously restricts the promotion and use of these
machine vision systems [6].

Radio frequency identification (RFID) is an individual identification method com-
monly used on large commercial dairy farms. RFID enables the recording of individual
information, feeding information [7,8], and milk production [9,10] of dairy cows by reading
tags attached to their bodies (usually ear tags) with wireless transmission technology. Com-
pared with traditional methods, the reliability of information and the real-time information
acquisition performance of RFID are improved. However, the workload of wearing and
maintaining ear tags is substantial, which causes a stress response in the animals [11]. The
RFID working performance is affected by label power, iron fences, and electromagnetic
environments [12]. Additionally, when there are multiple cows in a recognition scene,
individual information from multiple cows cannot be simultaneously obtained. Individual
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RFID recognition devices add complexity to machine-vision-based intelligent informa-
tion perception systems. Therefore, scholars have begun to study individual biometrical
identification methods based on machine vision, and this recognition is realized mainly
through the extraction and classification of the biological characteristics of cows [13]. The
muzzle, iris, and face of the head of dairy cows contain various biological information that
can be used as recognizable biological characteristics of individual cows. Different algo-
rithms have been used to extract the descriptive features from images of muzzles [14,15],
irises [16,17], and faces [18], and machine learning technology is used to classify the feature
vectors to achieve individual recognition. However, the acquisition of head images requires
a special shooting environment. The shooting angle, the quality of light, and the matching
degree of cows all affect the details in the image and can reduce recognition accuracy.

Holstein cows are the most common cows on farms. The black and white pat-
terns on the bodies can be used as biological features to identify individual animals.
Zhao and He [19] proposed an individual cow recognition method based on a convolu-
tional neural network. A 48 × 48 matrix from the trunk image of a dairy cow was extracted
as a feature value, and a recognition model based on a convolutional neural network
was constructed and trained. In the test, 90.55% of the images were correctly identified.
Zhao et al. [6] proposed a cow recognition method based on template matching. The fea-
ture template library was generated by extracting the trunk image features of all cows,
and individual cows were identified by matching their trunk image features with the
features in the template library. Okura et al. [11] proposed a method for individual identi-
fication of dairy cows based on RGB-D video. The RGB images were used to obtain the
texture features of dairy cows, and the depth image videos were used to obtain the features
of the cows’ gaits. These two complementary features were used to identify the cows.
He et al. [20] proposed an individual identification method based on an improved YOLO
v3 model. Images of cow backs were obtained with video frame decomposition technology,
and a recognition model of optimizing anchors and improving network structure was
constructed based on the Gaussian YOLO v3 algorithm. Yukun et al. [21] obtained images
of the backs of dairy cows with moving cameras. While constructing an automatic system
for scoring cow body condition, these authors established an individual recognition model
of dairy cows based on a YOLO model and a convolution neural network. Side-view or
top-view images of walking dairy cows are easy to obtain. Generally, a video or image
acquisition device can be placed in the vicinity of dairy cows during feeding, drinking, or
milking, and camera focus can be adapted to different recognition distances. However, this
method is only applicable to Holstein cows with black and white patterns, which does not
solve the problem of identifying cows with uniform colors on their bodies. In addition, the
output dimension of the network corresponds to the number of cows in the herd. When
the number of cows increases, the scale of the network increases exponentially. Once new
cows join the herd, the entire network needs to be retrained.

An individual dairy cow identification model that functions through the detection and
recognition of the ID number on their collar tag requires simple description features and a
small network scale compared to biometric identification. The tagging and maintenance
processes of this method impose a lower workload than RFID and do not affect the welfare
of the dairy cows compared. Specifically, the ID tag worn on the cow’s neck is first
located, and then the ID numbers on the tag are recognized to identify the dairy cow.
Zhang et al. [22] proposed a method of cow individual identification based on collar ID
tags. This method first locates the tag by cascade detector combined with multi-angle
detection, and then performs character segmentation and character recognition on the tag
image. However, this location method cannot well-adapt to distortion deformation of ID
tags. Zin et al. [23] proposed a tracking system for individual cows using visual ear tag
analysis. First, the head and ear tag are detected. Then, the ear tag is recognized by finding
the four-digit area, digit segmentation and digit recognition. However, the wearing process
of ear tags requires punching a hole in the ear of cows, which can easily cause a stress
response and affects the welfare of cows. The cascaded instance segmentation method we

112



Sensors 2021, 21, 6734

propose can adapt to the various deformations of ID tags, and its wearing process does not
have much of an effect on the physiology and psychology of dairy cows. A comparison of
different identification methods for cows is provided in Table A1.

The detection of ID tags is the first and key step to identifying individual cows, and
its results directly affect the subsequent character recognition accuracy. If the ID tag is
accurately segmented according to its contour, the digital recognition task becomes similar
to license plate character recognition. According to existing research, it has achieved high
recognition accuracy [24,25]. At present, few studies have been conducted on cow collar
tag detection, but there are many studies on and applications for license plate detection.
Xie et al. [26] proposed a multidirectional license plate detection framework based on
CNN, which predicts the rectangular box and corresponding rotation angle to the license
plate. This method can solve the problem of license plate rotation in a plane, but it cannot
accommodate the tilt of the plate in three-dimensional space caused by the shooting angle.
Xu et al. [27] proposed a method for locating irregular quadrilateral license plates. The
proposed algorithm has two prediction branches: one is to predict the bounding box
containing the license plate area and the other is to predict four groups of vertex offset
values corresponding to the four bounding box corners, so as to get the vertex of irregular
quadrilateral. This method is implemented based on YOLOv3 that extends the output
dimensions. Kim et al. [28] proposed a two-step license plate location method that first
detects the vehicle area and then locates the license plate in each vehicle area. This method
can quickly filter out the complex background in an image. The license plate that is detected
by these methods is a rigid object, but the four digital blocks on the ID tag we aimed to
detect are attached to a flexible neck ring (to reduce the foreign body sensation experienced
by the cow).

The flexible collar ID tag detection task is required to solve the following two key
problems: First, in a side-looking image of a cow walking, the cow is in a continuous
state of activity, so the tag is rotated and distorted in different planes, causing different
degrees of deformation. Second, when the cow is far from the image acquisition equipment,
the pixel area of the tag is relatively small, which causes difficulty in accurate detection.
Therefore, we constructed a cascaded model for instance segmentation of the targets. First,
the EfficientDet-D4 [29] model is used to detect the bounding box surrounding the ID tag,
which effectively filters out most of background in the image and makes the segmentation
task more targeted. Then, the image in the bounding box is sent to the YOLACT++ [30]
model, and the ID tag is accurately segmented according to its contour to solve the tag
deformation problem.

To accurately segment collar ID tags of cows, we conducted the following work: (1) To
address the detection and recognition of a cow collar ID tag, we propose a high-precision
cascaded model based on EfficientDet and YOLACT++ for instance segmentation, which
overcomes the detection difficulty caused by the small area and large deformation of the
tag. (2) We tested the performance of EfficientDet-D0–D5 model in the ID tag detection task,
and analyzed the ability of different models to detect small targets. (3) The YOLACT++
model with different backbone networks (ResNet50/ResNet101) and different numbers
of prototype masks was used to segment ID tags, and the effects of different parameters
on the accuracy and speed of a single target segmentation task were analyzed. (4) The
common two-stage segmentation models Mask RCNN [31], Mask Scoring RCNN [32], and
one-stage instance segmentation model Solov2 [33] were used to segment ID tags, and the
accuracy and speed of our proposed method and the above methods were compared. (5)
The robustness of the cascaded instance segmentation model to changes in area, ID tag
deformation, and brightness was analyzed.

The main contributions of this paper can be described as follows:

(I) A cascaded model is proposed based on EfficientDet and YOLACT++ to accurately
detect and segment small targets in images.

(II) The structure and parameters of the model are optimized to improve the detection
accuracy and efficiency.
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2. Materials and Methods
2.1. Data Acquisition

Experimental images were collected at Coldstream Research Dairy Farm, University
of Kentucky, USA, in August 2016, and the subjects were Holstein cows during lactation.
When a cow returned to her shed after milking, she passed through a flat straight passage
that had four electric fences (two before and after each) to limit the active area of the cow,
and the width of the passage was 2 m. A Nikon D5200 camera was mounted on a tripod
3.5–5 m from the passage and 1.5 m from the ground. The camera used a 35 mm lens and
was set to ISO 400, autoexposure, and autofocus. As cows passed through the camera’s
field of view, it continuously captured pictures at fixed time intervals. The resolution of the
images was 6000 (horizontal) × 4000 (vertical) pixels. Images were captured from 16:00 to
18:00 on sunny days and was performed under natural light. The images were stored in the
camera’s local memory card. One of the original images is shown in Figure 1a. The cows
were all wearing collars, as shown in Figure 1b. Each collar contained four square blue
plastic blocks with white numbers; the four-digit numbers were the only identity labels of
the cows.

Figure 1. (a) An original image. (b) A schematic diagram of a neck collar: 1, buckle; 2, neck band; 3, character block;
4, digital label; 5, weight.

To verify the background robustness of the cascaded model, we collected images of
dairy cows wearing collar ID tags in the feeding bank at Sheng Sheng Farm, in Luoyang,
Henan province, China. The images were captured from 9:30 to 11:30 under natural light
on 16 September 2021. A cellphone (Xiaomi 10, Xiaomi Inc., Beijing, China) was used for
hand-held shooting. The camera was set to autofocus and autoexposure mode. Images
were captured from different angles when dairy cows were fixed on fences. A total of
200 images were captured, where 20 cows were involved and four different collar IDs were
used. The resolution of the images was 5792 (horizontal) × 4344 (vertical) pixels.

The images were screened to exclude those with no cow or those that were overex-
posed, leaving 1344 images for the experiment. Due to the different moving speeds of the
cows through the field of view, the number of samples of the individuals differed. A total of
670 images of 36 cows were randomly selected as the training set, which included 788 tags.
A total of 268 images of 16 cows were randomly selected as the validation set, which
included 321 tags. The 406 images of the remaining 26 cows were used as the test set, which
included 492 tags. The ratio of images in the training set, validation set, and test set was
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approximately 5:2:3, and there was no cross-duplication between individuals in different
data sets. The training set was used to fit the ID tag detection and segmentation model. The
validation set was used to preliminarily evaluate the model to adjust its hyperparameters.
The test set was used to evaluate the generalization ability of the final model.

2.2. Data Labelling

Labelme software (https://github.com/CSAILVision/LabelMeAnnotationTool (ac-
cessed on 22 October 2020) was used to annotate the data and build data sets in COCO
format. Because the activities of the cows led to different degrees of deformation of their
tags, the polygon mode was selected to label the target in an image. For the cascaded
instance segmentation model in this paper, two steps of image annotation were required.
Step (1): The tags in the original image were labelled to train and test the ID tag detection
model. Step (2): The detection model trained in step (1) was used to detect ID tags in the
training set and crop the detected bounding boxes. The cropped images were labelled
and taken as the training set for the segmentation model. We performed the same for the
validation set and test set of the detection model to obtain the validation set and test set of
the segmentation model, respectively. Because the resolution of the original image was too
high (4000 × 6000 pixels), the memory requirement of the model training was very high, so
the images of the training set and the validation set were compressed to 1200 × 800 pixels
when training the ID tag detection model.

2.3. Cascaded Model for Instance Segmentation

To solve the problem of the small area and the deformation of the cow collar ID tag in
the images, a cascaded detection method was developed in this study. First, the detection
model was used to detect the ID tag, and the image in the bounding box surrounding
the ID tag was cropped as the input to the segmentation model. Then, the ID tag was
accurately segmented according to its contour using the instance segmentation model. For
the detection model in the first step, since the area of the target contained a small portion
of the whole image, the feature extraction network was required to obtain both high-level
semantic information and low-level spatial information. We wanted the model to allow
the input image resolution to be as large as possible to retain more feature information.
EfficientDet is a scalable model architecture for object detection based on EfficientNet.
EfficientDet-D0–D7 were obtained by the composite scaling of each part of the detection
network. This composite scaling method enabled us to balance accuracy and speed and
to choose a better model. The BiFPN structure in the EfficientDet model enabled the
network to obtain rich semantic and spatial information about the target through the
upsampling, downsampling, and weighted fusion of different feature layers. Therefore,
we chose EfficientDet as the ID tag detection model and tested the performance of different
EfficientDet models to identify and select the optimal model.

For the ID tag segmentation task, the segmentation result was the final result, which
directly affected the accuracy of the subsequent character recognition. Therefore, we hoped
that the mask along the edge of the tag could completely contain all the ID numbers and did
not contain redundant background. Because the image to be segmented was relatively small
and the target area generally occupied more than 1/2 of the whole image, the difficulty of
segmentation was low, and the fully convolutional network could efficiently segment the
ID tags. Therefore, we chose the real-time instance segmentation model YOLACT++ based
on a fully convolutional network to complete the tag segmentation task.

2.3.1. EfficientDet Detection Model

EfficientDet uses EfficientNet as its backbone to extract feature maps. EfficientNet
obtains EfficientNet-B0–B7 by scaling the baseline model while adjusting the depth, width,
and resolution of the input image. As the baseline, EfficientNet-B0 is composed of 1 stem
and 7 blocks, as shown in Figure 2a. The stem structure functions to adjust the number
of channels through convolution. The block includes several mobile inverted bottleneck
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convolution (MBConv) block modules. The design concept of the MBConv block modules
involves inverted residuals and ResNet. First, a 1 × 1 convolution is performed to upgrade
the dimension of the feature maps and a 3 × 3 or 5 × 5 depthwise separable convolution is
performed, then a simple attention mechanism is added after this structure. Finally, 1 × 1
convolution is used to reduce the dimensionality of the feature maps, which are connected
to the input side to form a residual structure. The channel attention mechanism effectively
reduces the redundant channel feature information in the image, accelerates the network
training speed, and reduces the memory required for training. Based on EfficientNet-B0,
EfficientNet-B1–B7 are obtained by changing the width coefficient, depth coefficient, and
input image size.

Figure 2. The structure of EfficientDet. (a) EfficientNet-B0, (b) BiFPN, (c) prediction head.

Simply, BiFPN is an enhanced version of FPN. The feature extraction process of BiFPN
is shown in Figure 2b. BiFPN mainly includes two parts: the first is feature upsampling
and feature weighted fusion; the second is feature downsampling and feature-weighted
fusion. After downsampling and adjusting the number of channels, the feature maps
extracted by EfficientNet are used as the input to BiFPN. First, upsampling and stacking
of input features are performed, and then downsampling and stacking are performed. In
the next BiFPN, the feature layers of the previous stage are used as the input, and up and
downsampling and feature fusion are carried out again. This feature extraction method of
upper and lower circulation sampling and weighted fusion retains the spatial information
of the ID tag and obtains semantic information. From EfficientDet-D0 to EfficientDet-D7,
BiFPN has an increasing number of cycles, which means that the depth of the network
increases and the extracted feature information is richer. However, with the deepening of
the network, the speed of training and reasoning is reduced.

The prediction head consists of two parts: the classification network and the prediction
box regression network. The former assesses the category of the target, and the latter
regresses the location of the target, as shown in Figure 2c. Before prediction, anchors
are generated on the feature layers extracted by BiFPN. Through repeated separable
convolutions, the classification branch and the prediction box regression branch generate
1 category parameter and 4 position adjustment parameters for each anchor, and finally
obtain the location of the prediction box and the category of the target in the prediction box.
From EfficientDet-D0 to EfficientDet-D7, the classification branch and the prediction box
regression branch have different depths. When the EfficientDet head uses more separable
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convolutions, it may be less sensitive to small targets while acquiring deep semantic
information.

Compared with other EfficientDet network structures, the number of parameters
of EfficientDet-D6 and EfficientDet-D7 is significantly larger. Considering the image
resolution and detection efficiency, we did not consider the use of EfficientDet-D6 or
EfficientDet-D7 in the ID tag detection task.

2.3.2. YOLACT++ Segmentation Model

In the YOLACT++ instance segmentation model [30], a series of prototype masks
and mask coefficients are generated by a fully convolutional network and fully connected
layers, respectively, and the final mask is obtained by a linear combination of the two. As
a one-stage model, YOLACT++ also adds a fast mask rescoring network to improve the
segmentation accuracy of the mask so the model has excellent detection speed and high
segmentation accuracy.

The YOLACT++ model uses ResNet as its backbone and FPN to construct feature
maps P3, P4, P5, P6, and P7 with different sizes and advanced semantic information,
as shown in Figure 3a. To adapt to the different scales and deformations of the target,
a deformable convolutional network (DCN) is introduced into ResNet. The prototype
generation branch (Protonet) takes the P3 layer of FPN (feature pyramid net) as its input
(Figure 3c) because the P3 layer, as the deep backbone feature, has high resolution and can
produce high-quality masks. Protonet is a fully convolutional network (FCN) composed
of 3 × 3 and 1 × 1 convolution layers. Protonet predicts k prototype masks for the image,
and all the final predicted masks are the linear combination of these k prototype masks.
The prediction head takes the five feature maps (Pi) output by FPN as its input and uses
the fully connected layer to generate three branches. One branch is used to predict the
confidence of the target belonging to c categories, the second branch is used to predict
the four position regression parameters of the bounding box, and the third branch is
used to predict k mask coefficients (k corresponds to the number of prototype masks), as
shown in Figure 3b. Then, non-maximum suppression (NMS) is carried out according
to the predicted bounding box and the corresponding category confidence. The linear
combinations of prototype masks and corresponding mask coefficients are the results of
instance segmentation. These operations can be efficiently implemented using a single
matrix multiplication and sigmoid:

M = σ
(

PCT
)

(1)

where P is an h × w × k matrix of prototype masks and C is an n × k matrix of mask
coefficients for n instances that survive NMS and score thresholds. Finally, the masks are
cropped with the predicted bounding box.

2.4. Training Platform and Parameter Settings
2.4.1. Training Platform

The software environment of our experimental platform was an Ubuntu 18.04 LTS
64 bit system. The programming language was Python 3.7. CUDA10.1 and cuDNN 7.6.5
were used as the parallel computing architecture of the deep neural network and GPU
acceleration library. We selected Pytorch 1.4 as the deep learning framework. The GPU
was a NVIDIA GeForce GTX 1080Ti, and the memory was 11 GB. The CPU had a 3.50 GHz
Intel(R) Core(TM) i7-7800X processor, and its working memory was 32 GB.
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Figure 3. The structure of YOLACT++. (a) ResNet-FPN, (b) prediction head, (c) protonet.

2.4.2. Training Parameters of EfficientDet and YOLACT++

First, the training set and validation set constructed in step (1) of Section 2.2 were used
to train the ID tag detection model EfficientDet. AdamW was selected as the optimizer for
model training, and the batch size was set to 2. The initial learning rate was set to 1 × 10−3.
If the loss of the validation set was less than 0.1 in three epochs, the learning rate would
have become 0.1 times that of the original. The weight decay coefficient and momentum
coefficient were set to 1 × 10−4 and 0.9, respectively. The maximum number of iterations
of all models was 1 × 104. According to the statistics of the tag size in the scaled image, the
anchor sizes were determined to be 4, 8, 16, 32, and 64. The K-means clustering algorithm
was used to calculate the anchor ratios suitable for our dataset, which were (0.7, 1.4), (1.0,
1.0), and (1.4, 0.7). The same training environment and training parameters were used to
train Efficient-D0–D5 based on the pretraining model. After training, the performance of
different EfficientDet models was evaluated with test sets.

The training set and validation set constructed in step (2) of Section 2.2 were used
to train the ID tag segmentation model YOLACT++. SGD was selected as the optimizer
for model training, and the batch size was set to 4. The initial learning rate was set to
1 × 10−4. The weight decay coefficient and the momentum coefficient were set to 1 × 10−4

and 0.9, respectively. In the training process, the maximum number of iterations of the
model was 1 × 104. ResNet50 and ResNet101 were selected as the backbone of YOLACT++
for training to compare the effects of different backbones on the accuracy and speed of
the ID tag segmentation model. To study the influence of the generated prototype masks
number k on the segmentation effect and speed of a single target, the YOLACT++ models
were trained with k = 4, 16, and 32.

2.5. Precision Evaluation Index of Model

In this study, COCO detection evaluation indexes were used to evaluate the precision
of the model. The intersection over union (IoU) is a value used to measure the degree of
overlap between a prediction box and a groundtruth box, and its formula is:

IoU =
Sp ∩ Sg

Sp ∪ Sg
(2)
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where Sp represents the area of the predicted bounding box and Sg represents the area
of the groundtruth bounding box. The IoU threshold is used to determine whether the
content in the prediction box is a positive sample.

For the target detection model, the commonly used evaluation indices are precision
(P) and recall (R), and their calculation formulas are:

P =
TP

TP + FP
(3)

R =
TP

TP + FN
(4)

where TP represents the number of correctly predicted targets; FP represents the number
of falsely predicted targets, that is, the background is mistaken for a positive sample;
FN represents the number of missed targets, that is, a positive sample is mistaken as the
background. Confidence is an important indicator in target detection algorithms. For
each prediction box, a confidence value was generated, indicating the credibility of the
prediction box. Different combinations of P and R were obtained by setting different
confidence thresholds. Taking P and R as vertical and horizontal coordinates, respectively,
the PR curve could be drawn. When the IoU threshold was set to 0.5, the area under the
PR curve was APIoU = 0.50 (AP50). When the IoU threshold was set to 0.75, the area under
the PR curve was APIoU = 0.75 (AP75). AP was averaged over multiple intersection over
union (IoU) values. Specifically, we used 10 IoU thresholds of 0.50:0.05:0.95. The average
of multiple IoU thresholds more comprehensively reflects the performance of the model.

From the statistics of the test results, for the first step of the ID tag detection task, only
when the IoU of the prediction and groundtruth bounding box was greater than 0.5 could
the prediction box contain all the numbers on a tag. Therefore, the APIoU = 0.50 (AP50) and
AP of the detected bounding boxes were selected as the evaluation indices of the accuracy
of the tag detection model. For the second step of the ID tag segmentation task, only when
the IoU of the prediction and groundtruth mask was greater than 0.75 could the prediction
mask contain all the numbers on a tag without background. Therefore, the APIoU = 0.75

(AP75) and AP of the segmented masks were selected as the evaluation indices of the
accuracy of the tag segmentation model. For the proposed cascaded instance segmentation
method, we multiplied the AP50 of the detection model and the AP75 of the segmentation
model to obtain the final accuracy of the ID tag detection model.

3. Results
3.1. Training and Testing of EfficientDet

During EfficientDet training, in the first 1000 iterations, the loss decreased rapidly. In
1000–6000 iterations, the loss had no obvious convergence trace but continuously oscillated.
After 6000 iterations, due to the reduction in the learning rate, the loss started to converge
again and finally reached a stable state. Therefore, for EfficientDet, reducing the learning
rate at the late training stage effectively inhibited the loss oscillation of the model and
accelerated the convergence rate. From EfficientDet-D0 to EfficientDet-D5, the training
time gradually increased from the initial 3 h to 43 h, indicating that the complexity of the
network structure significantly affected the training time of the model.

To test the performance of different EfficientDet models in the ID tag detection task,
the original images (6000 × 4000 pixels) in the test set, which were constructed in step (1)
in Section 2.2, were input to the trained Efficient-D0–D5 models for detection. According to
the detection results, we aimed to find the best EfficientDet model that achieved a balance
between accuracy and speed. The APIoU = 0.50 (AP50) and AP of the detected bounding
boxes and inference time per image were used as he evaluation indices. The test results are
shown in Figure 4.

119



Sensors 2021, 21, 6734

Figure 4. The precision and efficiency of EfficientDet-D0–D5. D0–D5 represent EfficientDet-D0–
EfficientDet-D5, respectively.

As shown in Figure 4, from EfficientDet-D0 to EfficientDet-D4, the accuracy increased,
indicating that increased network depth and multiple BiFPN cycles significantly improved
the extraction and expression of image features, and the reasoning time for a single image
did not significantly increase. The main factor affecting the reasoning speed of different
EfficientDets was the complexity of the model. Although EfficientDet-D0–D4 had different
complexities, their parameters were within 5–20 million. For our ID tag detection task,
these differences had less influence on the reasoning speed than the high resolution of the
image. Thus, the reasoning time of the EfficientDet-D0–D4 models for a single image had
no obvious change.

Although EfficientDet-D5 has a wider and deeper network than EfficientDet-D4, its
accuracy in the tag detection task was lower than that of EfficientDet-D4. This shows
that for our small target detection task, the spatial information of small targets gradually
reduced when the network reached a certain depth, which led to a decrease in detection
accuracy. However, the number of parameters of the EfficientDet-D5 model was 30 million,
which is approximately 1.5 times that of EfficientDet-D4, so its inference time was longer
than that of the previous model. Therefore, we finally adopted the EfficientDet-D4 model
with its high accuracy and efficiency as the ID tags detection model.

Figure 5 shows the detection results of EfficientDet-D0–D5 for some of the images in
the test set. Due to the high resolution, only the image content related to the prediction box
is cropped.

Figure 5 shows that for EfficientDet-D0 and EfficientDet-D1, problems of missing
targets and inaccurate location often occurred, indicating that the shallow network structure
could not effectively extract the features of small targets in the image. For EfficientDet-D2
and EfficientDet-D3, there were few missed targets but many false detections. This indicates
that improvement in the network depth, width, and input image resolution increased
the ability to extract features from small targets, but semantic information sufficient to
accurately classify anchors was not extracted. For EfficientDet-D4, the model could not
only accurately classify and locate small targets but also had higher confidence in correct
classification than the previous model, which accurately and efficiently completed the
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ID tags detection task. The confidence of the detection boxes of EfficientDet-D5 was
high, but there were false samples near the target. This shows that high-level semantic
information could correctly classify anchors when the network depth increased, but the
low-level spatial information of small targets decreased, resulting in false detection boxes
near targets. Thus, for small target detection tasks, reasonable network depth and width
are the keys to simultaneously obtaining accurate semantic information and complete
position information.

Figure 5. Some of detection results of EfficientDet-D0–D5. Groundtruth represents the true bounding box in the image to be
detected; D0–D5 represent EfficientDet-D0–EfficientDet-D5, respectively; the green boxes in the detection image represent
the prediction results of the model; and ID represents the class of detected targets. For our ID tag detection task, ID is the
only class. The number behind ID represents the confidence of the corresponding detection box, and the unit is % (not
shown in some black background images).

3.2. Training and Testing of YOLACT++

During training, the model converged rapidly in the first 500 iterations. From 500 to
6000 iterations, although it stabilized overall, there were still some large loss values. The
losses stabilized after the 6000th iteration. The model with the ResNet101 backbone had a
slightly longer training time than the model with the ResNet50 backbone. The greater the k
value, the longer the training time. Compared with the k value, the backbone had more
influence on the training time.

To study the influence of different parameters on the accuracy and detection speed of
the ID tag segmentation model, after the training was completed, the images of the test set
constructed in step (2) in Section 2.2 were input to the YOLACT++ models with different
parameters for segmentation. The APIoU = 0.75 (AP75) and AP of the segmented masks and
detection speed were used as test indices. The test results are shown in Figure 6.
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Figure 6. The precision and efficiency of YOLACT++. (a) The detection accuracy of the model with ResNet50 as backbone.
(b) The detection accuracy of the model with ResNet101 as backbone. (c) The detection speed of the model with different
parameters.

As shown in Figure 6a,b, the accuracy index AP75 of the models with different
parameters reached nearly or exactly 100%, and the detection time of a single image was
0.25–0.34 s, indicating that the YOLACT++ model could quickly and accurately segment
the ID tag through a linear combination of the prototype masks and the mask coefficients.
The accuracy of the YOLACT++ model using ResNet50 as the feature extraction network
was higher than when using ResNet101 as shown in Figure 6a,b. This result indicates that
for simple segmentation tasks, the depth of ResNet50 was sufficient to extract the features
of the target in the image. When ResNet50 was used as the backbone, reducing the number
of prototype masks generated slightly improved the segmentation accuracy. This shows
that for single-target segmentation, due to the reduced background in the image, too many
protomasks will interfere with accurate segmentation of a tag.

In terms of detection speed, the speed of the YOLACT++ model with ResNet50 as its
backbone was higher than that of ResNet101, as shown in Figure 6c. When the backbone
of YOLACT++ was ResNet50, reducing the k value slightly improved the detection speed.
However, when the backbone of YOLACT++ was ResNet101, reducing the k value had
little effect on the detection speed. This result indicates that compared with the k value,
the backbone had a greater impact on the detection speed. According to the test results,
we finally decided to use ResNet50 as the backbone for feature extraction and chose to
generate four prototype masks. As a result, the overall accuracy of the cascaded model
based on EfficientDet-D4 and YOLACT++ was 96.5%, and the total detection time for a
single image was 1.92 s. Figure 7 shows some test results for the YOLACT++ model. The
predicted masks cleanly surrounded the number on the tag with relatively high confidence.
The result had good robustness to the rotation of the tag, the change in brightness, and the
interference around the label.

Figure 7. Some of segmentation results of YOLACT++. ID represents the identified class name, and the number after ID
represents the confidence for the predicted mask.
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4. Discussion
4.1. Comparison with Common Instance Segmentation Model

The proposed cascaded detection model was compared with the common two-stage
models Mask RCNN, Mask Scoring RCNN, and the one-stage model SOLOv2. Mask
RCNN and Mask Scoring RCNN are two-stage detection models based on a region proposal
network. The detection accuracy of these algorithms is high, but their detection speed
is slow. SOLOv2 is a one-stage detection model based on anchor box regression. The
detection accuracy of this algorithm is slightly low, but its speed is fast. We used the same
training set, validation set, and test set to train and test the accuracy and detection time of
different models in the same operating environment. The results are shown in Table 1.

Table 1. The precision and efficiency of cascaded model and other models.

Model Backbone AP75 (%) Inference Time
(s/Iteration)

Cascaded model
EfficientDet-D4 EfficientNet-B4

96.5 1.92YOLACT++ ResNet50
Mask RCNN ResNet101 85.3 2.63

Mask Scoring RCNN ResNet101 58.2 3.39
SOLOv2 ResNet101 18.5 1.21

The overall accuracy of our proposed cascaded instance segmentation model is 96.5%,
and its detection time for a single image is 1.92 s. The two-stage instance segmentation
model Mask RCNN accurately locates and segments most ID tags with high accuracy, and
its segmentation index AP75 is 85.3%, but its detection time for a single image is 2.63 s,
which is slightly longer. Mask Scoring RCNN with a Re-score branch performs worse than
Mask RCNN in our ID tag segmentation task, and its segmentation index AP75 is 58.2%.
The detection time per image is 3.39 s, which is longer than that of Mask RCNN. As a one-
stage instance segmentation model, SOLOv2 has a short detection time of 1.21 s. However,
its segmented mask is rough along the edge of the tag but tortuous, so its segmentation
accuracy is low, at 18.5%. In most cases, the masks with tortuous contours contain some
background outside the tags.

The detection results for some images are shown in Figure 8. Three situations with
high segmentation difficulty are depicted in the figure. The first is when the brightness
of the tag is too low and there are multiple targets in the image. The second is when
interference around the tag has similar characteristics to characters (such as white chains).
Third, when the brightness of the tag is too high, the character block borders are also
displayed. In the above three cases, our method accurately segments the ID tag from the
complex background. However, other models are prone to location offsets; missing some
characters, including redundant backgrounds and even being unable to detect the tag.
Therefore, compared with existing two- and one-stage segmentation models, our proposed
cascaded instance segmentation method achieves high-precision ID tag segmentation in
complex environments, which has strong robustness and solves the problem of detection
difficulty caused by the small area and large deformation of the tag.

4.2. Deformation and Brightness Robustness

To analyze the performance in detecting targets with different areas, we quantified the
results of detecting ID tags with different areas with EfficientDet-D4, as shown in Figure 9.
As seen from Figure 9, the proportion of the ID tag area to the whole image was only
0.02–0.09%, which is representative of a small target that was difficult to detect, but the
model still achieved a high detection rate. By observing the tags of different areas, we
found that the rotation and distortion of the tag were the main reasons for the change
in area, and the distance between the cow and the image acquisition equipment was the
secondary reason. The larger the area of the ID tag, the larger the deformation of the tag.
The detection accuracy of ID tags in intervals (5) and (6) was low. There were two main
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reasons: (1) the total number of samples in these two intervals was small, so even a small
amount of false detection had a relatively large impact on the results; (2) the deformation
of the tag led to an increase in false detection boxes that overlapped with the target but
did not fully contain the numbers on the tag. There were only three ID tags in interval (7),
which had fewer samples. When drawing its P–R curve, the accuracy and recall rate were
both 100% with the confidence threshold set to 0.7, so its AP50 was 100%.

Figure 8. Some of the segmentation results of cascaded model and other models. The ID above the detection results and
the number after the ID represent the class and the confidence of the prediction mask, respectively. (a–c) in the figure
correspond to three difficult situations. (a) The brightness of the tag is too low and there are multiple targets in the image.
(b) Distractions around ID tag. (c) The brightness is too high.

Figure 9. The precision of ID tags with different areas. The abscissa represents the proportion of the
bounding box area of the ID tag to the whole image; (1) to (7) represent seven intervals from 0.02% to
0.09% in increments of 0.01%.
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To analyze whether the model is robust to different types of deformation, we divided
the deformation of the ID tag into three types (Figure 10): (1) the cow was walking slowly
or static, and the tag was only rotated or slightly distorted; (2) the cow was walking quickly
or had a lowered head, and the tag was rotated; (3) the cow’s head was twisted, and the
tag was both rotated and distorted. The detection results of EfficientDet-D4 for ID tags
with different types of deformation were statistically analyzed (Table 2). Table 2 shows that
the accuracy was the highest when the tag only slightly rotated or distorted. The accuracy
was lower when the tag was rotated. When the tag was both rotated and distorted, the
accuracy was the lowest. However, rotation and distortion only reduced the accuracy by
2.9%. Therefore, regardless of the state of the ID tag, the model achieves a high detection
rate and has high robustness to different types of deformation.

Figure 10. The three types of deformation of ID tags: (a) slight rotation or distortion; (b) rotation; (c) rotation and distortion.

Table 2. ID tags detection accuracy with different types of deformation.

State of the Tag The Number of Images AP50 (%)

Slight rotation and distortion 94 99.4
Rotation 192 97.8

Rotation and distortion 120 96.5

The cascaded instance segmentation method proposed in this paper can also adapt to
the variant brightness of the target. Figure 11 shows the detection results for some ID tags
under different light conditions.

Figure 11. Some detection results under different light conditions.
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4.3. Background Robustness

Without retraining the model, the dairy cows’ images collected at Sheng Sheng Farm
were passed through the cascaded model for detection and segmentation. The results
showed that the AP50 of EfficientDet-D4 model is 94.1%, and the AP75 of YOLACT++
model is 100%. Some test results are shown in Figure 12. Even in different scenarios,
the model has achieved high accuracy. Therefore, we concluded that the constructed
and trained cascaded instance segmentation model has strong robustness with different
backgrounds and has promising application prospects.

Figure 12. Detection and segmentation results with different backgrounds.

4.4. Analysis of False and Missed Detections

Since the segmentation index AP75 of the YOLACT++ model was 100%, we only
analyzed the false and missed detection of ID tags by EfficientDet-D4. After statistics were
compiled, there were no missing ID tags. False detection mainly included two cases: (1) a
tree branch in the background was mistaken for the target, and the confidence was slightly
high, as shown in Figure 13a; (2) a bounding box that overlapped with the tag but did not
contain the numbers on the tag completely, as shown in Figure 13b. The reason for the
first type of false detection may be that the high-level semantic features of the branches in
this region were coincidentally similar to the ID tag, which led to the misjudgment of the
branches as the target by the model. The reason for the second kind of misdetection may
be that part of the ID tag was also included in the bounding boxes of these false detections,
which led to the network failing to make correct judgements. Alternatively, these false
bounding boxes were not filtered out when NMS was carried out. The confidence of false
bounding boxes was generally low and could have been filtered by setting a confidence
threshold.

Figure 13. Some of the false detection results. (a) A tree branch mistaken as a target. (b) The bounding
box partly overlapped with the target.
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4.5. ID Number Recognition

ID number recognition is completed by character segmentation and character recogni-
tion. The purpose of character segmentation is to segment the color tag image into four
binary images containing only a single character, which was implemented through the
following steps (as shown in Figure 14). The character recognition model was constructed
based on a simple convolutional neural network, with the purpose to classify the single
character images. The unsegmented images detected by the EfficientDet-D4 model and
the segmented images by the cascaded model proposed in this paper were passed through
character segmentation model and character recognition model, respectively. The character
segmentation model consists of several simple image processing methods, which are illus-
trated in Figure 14. The character recognition model is constructed based on LeNet-5 [34].
We changed the C5 layer of LeNet-5 from fully connected layer to convolution layer to ob-
tain the character recognition model. The reason for this change is to reduce the redundant
parameters and enrich the features.

Figure 14. The process of character segmentation: (a) graying; (b) grey-level transformation;
(c) binary segmentation; (d) morphological processing and removal of redundant background;
(e) character cropping; (f) character normalization.

Table 2 shows that about 76% of ID tags in the dataset are rotated and twisted, so
the corresponding detected bounding box will contain different background areas. In
the binarization of pixels, the pale white body area of cows and grass in the background
are misjudged as characters, which considerably interferes with the implementation of
subsequent steps. If the brightness of the background exceeds that of the character, some
characters will be lost due to the high threshold in the binary segmentation. Figure 15a
depicts the character segmentation results of partially unsegmented images, and Figure 15b
displays the character segmentation result of partially segmented images. In Figure 15,
the images of each group from left to right are the images after detection/segmentation,
the images after binarization, and the images after character normalization. It can be seen
from the figure that the character segmentation results of the unsegmented images are very
poor due to the influence of the background in the detection bounding box. Its character
recognition result is obviously lower than that of segmented images. The accuracy of the
character recognition of the segmented image is 95.4%, which is 2.05% higher than that
in [22]. This proves that the segmentation of the tags image to remove the redundant
background can effectively strengthen character recognition.

4.6. Future Studies

Although the cascaded model based on EfficientDet-D4 and YOLACT++ can achieve
96.5% segmentation accuracy, there is still room for improvement. For the false detection
bounding boxes that overlap with the target but do not fully contain the target, their union
set can be calculated as the detection results of the tag area, then the segmentation model can
be used to remove the redundant background in the detection results. Alternatively, these
false positives can be suppressed by better NMS methods, such as Fast NMS [35], which
creates the highest confidence bounding box through mutual suppression of all detection
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boxes. Compared with the traditional method, it allows already-removed detections to
suppress other detections, and less time is required.

Figure 15. Character segmentation results of (a) unsegmented and (b) segmented images.

The detection speed of the cascaded model also needs to be improved. The detection
time is mainly consumed in the detection process of EfficientDet-D4. Due to the high
resolution of the image, it is necessary to generate many anchors at different scales and
classify and regress them, which requires considerable time. In practical applications, if we
know that the size of the tag is within a certain range, the number of anchors generated
on each grid point can be reduced, thus effectively simplifying the detection process.
Additionally, the image contains many extra background data. If the target appears only in
a specified space range, adding a spatial attention mechanism to EfficientDet can cause
the network to pay more attention to the areas where the ID tag may appear. This would
reduce the time required to extract features from irrelevant backgrounds, thus improving
the detection efficiency.

5. Conclusions

This paper proposed a cascaded method for the instance segmentation of a cow collar
ID tag based on EfficientDet-D4 and YOLACT++, which accurately detects and segments
the target with a small area. The detection accuracy AP50 of the EfficientDet-D4 model is
96.5%, the segmentation accuracy AP75 of the YOLACT++ model is 100%, and the overall
segmentation accuracy is 96.5%. Compared with common instance segmentation models,
the accuracy is improved by more than 11.2%. Changes in brightness and deformation
of the tag have little effect on the detection accuracy of the proposed model. It shows
high anti-interference capability and has the potential to be applied to remote and multi-
target cow identification on dairy farms. In the future, we can optimize the structure of
EfficientDet and propose a better NMS method to reduce the false detection. Additionally,
an attention mechanism and other strategies can be considered for reducing the time used
by the feature extraction process to improve the detection speed when an image has a large
background area.

128



Sensors 2021, 21, 6734

Author Contributions: Conceptualization, K.Z. and J.J.; methodology, K.Z. and R.Z.; software, R.Z.
and K.Z.; validation, R.Z.; formal analysis, R.Z.; investigation, K.Z.; resources, J.J. and K.Z.; data
curation, R.Z. and K.Z.; writing—original draft preparation, R.Z. and K.Z.; writing—review and
editing, K.Z. and J.J.; visualization, R.Z.; supervision, J.J. and K.Z.; project administration, K.Z. and
J.J.; funding acquisition, J.J. and K.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Key Research and Development Project of China
(2019YFE0125600) and National Natural Science Foundation of China (32002227).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank Coldstream Farm, University of Kentucky, U.S., for their
cooperation in data collection.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Comparison of different identification methods for cows.

Method Technology/Feature Strengths Weaknesses

RFID Wireless transmission
technology

Real time; reliable; high
practicality

High costs; affected by
electromagnetic
environments

Machine
vision

Based on biological
characteristics of cows

Head region of cows
(muzzle, iris, and face)

Strong distinguishing
feature

Difficulties in head image
acquisition; too many

output categories

Black and white patterns
on the cows’ bodies

Easy to capture; no
effect on cow’s activity

Only for cows with pattern;
too many output categories

Based on ID
number on the tag

Ear tag Accommodate up to
more cows

Require holing on ear;
Recognition angle and

distance are limited

Collar ID tag (our method) Accommodate up to
more cows

The deformation of the
ID tag
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Abstract: Abnormal behavioral changes in the regular daily mobility routine of a pregnant dairy cow
can be an indicator or early sign to recognize when a calving event is imminent. Image processing
technology and statistical approaches can be effectively used to achieve a more accurate result in
predicting the time of calving. We hypothesize that data collected using a 360-degree camera to
monitor cows before and during calving can be used to establish the daily activities of individual
pregnant cows and to detect changes in their routine. In this study, we develop an augmented
Markov chain model to predict calving time and better understand associated behavior. The objective
of this study is to determine the feasibility of this calving time prediction system by adapting a
simple Markov model for use on a typical dairy cow dataset. This augmented absorbing Markov
chain model is based on a behavior embedded transient Markov chain model for characterizing
cow behavior patterns during the 48 h before calving and to predict the expected time of calving.
In developing the model, we started with an embedded four-state Markov chain model, and then
augmented that model by adding calving as both a transient state, and an absorbing state. Then,
using this model, we derive (1) the probability of calving at 2 h intervals after a reference point, and
(2) the expected time of calving, using their motions between the different transient states. Finally,
we present some experimental results for the performance of this model on the dairy farm compared
with other machine learning techniques, showing that the proposed method is promising.

Keywords: absorbing Markov chain; cow behavior analysis; prediction of calving time

1. Introduction

Even though calving is a normal physiological process, it is important to manage not
only for the sake of the animals’ welfare, but also for ensuring economic growth in the
dairy industry [1,2]. Accurately predicting calving time helps overcome the difficulties
of parturition, providing human assistance when needed, and reducing calf mortality.
The problem of observing behavioral changes for predicting calving time has been widely
studied [3,4]. Solutions are typically sensor-based systems that require the use of wearable
or non-wearable sensors to monitor daily behavior and provide responses when calving is
imminent. Wearing sensors all the time might cause great discomfort for pregnant cows, as
well as risk damaging the sensors themselves while cows move around in the barn [5].

In this study, we focused on a camera-based system because it can support a smart,
adjustable, time and money saving way to monitor what happens in the calving barn, and
the condition of cows. Best of all, the system allows tracking everything in real time right
on our PC, smartphone, or tablet. However, the system has advantages and disadvantages.
Similarities between the background and the cow’s body color complicates the detection
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of cows, and clearly identifying each individual cow is still limited in using surveillance
cameras over the long-term. For this reason, we will use advanced image processing
technology to solve these problems in the future. Figure 1 illustrates our research work.
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The dairy farming industry has benefited greatly because of advances in Information
and Communications Technology (ICT), as well as in Artificial Intelligence (AI) and the
Internet of Things (IoT). Smart dairy farms are no longer out of our reach. The intelligent
and efficient monitoring of individual cows will be a necessary part of making dairy
farms smart. Among many other issues, caring for pregnant cows is crucial to dairy
farm management, especially when calving occurs. Insufficient monitoring at the time
of parturition can be extremely detrimental [6–8]. It can prolong the process of giving
birth and increase the risk of both stillbirth and calving difficulties, causing impaired
reproductive performance and increased calving-to-conception intervals.

In this research, we concentrated on monitoring daily routines for the purpose of
detecting when behavioral changes increase in frequency, signaling the approach of parturi-
tion, and allowing a prediction of the exact calving time. We describe how we approached
this goal by designing a system that features observations of video data collected using a
360-degree camera on an hourly basis for 72 h before the start of calving. For this reason,
we propose a new method based on image processing techniques and Markov chain model
to predict the time at which cow calving will occur. We also compare our proposed method
with three other machine learning techniques: K-nearest Neighbors (KNN), Naïve Bayes
(NB), and Support Vector Machine (SVM).

Specifically, we analyze the behavior of pregnant cows in maternity barns by em-
bedding this behavior into a Markov chain, thus predicting the time of calving. Model
performance was evaluated on video data, which were collected from 25 dairy cows at
Oita Prefecture in Japan, to verify that our proposed method has potential as a method for
predicting calving time. From these videos taken in the maternity barn, human observers
used a reversible counter system in 5 min increments to record the number of changes in
lying posture, the number of transitions from lying to standing, the number of changes
in standing posture, and the number of transitions from standing to lying. All these
data for statistical analysis of behavior were collected for three days before the predicted
calving date.

Results of this analysis showed that the proposed methodology could be applied
and achieved plausible results. Our analysis indicates that investigating behavioral ac-
tivity peaks in these data will be useful in improving the prediction process. However,
additional avenues should be explored in pursuing research on calving time prediction.
As an alternative, the application of Markov modeling [9] to predict calving time is an
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appealing methodology. The most frequent applications of augmented absorbing Markov
chain modeling are in predicting future stock exchange trends [10], predicting web user
behavior [11], and forecasting educational attainment rates [12]. Our current concern lies
in using an absorbing Markov chain to develop a prediction model from observations of
the behavioral changes of the dairy cows. Specifically, we propose in this paper the use of
such a model to predict when calving will occur. By comparing the results of predicting
calving events using our proposed method with the results with other machine learning
techniques, we see that our proposed method more accurately predicts calving events.

The organization of this paper is as follows. Section 2 follows with a description of
the proposed method for calving time prediction. We show some experimental results and
discussion in Sections 3 and 4. Finally, we conclude our approach in Section 5 with some
suggestions and discussion of possible future research.

2. Materials and Methods
2.1. Data Collection and Preparation

The animal experimentation protocol of ethical statement and approval were granted
for this study, animals were neither enforced nor uncomfortably restricted during the study
period. The video data of monitoring calving process used for analysis in this study were
collected by an installed camera without disturbing natural parturient behavior of animals
and routine management of the farm.

The experimental design is established on a large dairy farm situated in Oita Prefecture,
Japan. Three primiparous and 22 multiparous pregnant dairy cows were housed in roofed
cowsheds. Four or five pregnant cows were together housed in a calving pen. which
was 7 × 7 m2 with sawdust flooring for when calving event was close to occurring. The
cows were fed with Total Mixed Ration (TMR) twice daily for their maintenance and
pregnancy, as calculated based on each cow’s body weight and the expected average milk
yield (35 kg/day) after giving birth. They were also provided ad libitum access to clean
water and mineral supplements.

Experimented cows were continuously monitored using a 360-degree GV-FER5700
camera (Geo Vision Inc., Taiwan, China) (2560 × 2048 pixels, recording at 30 frames per
second), which was set up 3 m above the pregnant cows located in the maternity barns. This
camera can capture images within a 360-degree field of view in the horizontal plane. Using
this camera, the positions and states of cows appear in different parts of the 360-degree
view. All cows are clearly visible from overhead, allowing a determination of the condition
of each cow. The video sequences for pregnant cows are continuously collected until
calving occurs.

In this section, we describe how an augmented Markov chain model can be employed
to predict a calving event. To do so, we firstly prepare the dataset from video sequences
taken during the three days before calving. After collecting the video sequences, the target
cow regions are manually extracted by Visual Geometry Group (VGG) annotator [13] to
remove the background, and to obtain the cow contour regions by using image process-
ing techniques.

We used an approach based on statistical analysis to predict calving time. Cow behav-
ioral activities were recorded by human observers performing a direct visual observation of
each individual cow in the calving barn. The four types of conditions include two postures
and two transitions. They are defined as follows.

1. L (Posture): lying in the calving barn;
2. LS (Transition): rising from a lying state to a standing state;
3. S (Posture): standing on all four legs;
4. SL (Transition): changing from a standing state to a lying state.

Images are labeled to count the number of pairs from one state to another in making
a co-occurrence matrix for the 72 h before calving. Although cows may assume many
other states such as eating and drinking, all other activities are assumed to be subsets
of the above-mentioned activities. Because of this, our video recording only concerns
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a sequence of the four activities for each individual cow, continuously monitored until
calving occurs. Figure 2 illustrates a sample of the four posture conditions. In Figure 3, the
system architecture of our proposed method is represented.
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Generally, absorbing Markov Chain is used to investigate behaviors of any state which
eventually enter an end state or absorbing state. In our case, the absorbing state is the event
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at which calving occurs. In theory of Markov Chain, we can compute the time entering an
absorbing state and the probability of absorbing. So, we thought that it would be tractable
to apply the absorbing Markov Chain Model for the calving time of a pregnant dairy
cow. Although there have been many applications in queuing and dam theory [14], we
have not seen any application of absorbing Markov Chain for the prediction of dairy cow
calving process. So, at this stage we have not made comparison with previous methods in
this aspect.

Moreover, the nature of absorbing state from the absorbing Markov chain is similar
with the nature of calving event in prediction calving time model in dairy cows. From the
concept of absorbing Markov chain theory, the absorbing state is end-state, and the calving
state is also end-state in the prediction of calving time model.

2.2. Creation of Co-Occurrence Matrix and Markov Chain Model

The co-occurrence and probability matrices of the Markov chain model are created
using the state sequence described in Figure 2. In order to do so, we first define the number
of co-occurrences of state pairs. Let c

(
si, sj

)
be the number of pairs of states

(
si, sj

)
for

i, j = 1, 2, 3, 4, 5, and s1 = L, s2 = LS, s3 = S, s4 = SL, s5 = Calve. We can then have the
corresponding co-occurrence matrix C, as shown below.

C =
(
c
(
si, sj

))
=




c(s1, s1) c(s1, s2) c(s1, s3) c(s1, s4) c(s1, s5)
c(s2, s1) c(s2, s2) c(s2, s3) c(s2, s4) c(s2, s5)
c(s3, s1) c(s3, s2) c(s3, s3) c(s3, s4) c(s3, s5)
c(s4, s1) c(s4, s2) c(s4, s3) c(s4, s4) c(s4, s5)
c(s5, s1) c(s5, s2) c(s5, s3) c(s5, s4) c(s5, s5)




.

The above co-occurrence matrix, C can be written as (1):

C =
(
cij
)
, (1)

where, cij= #{(i, j)|i, j ∈ S = {1, 2, 3, 4, 5}}.
We can then deduce the one step transition probabilities, pij by defining (2):

pij = cij/
5

∑
j=1

cij , (2)

which represents the one step transition probability of going from state i to state j in a
Markov Chain. We then have the transition probability matrix, P =

(
pij
)
.

The sum of the row probabilities is equal to one, since each health state is independent
of the others, and an animal must move to one of the five states. The diagonal represents
the probability of staying in the same state. A state k in a Markov chain is defined as
absorbing if pkk = 1, in other words all pkj = 0 for j 6= k. In this study, the absorbing state
is the calving state. When calving occurs, further investigation stops because we have
achieved the objective of predicting the calving time. Thus, five of the states are considered
transient states in the Markov chain, since each one can independently transition to another
state. The four transient states are lying (L), transition from lying to standing (LS), standing
(S), transition from standing to lying (SL). Calving is the absorbing state. Figure 4 describes
this five-state absorbing Markov chain used to predict calving time in dairy cows.
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2.3. Description of Calving Event

As an attractive feature of Markov models, they can describe the course of calving
events over time. This is especially attractive for modeling calving since a cow’s state of
behavior while calving influences the prediction of calving time. The transition probability
matrix P summarizes the probabilities of cow activities and can be used to describe the
probability of calving for an individual cow with a known activity state. The elements of the
probability matrix pij in the ith row and jth column is denoted by pij(t), which represents
the probability of a transition from state i to state j during t periods or t steps, where t
measures in minutes. For an m state Markov model, the probability of the system visiting
state k at time t can be denoted as pk(t). Therefore, for all m states, these probabilities can
be expressed as a row vector, p(t) = [p1(t), p2(t), · · · , pm(t)]. By using total probability,
this equation can be written as (3) or (4):

pk(t) =
m

∑
j=1

pkj pj(t− 1) for k = 1, 2 , · · · , m, (3)

p(t) = p(t− 1)P1 = p(t− 2)P2 = · · · = p(0)Pt, (4)

Transient analysis may cause convergence of the probability distribution vector when
t becomes very large. That is, as the number of steps t increases, the probability vector
approaches a limiting value which is called the stationary distribution of the Markov chain.
This stationary distribution, or as it is also called, steady state distribution, is denoted by
π = [π1, π2, · · · , πm] and satisfies (5).

π = πP, (5)

Our case features five states: L, LS, S, SL, and Calve. Therefore, we get the following
probabilities. pi(t) is the probability that the cow is in one of the states after a period
of t from the start. In these ways, the behavior of dairy cows can be analyzed during
periods when calving is imminent. These results will be described in the next section on
experimental work.

2.4. Calving Time Prediction Procedure

This section presents the method of predicting calving time using the Markov chain
model discussed in the previous section. This involves adding or augmenting the calving
event as an absorbing state in our four-state Markov chain model. Since the problem is to
predict the time of calving, the exercise is completed when the event occurs. Because of this,
the calving state is considered absorbing. This means that any of the other four states can
transition directly to the calving state, but once there, no additional transitions will occur.
The probability of transitioning from absorbing state to absorbing state is one; and the
probability of transitioning from absorbing state to any other state is zero. The four-state
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Markov chain model is transformed as described in (3) into an augmented Markov chain
model of five states by adding an absorbing state (calving state).

Fundamental Matrix Solution: Absorbing Markov Chain

The matrix solution provides an exact solution for the time spent in each state, condi-
tional on the entry state in which an individual enters the model. Such a matrix solution
is only viable in time with homogeneous Markov chains with r absorbing states and m
transient states. The transition probability matrix of a chain that contains an absorbing
state is defined as the separation of a probability transition matrix A using canonical form.

A =

[
Q R
O I

]
, (6)

where, I is an r-by-r identity matrix, O is an r-by-m zero matrix, R is a nonzero m-by-r
matrix and Q is an m-by-m matrix.

In the proposed augmented Markov model, Q is the matrix that contains transition
probabilities between transient states, R is column vector of the calving state probabilities,
O is the row vector of zero matrix, and I in [1] is 1 × 1 matrix. The iterated multiplication
of the augmented matrix A yields as follows.

A2 =

[
Q R
O I

]
×
[

Q R
O I

]
=

[
Q2 QR + R
O I

]
, (7)

A3 =

[
Q2 QR + R
O I

]
×
[

Q R
O I

]
=

[
Q3 Q2R + QR + R
O I

]
, (8)

Hence, by induction, we obtain the following:

At =

[
Qt Qt−1R + Qt−2R + · · ·+ R
O I

]
×
[

Q R
O I

]
=

[
Qt

(
Qt−1 + · · ·+ I

)
+ R

O I

]
. (9)

However, when t tends to infinity the transient state matrix, Qt will tend to O (zero
matrix). We then have from (6) that,

A∞ =

[
O NR
O I

]
, (10)

where, N = I + Q1 + Q2 + Q3 + · · · = (I−Q)−1.
The matrix N = (I−Q)−1 is called the fundamental matrix for the augmented

Markov chain model. Let N(i, j) be the element in row i and column j. Then, we can
interpret the summation of N(i, j) over j as the expected number of periods until absorbing
(calving). Therefore, the expected time until the absorbing (calving state) occurs is shown as
∑
j

∑
i

N(i, j). The probability of absorbing or calving at the expected time is p(0)×N×R.

3. Results

Data were collected on 25 dairy cows; 21 Holstein Black and White cows and 4
Brown Swiss cows were moved into the maternity barns from beginning 3 days before the
expected calving date. We divided the 25 cows into 2 groups based on the primiparous
and multiparous pregnant cows, as shown in Tables 1 and 2. They calved at ages between
21 and 26 months and the calving period was between November and December in 2017.
None of the 25 test cows presented with dystocia, and assistance for newborns calves was
provided, as necessary. All newborn calves were single birth. Behavior analysis data were
not collected after calving. Individual cows were continuously monitored until the calving
event occurred using a 360-degree camera above the pregnant cows in the maternity barns.
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Table 1. Group 1: Primiparous pregnant cows data information.

Cow ID Types of Cows Data Collection Start Date (mm/dd/yy)
and Time (h/m/s)

Calving Date (mm/dd/yy) and Time
(h/m/s)

1 Black and White Holstein 11.26.2017, 17:10:00 11.29.2017, 17:10:00
3 Black and White Holstein 11.26.2017, 19:35:00 11.29.2017, 19:35:00
4 Black and White Holstein 11.30.2017, 15:10:00 12.03.2017, 15:10:00

Table 2. Group 2: Multiparous pregnant cows data information.

Cow ID Types of Cows Data Collection Start Date (mm/dd/yy) and
Time (h/m/s)

Calving Date (mm/dd/yy) and
Time (h/m/s)

2 Brown Swiss 11.30.2017, 21:15:00 12.03.2017, 21:15:00
5 Brown Swiss 12.09.2017, 17:15:00 12.12.2017, 17:15:00
6 Brown Swiss 12.01.2017, 10:25:00 12.04.2017, 10:25:18
7 Brown Swiss 12.03.2017, 02:40:00 12.06.2017, 02:41:22
8 Black and White Holstein 11.29.2017, 00:30:00 12.02.2017, 00:30:00
9 Black and White Holstein 12.04.2017, 10:05:00 12.07.2017, 10:06:35

10 Black and White Holstein 12.04.2017, 10:10:00 12.07.2017, 10:13:00
11 Black and White Holstein 12.04.2017, 16:05:00 12.07.2017, 16:09:40
12 Black and White Holstein 12.04.2017, 14:00:00 12.06.2017, 20:10:00
13 Black and White Holstein 12.11.2017, 06:00:00 12.14.2017, 05:58:50
14 Black and White Holstein 12.06.2017, 10:00:00 12.08.2017, 03:25:00
15 Black and White Holstein 12.12.2017, 04:50:00 12.15.2017, 04:53:09
16 Black and White Holstein 12.07.2017, 17:20:00 12.10.2017, 17:20:00
17 Black and White Holstein 12.13.2017, 21:00:00 12.16.2017, 21:03:29
18 Black and White Holstein 12.16.2017, 21:55:00 12.19.2017, 21:55:00
19 Black and White Holstein 12.14.2017, 17:15:00 12.17.2017, 17:19:00
20 Black and White Holstein 12.17.2017, 06:10:00 12.20.2017, 06:10:00
21 Black and White Holstein 12.14.2017, 16:15:00 12.17.2017, 16:17:12
22 Black and White Holstein 12.17.2017, 09:50:00 12.20.2017, 09:50:00
23 Black and White Holstein 12.15.2017, 00:50:00 12.18.2017, 01:25:21
24 Black and White Holstein 12.17.2017, 12:15:00 12.20.2017, 12:15:00
25 Black and White Holstein 11.29.2017, 00:30:00 12.02.2017, 00:30:00

Specifically, the four relevant activities were lying, transitions from lying to standing,
standing, and transitions from standing to lying. From the collected videos, a sequence
of the four activities is extracted for each cow as shown in the previous section. The
co-occurrence matrix is constructed from the activity sequence for each individual cow.
Sample co-occurrence matrices C are described below for Identity Document 2 (ID 2),
Identity Document 11 (ID 11), and Identity Document (ID 27).

CID2 =




1360 67 0 0 1
0 0 65 4 1
0 0 2686 68 1
66 3 0 0 1
0 0 0 0 1




CID11 =




1324 38 0 0 1
0 0 38 4 1
0 0 2834 38 1
38 5 0 0 1
0 0 0 0 1



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CID27 =




1229 29 0 0 1
0 0 29 2 1
0 0 2972 28 1

28 2 0 0 1
0 0 0 0 1




By row normalization, we obtain the Markov chain probability matrices P for ID 2, ID
11, and ID 27 as follows.

PID2 =




0.952 0.047 0 0 0.001
0 0 0.890 0.096 0.014
0 0 0.976 0.024 0

0.957 0.029 0 0 0.014
0 0 0 0 1




PID11 =




0.971 0.028 0 0 0.001
0 0 0.884 0.093 0.023
0 0 0.986 0.013 0

0.864 0.114 0 0 0.023
0 0 0 0 1




PID27 =




0.976 0.023 0 0 0.001
0 0 0.906 0.063 0.031
0 0 0.990 0.009 0

0.903 0.065 0 0 0.032
0 0 0 0 1




3.1. Calving Event as an Absorbing State of Markov Chain Model Implementation

The transition probability matrix defined as a Markov chain probability matrix is
regular. The calving event is added as an absorbing state of the Markov chain as described
above. The Q matrix for cow ID 2 is as follows.

QID2 =




0.952 0.047 0 0
0 0 0.890 0.096
0 0 0.976 0.024

0.957 0.029 0 0




RID2 =
[

0.001 0.014 0 0.014
]T;

OID2 =
[

0 0 0 0
]
; and IID2 = [1];

NID2 is (IID2 −QID2)
−1 which is given by:

NID2 =




372.492 17.969 657.388 17.487 1065.335
356.900 18.245 667.502 17.756 1060.402
361.332 17.459 679.840 17.977 1076.608
366.725 17.720 648.286 18.245 1050.975




Thus, from the theory developed in our method proposed in Section 3, the sum of all
entries gives the expected time at which the calving event occurs. We obtain the predicted
calving time as, ∑

j
∑
i

N(i, j) = 4253.320 min = 70.889 h from the beginning. The actual

calving time is 72 h from the beginning. Therefore, our proposed method provides an
accurate prediction. The probability of calving is expressed in the previous section. Thus,
the probability of calving is certainly almost 1.

Similarly, we have derived the most useful statistics such as the co-occurrence matrices
and their corresponding probabilities for all cows in this study. By adding the concept of
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an absorbing barrier state (calving), we derived the time for entering the absorbing state,
determining the estimated time that calving occurs.

3.2. Patterns of Activities of Cows before Calving

We also investigated patterns in the four activities of lying, transitions from lying to
standing, standing, and transitions from standing to lying. In order to do so, we raised
powers to the probability matrix P, and look at the probabilities of diagonal elements. In
other words, we researched the behavior of p11 , p22, p33 and p44. We found that those
entries in Pt of cow ID 2 for t = 1, 2, 4, 6, . . . , 24 are represented in Table 3. As shown, the
lying state, and standing state probabilities decrease when the cow approaches the calving
state. However, the transition state probabilities increase. These patterns are shown in
Figures 5–7.

Table 3. State probability patterns of ID2, ID11, and ID 27.

t
ID 2 ID 11 ID 27

p11(L) p22(LS) p33(S) p44(SL) p11(L) p22(LS) p33(S) p44(SL) p11(L) p22(LS) p33(S) p44(SL)

1 0.953 0.001 0.975 0.002 0.973 0.004 0.997 0.005 0.982 0.001 0.983 0.001
2 0.908 0.002 0.951 0.001 0.946 0.005 0.994 0.004 0.964 0 0.967 0.001
4 0.831 0.001 0.908 0.001 0.895 0.003 0.989 0.001 0.929 0.001 0.936 0.001
6 0.764 0.002 0.870 0.002 0.847 0.001 0.984 0.003 0.897 0 0.907 0
8 0.706 0.001 0.838 0.001 0.802 0.002 0.979 0.002 0.867 0.001 0.880 0.001
10 0.656 0.001 0.810 0.002 0.759 0.003 0.974 0.004 0.839 0.002 0.855 0.002
12 0.613 0.001 0.786 0 0.719 0.001 0.969 0.003 0.812 0.002 0.831 0.002
14 0.575 0.002 0.765 0.001 0.681 0.002 0.965 0.001 0.788 0.001 0.809 0.001
16 0.543 0.001 0.746 0.002 0.646 0.004 0.960 0.003 0.765 0.002 0.788 0.001
18 0.515 0.001 0.731 0 0.612 0.002 0.956 0.005 0.743 0 0.769 0.001
20 0.491 0.002 0.717 0.001 0.580 0.002 0.952 0.004 0.723 0.003 0.750 0.002
22 0.470 0.003 0.705 0.003 0.551 0.005 0.948 0.005 0.704 0.002 0.733 0.002
24 0.452 0.011 0.695 0.01 0.522 0.01 0.944 0.009 0.686 0.008 0.718 0.008
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4. Discussion
4.1. Discussion on Calving Time Prediction Approaches in the Literature Surveys

Though we conducted a thorough review of the literature, we have not found any
method resembling our approach, and cannot make comparisons with other methods
of Markov chain analysis. However, we did find some appealing approaches in the
literature, such as machine learning [15], online image analysis [16], indications of posture
changes [17], and investigations of farm devices [18]. However, we feel that our approach
is much easier to implement and promises comparatively favorable outcomes.

Monitoring cow behavior to predict calving events is not superficial work. In fact,
no one approach could cover all aspects of monitoring cow behavior. A sizable amount
of research has appeared in the literature involving the development of methods and
models to predict calving time, and results have been quite promising. This section
concerns a brief explanation on the topic of predicting calving time based on cow behavior
monitoring, focusing on the augmented absorbing Markov chain model used to build our
predictive model and analyzing the performance of our proposed method by measuring
some machine learning techniques’ prediction results.

The effort of monitoring the calving process is a matter of assessing whether human
assistance is required in the upcoming hours or overnight, or whether difficulties in giving
birth are likely. Again, such difficulties may adversely affect production, and could even
risk the life of mother and calf. Thus, an accurate and efficient method of predicting
a calving event will continue to play a central role in precision dairy farming. It is no
wonder that much research involving multiple disciplines has focused on predicting calving
times and related research. However, we have yet to see satisfactory accomplishments in
the literature.
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Although a variety of unavoidable stressors continue to affect cows through calving
and dry off (stopping milk production), our increased knowledge of events leading to
calving should have a positive impact on milk production, as well as on cow health and
overall wellbeing. The calving time prediction methods and devices can be divided into
the following three categories based on:

(a). Hormonal changes;
(b). Clinical signs; and
(c). Behavioral changes before calving.

Since the first two categories are beyond the scope of the current focus, we shall review
some research that falls in the third category. The video cameras or accelerometers recording
the behavior of cows can be integrated in systems using image analysis or locomotive
activity to alert the dairy farmer when calving is imminent. The four comparable predictive
models had been established for calving difficulty in dairy heifers and cows using four
machine learning techniques: multinomial regression, decision trees, random forests, and
neural networks [19]. Among many other findings, is the use of calibration evaluation
techniques that have not been frequently used in agricultural or animal health applications.
Apart from these models, our discussion below will extend to some other research on
calving time prediction.

Some of them utilize physical measures, such as body temperature [20,21], the blood
levels of progesterone, and the relaxation of pelvic ligaments [22,23]. Recently, a combina-
tion of data from sensors detecting cumulative activity, rumination activity, feeding activity,
and body temperature achieved a more accurate calving time prediction system than those
based exclusively on the date of insemination [24]. However, some obstacles remain to
accurately predicting the starting time of calving.

Overall, systems based on behavioral analysis seem to have the most potential, be-
cause significant changes in behavior occur on the day of calving. Analyses of behavior
changes normally begin several days before delivery and last until calving time. From
the literature review, the most important facts and figures are as follows: searching for
isolation, moving the tail, walking aimlessly, turning the head towards the abdomen, re-
ducing rumination time, reducing the time spent lying, sniffing the ground, and frequently
changing posture [25,26]. The most distinctive trends that precede calving were also noted
in Santegoeds’ work [27]. In summary, these trends include the following: (1) the number
of steps taken increases very slightly but significantly 10 days before calving, and more
significantly over the 2 last days; (2) the time spent lying decreases slightly but significantly
10 days before calving, more significantly 3 days to 12 h before calving, and increases
thereafter until after calving.

Moreover, the standing pattern is almost perfectly opposite to the lying pattern. This
difference is due to an increase in time spent walking around, which interrupts periods of
standing, rather than periods of lying. Walking time rises notably from two days before
calving. The number of times standing up radically increases in the last6 h. Therefore,
several researchers believed that close observation of cattle in the last gestation period
is essential to detect the onset of calving and to reduce neonatal losses [28]. The calving
time prediction is performed by using time series analysis of data on posture changes
collected from video sequences recorded in the maternity barn [29–31]. He determined the
number of transitions every hour before actual calving events using this time series analysis
and could thereby predict the time of calving. Similarly, video cameras or accelerometers
recording cow behavior should be integrated in systems using image analysis [32–34].

4.2. Discussion on Proposed Method

We have tested the proposed calving time prediction model using video data for
pregnant dairy cows. The results are shown in Table 4. This table provides both predicted
times and the actual calving times and also shows the results of using our method on data
collected over a period of just 48 h. The majority of these predictions were accurate within
a range of3 h. These results show great promise for practical applications in managing
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precision dairy farms. The results also reveal that prediction times and actual times were
almost the same. These results indicate that only two days of data are needed for accurately
predicting calving time. The average value of mean absolute error (MAE) for these calving
time predictions is 1.101 using data collected over 72 h, and 1.229 using data collected over
48 h. We also compared our proposed method with some machine learning techniques
such as K-nearest neighbors (KNN), Naïve Bayes (NB) and Support Vector Machine (SVM)
by blindly testing on five cows, as shown in Table 5 and Figure 8. For the machine learning
techniques, the four types of conditions comprise two postures (L, S) and two transitions
(LS, SL), which are defined as four predictors. Calving and not-calving states are considered
the two responses. For each cow, the calving state is defined as the response in the last 3 h
before calving. During the other 69 h, the response is the not-calving state. According to
the predicted calving time results of Table 4, our proposed method can accurately estimate
every calving event of each cow between 69 and 73 h before the event.

Table 4. Experimental results of cows predicted calving time based on 72 h data and 48 h data before
calving event occurs.

Cow ID Predicted Calving Time on 72 h Predicted Calving Time on 48 h

1 70.723 70.843
2 68.942 70.852
3 69.874 70.321
4 73.765 71.728
5 68.128 70.721
6 71.568 70.716
7 71.993 71.059
8 71.298 70.597
9 70.734 70.511

10 72.338 70.495
11 69.541 69.756
12 72.013 70.919
13 71.310 70.961
14 71.297 71.069
15 70.229 71.772
16 71.969 71.807
17 72.420 70.381
18 72.455 71.723
19 71.346 71.561
20 70.435 70.311
21 73.081 70.307
22 71.274 70.159
23 72.592 70.465
24 72.405 69.730
25 70.889 70.510

Table 5. Performance analysis of our proposed method by comparing with other methods.

Methods Precision F1 Score Specificity Sensitivity Accuracy (%)

Proposed Method 1 1 1 1 100
K-nearest Neighbors (KNN) 0.890 0.846 0.811 0.811 96.100

Naïve Bayes (NB) 0.965 0.965 0.965 0.965 98.333
Support Vector Machine (SVM) 0.767 0.843 0.990 0.990 96.389

From Figure 8 of the confusion matrices, the total number of observations is 360 in the
testing dataset for 5 cows. In this dataset, the 2 classes are calving and not-calving, with a
total of 15 calving responses and 345 not-calving responses. The best accuracy obtained
using our proposed method is 100%.
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5. Conclusions

We have developed a five-state absorbing Markov chain model to predict calving
events. Although a large number of Markov chain model applications have involved
research fields such as engineering, medicine and agriculture, including livestock man-
agement and animal science, we have not seen a Markov chain application that predicts
calving time. Our intention was to explore and examine how Markov Models could be
applied to reproduction management for dairy cows by using them to predict calving time.
In this study, we only considered four types of cow behavior. Additional activities such
as head movements, rumination, and raising the tail should be considered in the future.
In future research, we plan to analyze some of the above-mentioned activities using the
proposed Markov model. In this paper we discuss a trial-and-error method of determining
parameters for the absorbing state. However, the Monte Carlo Simulation method is also
attractive as a way of determining these parameters. Much remains to be done in calving
time prediction research. In the future, we will combine this stochastic model with image
processing techniques to detect cows, automatically recognize their behavior, and build a
better model for automatically predicting calving time.
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Abstract: With the recent advances in deep learning, wearable sensors have increasingly been used
in automated animal activity recognition. However, there are two major challenges in improving
recognition performance—multi-modal feature fusion and imbalanced data modeling. In this study,
to improve classification performance for equine activities while tackling these two challenges, we
developed a cross-modality interaction network (CMI-Net) involving a dual convolution neural
network architecture and a cross-modality interaction module (CMIM). The CMIM adaptively recali-
brated the temporal- and axis-wise features in each modality by leveraging multi-modal information
to achieve deep intermodality interaction. A class-balanced (CB) focal loss was adopted to supervise
the training of CMI-Net to alleviate the class imbalance problem. Motion data was acquired from six
neck-attached inertial measurement units from six horses. The CMI-Net was trained and verified
with leave-one-out cross-validation. The results demonstrated that our CMI-Net outperformed the
existing algorithms with high precision (79.74%), recall (79.57%), F1-score (79.02%), and accuracy
(93.37%). The adoption of CB focal loss improved the performance of CMI-Net, with increases of
2.76%, 4.16%, and 3.92% in precision, recall, and F1-score, respectively. In conclusion, CMI-Net and
CB focal loss effectively enhanced the equine activity classification performance using imbalanced
multi-modal sensor data.

Keywords: equine behavior; wearable sensor; deep learning; intermodality interaction; class-
balanced focal loss

1. Introduction

The behavior of horses provides rich insight into their mental and physical status and
is one of the most important indicators of their health, welfare, and subjective state [1].
However, behavioral monitoring for animals, to date, largely relies on manual observa-
tions, which are labor-intensive, time-consuming, and prone to subjective judgments of
individuals [1]. The use of sensors and machine learning is well-established in monitoring
gait change [2], and for lameness detection as part of the equine veterinary examination,
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increasing the accuracy of identification of subtle lameness, which is one of the most expen-
sive health issues in the equine industry [3,4]. Therefore it is of significant importance to
investigate and develop an automatic, objective, accurate, and quantifiable measurement
system for equine behaviors. Such a system will allow caretakers to identify variations
in the animal behavioral repertoire in real-time, decreasing the workloads in veterinary
clinics and improving the husbandry and management of animals [5,6].

Over recent decades, automated animal activity recognition has been studied widely
with the aid of various sensors (e.g., accelerometers, gyroscopes, and magnetometers) and
the use of machine learning techniques. For instance, a naïve Bayes (NB) classifier was
applied to recognize horse activities (e.g., eating, standing, and trotting) using triaxial
acceleration and obtained 90% classification accuracy [7]. Four classifiers including a
linear discriminant analysis (LDA), a quadratic discriminant analysis (QDA), a support
vector machine (SVM), and a decision tree (DT) were utilized to detect dog behaviors
(e.g., galloping, lying on chest, and sniffing) based on accelerometer and gyroscope data,
and the results revealed that the sensor placed on the back and collar yielded 91% and
75% accuracy at best, respectively [8]. A random forest (RF) algorithm was applied to
categorize cow activities using triaxial acceleration and gained high classification accuracy
with 91.4%, 99.8%, 88%, and 99.8% for feeding, lying, standing, and walking events,
respectively [9]. In horses, the use of receiver-operating characteristic curve analysis
classified standing, grazing, and ambulatory activities with a sensitivity of 94.7–97.7%
and a specificity of 94.7–96.8% [10]. However, to classify animal behaviors accurately
using these machine learning methods, feature extraction and method selection are often
conducted manually and separately, which requires expert domain knowledge and easily
induces feature engineering issues [11]. Moreover, handcrafted features often fail to capture
general and complex features, resulting in low generalization ability, i.e., these extracted
features perform well in recognizing the activities of some subjects but badly for others.

Along with the recent advances in internet technology and fast graphics processing
units, various deep learning approaches have been increasingly and successfully adopted
in animal activity recognition with wearable sensors. Classification models based on deep
learning achieve automatic feature learning through data driving and subsequent animal
activity recognition. For example, feed-forward neural networks (FNNs) and long short-
term memory (LSTM) models were applied to automatically recognize cattle behaviors
(e.g., feeding, lying, and ruminating) using data collected from inertial measurement
units (IMUs) [12,13]. Convolutional neural networks (CNNs), which accurately capture
local temporal dependency and scale invariance in signals, were developed in automated
equine activity classification based on triaxial accelerometer and gyroscope data [1,14,15].
FilterNet, presented based on CNN and LSTM architectures, was adopted to classify
important health-related canine behaviors (e.g., drinking, eating, and scratching) using a
collar-mounted accelerometer [16].

However, multi-modal data fusion has not been well handled when different sensors are
used simultaneously in existing studies. Multi-modal data with different characteristics are
often simply processed using common fusion strategies such as early fusion, feature fusion,
and result fusion [17]. The early fusion strategy used in previous studies [12,13], i.e., extracting
the same features without distinction of modalities, often caused interference between multi-
modal information due to their distribution gap [18]. The result fusion scheme was suboptimal
since rich modality information was gradually compressed and lost in separate processes,
ignoring the intermodality correlations. As a better choice, the feature fusion strategy fuses the
intermediate information of multiple modalities, which avoids the distribution gap problem
and achieves intermodality interaction simultaneously [19,20]. However, feature fusion is often
limited to linear fusion (e.g., simple concatenation and addition) and fails to explore deep
multi-modality interactions and achieve complementary-redundant information combinations
between multiple modalities [17].

In addition, the collected sensor datasets often present class imbalance problems
due to the inconsistent frequency and duration of each activity resulting from specific
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animal physiology. Deep learning methods trained on imbalanced datasets tend to be
biased toward majority classes and away from minority classes, which easily causes poor
modal generalization ability and high classification error rates for rare categories [21].
Commonly used methods on imbalanced datasets mainly involve two techniques, namely,
resampling and reweighting. Resampling attempts to sample the data to obtain an evenly
distributed dataset, e.g., oversampling and undersampling [22]. However, oversampling
and undersampling come with high potential risks of overfitting and information loss,
respectively [21]. Reweighting is more flexible and convenient by directly assigning a
weight for the loss function per training sample to alleviate the sensitivity of the model
to data distribution [23]. This method is further divided into class-level and sample-level
reweighting. The former, such as cost-sensitive (CS) loss [24] and class-balanced (CB)
loss [25], depends on the prior category frequency, while the latter, such as focal loss [26]
and adaptive class suppression (ACS) loss [27], relies on the network output confidences of
each instance. In addition, CB focal loss, combining a CB term with a modulating factor,
effectively focuses on difficult samples and considers the proportional impact of effective
numbers per class simultaneously [25].

To improve the recognition performance for equine activities while tackling the above-
mentioned challenges, we have developed a cross-modality interaction network (CMI-Net)
which achieved a good classification performance in our previous work [28], and a CB
focal loss [25] was adopted to supervise the training of CMI-Net. The CMI-Net consisted
of a dual CNN trunk architecture and a joint cross-modality interaction module (CMIM).
Specifically, the dual CNN trunk architecture extracted modality-specific features for ac-
celerometer and gyroscope data, respectively, and the CMIM based on attention mechanism
adaptively recalibrated the importance of the elements in the two modality-specific feature
maps by leveraging multi-modal knowledge. The attention mechanism has been widely
utilized in different tasks using multi-modal datasets such as RGB-D images [17,29]. It
has also been adopted to focus on important elements along with channels and spatial
dimensions of the same input feature [30,31]. The favorable performance presented in these
studies with the attention mechanism indicated the rationality of our proposed CMIM. In
our method, softmax cross-entropy (CE) loss was initially used to supervise the training
of CMI-Net. However, softmax CE loss suffered from inferior classification performance,
especially for monitory classes [23]. In contrast, CB focal loss, by adding a CB term to focal
loss, focuses more on minor-class samples and hard-classified samples and can alleviate
the class imbalance problem. Therefore, a CB focal loss [25] was also adopted. In this study,
the CMI-Net was trained based on an extensively labeled dataset [32] to automatically
recognize equine activities including eating, standing, trotting, galloping, walking-rider
(walking while carrying a rider), and walking-natural (walking with no rider). The leave-
one-out cross-validation (LOOCV) method was applied to test the generalization ability
of our model, and the results were then compared to the existing algorithms. The main
contributions of this paper can be summarized as follows:

• We proposed a CMI-Net involving a dual CNN trunk architecture and a joint CMIM to
improve equine activity recognition performance using accelerometer and gyroscope
data. The dual CNN trunk architecture comprised a residual-like convolution block
(Res-LCB) which effectively promoted the representation ability and robustness of
the model [33]. The CMIM based on attention mechanism enabled CMI-Net to cap-
ture complementary information and suppressed unrelated information (e.g., noise,
redundant signals, and potentially confusing signals) from multi-modal data.

• We devised a novel attention module, i.e., CMIM, to achieve deep intermodality inter-
action. The CMIM combined spatial information from two-stream feature maps using
basic CNN to produce two spatial attention maps with respect to their importance,
which could adaptively recalibrate temporal- and axis-wise features in each modality.
To the best of our knowledge, the attention mechanism was employed for the first
time in animal activity recognition based on multi-modal data yielded by multiple
wearable sensors.
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• We adopted a CB focal loss to supervise the training of CMI-Net to mitigate the
influence of imbalanced datasets on overall classification performance. The CB focal
loss can pay more attention not only to samples of minority classes, diminishing their
influence from being overwhelmed during optimization, but also to samples that are
hard to distinguish. As far as we know, this is the first time the CB focal loss has been
utilized in animal activity recognition based on imbalanced datasets.

• Experiments performed verified the effectiveness of our proposed CMI-Net and CB
focal loss. In particular, the experimental results demonstrated that our CMI-Net
outperformed the existing algorithms in equine activity recognition with the precision
of 79.74%, recall of 79.57%, F1-score of 79.02%, and accuracy of 93.37%, respectively.

2. Materials and Methods
2.1. Data Description

The dataset used in this study was a public dataset created by Kamminga et al. [32].
In this dataset, more than 1.2 million 2 s data samples were collected from 18 individual
equines using neck-attached IMUs. The sampling rate was set to 100 Hz for both the
triaxial accelerometer and gyroscope and 12 Hz for the triaxial magnetometer. The majority
of the samples were unlabeled, but data from six equines and six activities including
eating, standing, trotting, galloping, walking-rider, and walking-natural were labeled
extensively (87,621 2 s samples in total) and were used to classify equine activities in
previous studies [7,34]. In this study, data from the triaxial accelerometer and gyroscope
among the 87,621 samples were exploited separately, forming up to two tensors with a
size of 1 × 3 × 200 for each sample. As demonstrated in Figure 1, the activities of eating,
standing, trotting, galloping, walking-rider, and walking-natural occupied 18.32%, 5.84%,
28.62%, 4.50%, 38.94%, and 3.80% of the total sample number, respectively, producing a
maximum imbalance ratio of 10.25. In addition, the input sample of each axis per sensor
modality was normalized by removing the mean and scaling to unit variance, which can
be formulated as follows:

Si =
Si − µi

σi
, (1)

where Si denotes all samples of a particular axis per sensor modality (i.e., X-, Y-, and Z-axis
of the accelerometer, and X-, Y-, and Z-axis of the gyroscope), Si denotes all normalized
samples, and µi and σi denote mean and standard deviation values in each axis per sensor
modality, respectively.
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2.2. Cross-Modality Interaction Network

Our proposed CMI-Net, where accelerometer and gyroscope data were fed into two
CNN branches (represented by CNNacc and CNNgyr) separately, is shown in Figure 2a.
The dual CNN was constructed to extract modality-specific features and concatenate these
features before the final dense layer. To achieve deep interaction between the two-modality
data and capture the complementary information and suppress unrelated information
from them, a joint CMIM was designed and inserted in the upper layer. The details are
described below.
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2.2.1. Dual CNN Trunk Architecture

The CNNacc and CNNgyr contained four convolution blocks, three max-pooling layers,
one global average-pooling layer, and one fully connected layer, followed by concatenation
and one joint fully connected layer. Inspired by the residual unit in the deep residual
network that behaves like ensembles and has smaller magnitudes of responses [33], to
promote the representation ability and robustness of the model, we designed a Res-LCB, as
demonstrated in Figure 2b. The definition is given below.

Xl+1 = RELU
(

Conv1×1(Xl)⊕ Conv1×3(Xl)
)

, (2)

where Xl and Xl+1 denote feature maps in the l and l + 1 layers, respectively, Conv1×1(•) and
Conv1×3(•) represent 1 × 1 and 1 × 3 convolution operations, respectively, ⊕ denotes the
elementwise addition, and RELU (•) denotes the rectified linear unit activation function [35].
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2.2.2. Cross-Modality Interaction Module

Inspired by the multi-modal transfer module that recalibrates channel-wise features
of each modality based on multi-modal information [36] and the convolutional block
attention module that focuses on the spatial information of the feature maps [30], we
devised a CMIM based on an attention mechanism to adaptively recalibrate temporal- and
axis-wise features in each modality by utilizing multi-modal information. The detailed
CMIM is illustrated in Figure 2c.

Let A ∈ RC×H×W and G ∈ RC×H×W represent the features at a given layer of CNNacc
and CNNgyr, respectively. Here, C, H, and W denote the channel number and spatial
dimensions of features. Specifically, H and W correspond to the axial and temporal
signals, respectively. The CMIM receives A and G as input features. We first applied
average-pooling operations along channels of the input features, generating two spatial
maps. These two maps were then concatenated and mapped into a joint representation
Z ∈ RC′×H×W . The operation was shown as follows:

Z = RELU
(

Conv1×3([Avgpool(A), Avgpool(G)])
)

, (3)

where C′ denotes the channel number of feature Z, Avgpool (•) denotes the average-pooling
operation, and [•] denotes the concatenation operation. Furthermore, two spatial attention
maps AA ∈ R1×H×W and AG ∈ R1×H×W were generated through two independent
convolution layers with a sigmoid function σ(•) using the joint representation Z:

AA = σ
(

Conv1×3(Z)
)

, AG = σ
(

Conv1×3(Z)
)

, (4)

AA and AG were then used to recalibrate the input features, generating two final
refined features, i.e., A′ ∈ RC×H×W and G′ ∈ RC×H×W :

A′ = A⊗ AA ⊕ A, G′ = G⊗ AG ⊕ G, (5)

where ⊗ denotes the elementwise multiplication. Specifically, each convolution operation
under this study was followed by a batch normalization operation. The increases in channel
numbers and decreases in spatial dimensions were implemented through Res-LCB and
max-pooling operations, respectively.

2.3. Optimization

As the most widely utilized loss in the multiclass classification task, softmax CE loss
was applied to optimize the parameters of CMI-Net. The formulation of softmax CE loss
was defined as

LCE(z) = −∑C
i=1 yilog(pi) (6)

with pi =
ezi

∑C
j=1 ezj

, (7)

where C and z = [z1, . . . , zC] are the total number of classes and the predicted logits of
the network, respectively. In addition, yi . . . {0, 1}, 1 ≤ i ≤ C is the one-hot ground-
truth label. However, the models based on softmax CE loss often suffer from inferior
classification performance, especially for monitory classes, due to the imbalanced data
distribution [23]. Therefore, we further introduced an effective loss function to supervise
the training of CMI-Net and alleviate the class imbalance problem, namely, CB focal loss.

CB focal loss, which added the CB term to the focal loss function, focused more on
not only samples of minority classes, diminishing their influence from being overwhelmed
during optimization, but also samples that were hard to distinguish. The CB term was
related to the inverse effective number of samples per class, and focal loss added a modu-
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lating factor to the sigmoid CE loss to reduce the relative loss for well-classified samples
and focused more on difficult samples. The CB focal loss was presented as

LCBFL(z) =
1

Eny

LFL(z) = −
1− β

1− βny ∑C
i=1

(
1− pt

i
)γlog

(
pt

i
)

(8)

with pt
i =

1

1 + e−zt
i
, (9)

zt
i =

{
zi, i f i = y.
−zi, otherwise.

, (10)

where ny and Eny represent the actual number and the effective number of the ground-
truth label y, respectively. The hyperparameter β ∈ [0, 1) controlled how fast Eny grows
as ny increases, and γ ≥ 0 smoothly adjusted the rate at which easy samples were down-
weighted [26]. The value of β was set to 0.9999, and the search space of the hyperparameter
γ was set to {0.5, 1.0, 2.0} [25] in this study. In particular, CB loss and focal loss rebalanced
the loss function based on class-level and sample-level reweighting, respectively. Thus,
we also utilized class-level reweighted losses, including cost-sensitive cross-entropy loss
(CS_CE loss) [24], class-balanced cross-entropy loss (CB_CE loss) [25], and sample-level
reweighted losses, including focal loss [26] and adaptive class suppression loss (ACS
loss) [27], to validate the effectiveness of the CB focal loss.

2.4. Evaluation Metrics

The comprehensive performance of the equine activity classification model was indi-
cated by the following four evaluation metrics, which are defined in Equations (11)–(14).
Each indicator value was multiplied by 100 as the result to reflect the difference in indicator
values more clearly.

Precision =
TP

TP + FP
, (11)

Recall =
TP

TP + FN
, (12)

F1− Score =
2TP

2TP + FP + FN
, (13)

Accuracy =
TP + TN

TP + TN + FP + FN
, (14)

where TP, FP, TN, and FN are the number of true positives, false positives, true negatives,
and false negatives, respectively. In particular, the overall precision, recall, and F1-score
were calculated by using a macro-average [37].

2.5. Implementation Details

To attain subject-dependent results, the LOOCV method was used, in which four
subjects were chosen for training, one for validation, and one for testing each time and
rotated in a circular manner. During training, the loss function was added by an L2
regularization term with a weight decay of 0.1 to avoid overfitting. An Adam optimizer
with an initial learning rate of 1 × 10−4 was employed, and the learning rate decreased by
0.1 times every 20 epochs. The number of epochs and batch size were set to 100 and 256,
respectively. The best model with the highest validation accuracy was saved and verified
using test data. To evaluate the classification performance of our CMI-Net, we compared it
against various existing methods, including three machine learning methods (i.e., NB, DT,
and SVM) and two deep learning methods used in equine activity recognition (i.e., CNN
and ConvNet7) [14,15], based on the same public dataset. Specifically, the hand-crafted
features used in machine learning were the same as those used by Kamminga et al. [7].
To further explore the performance of our CMIM, we ran the network without CMIM
and with it inserted after the 1st, 2nd, and 3rd max-pooling layers to obtain four different
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variants, i.e., Variant0, Variant1, Variant2, and Variant3, respectively. The softmax CE loss
was used as the loss function for all variants. All experiments were executed using the
PyTorch framework on an NVIDIA Tesla V100 GPU. The developed source code will be
available at https://github.com/Max-1234-hub/CMI-Net from 1 September 2021.

3. Results and Discussion

Overall, experiments conducted on the public dataset demonstrated that our proposed
CMI-Net outperformed the existing algorithms. Ablation studies were then carried out to
verify the effectiveness of CMIM and that applying the CMIM in the upper layer of CMI-
Net could obtain better performance. Different loss functions were adopted to validate that
CB focal loss performed better than any class-level or sample-level reweighted loss used
alone, and it effectively improved the overall precision, recall, and F1-score, although the
overall accuracy decreased due to the imbalanced dataset used. Furthermore, recognition
performance analysis was presented to help us probe the predicted performance on each
activity using our CMI-Net with CB focal loss. The details are described as follows.

3.1. Comparison with Existing Methods

The comparison results of our CMI-Net with three machine learning methods (i.e., NB,
DT, and SVM) and two deep learning methods (i.e., CNN and ConvNet7) [14,15] are illus-
trated in Table 1. The results revealed that the CMI-Net with softmax CE loss outperformed
the machine learning algorithms with higher precision, recall, F1-score, and accuracy of
79.74%, 79.57%, 79.02%, and 93.37%, respectively. The reason for this superior performance
was the convolution and pooling operations in CNN, which could achieve automated
feature learning and aggregate more complex and general patterns without any domain
knowledge [38]. The other CNN-based method [15] obtained inferior precision of 72.07%
and accuracy of 82.94% compared to DT and SVM. This result is consistent with the “No
Free Lunch” theorem [39] because this CNN-based method [15] was developed using
leg-mounted sensor data. In addition, our CMI-Net with softmax CE loss performed better
than ConvNet7 [14], which obtained lower precision, recall, F1-score, and accuracy of
79.03%, 77.79%, 77.90%, and 91.27%, respectively. This was attributed to the ability of our
architecture to effectively capture the complementary information and inhibit unrelated
information of multi-modal data through deep multi-modality interaction. In addition,
CMI-Net with CB focal loss (γ = 0.5) enabled the values of precision, recall, and F1-score to
increase by 2.76%, 4.16%, and 3.92%, respectively, compared with CMI-Net with softmax
CE loss. This revealed that the adoption of CB focal loss effectively improved the overall
classification performance.

Table 1. Classification performance comparison with existing methods. The best two results for each metric are highlighted
in bold.

Methods Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Machine learning
Naïve Bayes 70.90 72.41 69.42 76.60
Decision tree 75.67 73.90 74.35 88.83

Support vector machine 73.92 71.30 72.19 89.65

Deep learning
CNN [15] 72.07 76.91 73.42 82.94

ConvNet7 [14] 79.03 77.79 77.90 91.27

Our methods #

CMI-Net + softmax CE loss 79.74 79.57 79.02 93.37
CMI-Net + CB focal loss (γ = 0.5) * 82.50 83.73 82.94 90.68

# CMI-Net: cross-modality interaction network; CE: cross-entropy; CB: class-balanced; * the γ of value is 0.5, which could refer to Table 3.
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3.2. Ablation Study
3.2.1. Evaluation of CMIM

To explore the effectiveness of CMIM and the impact of its position in the network on
classification performance, the results corresponding to four different variants are shown
in Table 2. Our proposed CMI-Net with softmax CE loss showed superior performance
to Variant0 (i.e., the network without CMIM), indicating the effective performance of our
interaction module. Variant1, Variant2, and Variant3 (i.e., networks with CMIM inserted
after 1st, 2nd, and 3rd max-pooling layer, respectively) did not perform better in terms of
precision and recall compared with Variant0, which obtained precision and recall values of
79.02% and 77.09%, respectively. This might be explained by the fact that modality-specific
features learned in the shallow layer were simple and contained noise, which interfered
with the process by which CMIM learned complex intermodality correlations, leading to
poor predictions [40]. In addition, our architecture obtained the best performance since
it applied the CMIM after a deeper layer, which enabled the network to discover more
discriminative patterns and suppress irrelevant variations more effectively [41].

Table 2. Performance comparison of our CMI-Net with its variants. The best results for each metric
are highlighted in bold.

Methods & Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Variant0 # 79.02 77.09 76.88 91.76
Variant1 * 78.18 77.07 77.40 92.17
Variant2 * 77.50 78.44 77.91 92.92
Variant3 * 78.36 76.94 77.02 92.62

CMI-Net + softmax CE loss 79.74 79.57 79.02 93.37
& denotes all networks presented in this table were trained using softmax CE loss; # denotes the network without
a cross-modality interaction module (CMIM); * denotes the network where the CMIM was inserted after the 1st,
2nd, and 3rd max-pooling layers, respectively.

The results above have proven that the inclusion of the CMIM in the network provided
quantifiable improvements in identification performance. This was also reflected in the
qualitative visualization of the embeddings and the corresponding clusters in Figure 3,
with the help of t-distributed stochastic neighbor-embedding (t-SNE), a technique for
visualizing high-dimensional data by giving each data point a location in a two- or three-
dimensional map [42]. Figure 3 shows the two-dimensional embedded features from the
part test dataset after the fully connected layers of both CNN branches under the network
without and with CMIM by using the t-SNE technique with an init of ‘pca’ and perplexity
of 30. Comparing the left and right columns in Figure 3, it can be observed that more
compact clusters were generated under the network with CMIM by reducing the intraclass
distance and enlarging the interclass distance. The core technical point was that the joint
interaction module enabled adaptive amplification of salient features and suppression
of unrelated features based on information from two-modality data. To further provide
insights into its contribution, we presented two spatial attention maps for features extracted
from the triaxial accelerometer and triaxial gyroscope data (Figure 4). As illustrated in
Figure 4, the value per pixel represented the contribution degree corresponding to each
temporal period and each axis, and it was adaptively recalibrated through intermodality
interaction. Therefore, both quantitative and qualitative findings reinforced the suitability
of our proposed CMI-Net to tasks using two-modality sensor data.

3.2.2. Evaluation of CB Focal Loss

To study the effect of CB focal loss on the optimization of CMI-Net, we show the
quantitative performance in Table 3 and explore the sensitivity of its hyperparameter γ.
CMI-Net with CB focal loss (γ = 0.5) achieved the best precision of 82.50%, recall of 83.73%,
and F1-score of 82.94%. This indicated that CB focal loss was beneficial to the improvement
of classification performance when the modulation strength was controlled appropriately,
whereas negative effects occurred if the value of γ was too large or too small.
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Table 3. Performance comparison between softmax CE loss and CB focal loss with different γ. The
best results for each metric are highlighted in bold.

Loss Functions Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Softmax CE Loss (baseline) 79.74 79.57 79.02 93.37

CB focal loss (γ = 0.1) 81.31 83.60 81.97 89.57
CB focal loss (γ = 0.5) 82.50 83.73 82.94 90.68
CB focal loss (γ = 1) 80.42 82.03 81.05 89.89
CB focal loss (γ = 2) 78.92 78.48 77.97 91.05

To provide further insight into the influence of CB focal loss (γ = 0.5) on the classifica-
tion performance, we present the classification results of each activity under CMI-Net with
CB focal loss and softmax CE loss, respectively, in Figure 5. It shows that precision, recall,
and F1-score of the walking-natural were significantly improved, while other activities
varied slightly when using CB focal loss. This explained that the overall classification
performance increased mainly due to the increase in walking-natural, as it focused more
on difficult samples and samples of minority classes. However, the overall accuracy of
CMI-Net with CB focal loss decreased by 2.69% (Table 3), which was related to the different
variations of recall values in different activities and the current imbalanced dataset. In
particular, the overall accuracy could also be presented as the weighted average of the
recall value for each activity according to the sampling frequency of each activity. As
shown in Figure 5, the recall increases were 35.92% for walking-natural, 1.17% for standing,
and 0.91% for galloping, and the recall decreases were 8.41% for walking-rider, 4.26% for
eating, and 0.36% for trotting when using CB focal loss. It can be observed that all activities
with increased recall belonged to the minority class, while the remaining activities with
decreased recall belonged to the majority class, resulting in a decrease in overall accuracy.
Thus, it is necessary to collect a more balanced dataset in the future.
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In addition, experiments under different loss functions were conducted to verify
the effectiveness of the CB focal loss, as illustrated in Table 4. The contrasting losses
mainly included CS_CE loss, CB_CE loss, focal loss, and ACS loss, as mentioned in
the “Optimization” section. We found that CB focal loss combining CB loss and focal
loss performed better than any of them used alone, which indicated that adding the CB
term to the focal loss function improved the overall classification performance on the
imbalanced dataset. In addition, the precision, recall, and F1-score of CS_CE loss and CB
focal loss increased by different degrees, while both accuracies decreased compared with
softmax CE loss. Specifically, the accuracy was only 83.79%, although the recall reached
the highest value of 85.11%. This was because the recall of walking-rider was only 72.49%,
although that of walking-natural was 69.16% (Figure 6). This result further verified that
decreased accuracy occurred when using balancing techniques on the imbalanced dataset.
In addition, we found that the recall of majority classes decreased while that of minority
classes increased when using CS_CE loss and CB focal loss (Figure 6). This result revealed
that both losses effectively focused on the samples of minority classes during training, but
it is inevitable that more samples in majority classes were misclassified as minority classes
so that overall accuracy would decrease.

Table 4. Classification performance comparison with different loss functions. The best two results for
each metric are highlighted in bold.

Loss Functions # Precision (%) Recall (%) F1-Score (%) Accuracy (%)

Softmax CE loss 79.74 79.57 79.02 93.37

Class-level
CS_CE loss [24] 80.47 85.11 79.91 83.79
CB_CE loss [25] 75.35 75.70 75.47 90.61

Sample-level
Focal loss [26] 78.84 77.99 78.25 93.30
ACS loss [27] 77.03 76.54 76.60 92.05

CB focal loss (γ = 0.5) 82.50 83.73 82.94 90.68
# CS_CE: cost-sensitive cross-entropy; CB_CE: class-balanced cross-entropy; ACS: adaptive class suppression.
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3.3. Classification Performance Analysis

In Figure 7, we show the precision and recall confusion matrix aggregating the clas-
sification results under 6-fold cross-validation when using CMI-Net with CB focal loss
(γ = 0.5). Both precision and recall values of all activities had more than 90% accuracy
(i.e., the precision and recall for eating were 92.86% and 90.89%, for galloping were 91.41%
and 92.89%, for standing were 95.18% and 95.11%, for trotting were 97.34% and 97.46%, and
for walking-rider were 93.49% and 90.01%, respectively), except for the walking-natural
activity, which only obtained low precision and recall (Figure 7). This low classification
precision and recall occurred for two main reasons. The first reason was class imbal-
ance. Walking-natural as the minority class in the dataset only occupied 3.8%, which was
much less than the 38.94% occupation of majority class walking-rider, which easily caused
the model to be biased toward the majority classes and resulted in poor minority class
recognition performance. The second reason was severe confusion with other activities,
especially eating and walking-rider activities. As shown in Figure 7, 18.64% and 56.14%
of the samples predicted to be class walking-natural had ground truth classes eating and
walking-rider, respectively. In addition, 20.38% and 43.13% of the samples with ground
truth class walking-natural were misclassified as class eating and walking-rider, respec-
tively. This was because, during eating, the horse was slowly walking so that some samples
of eating might contain walking activity [32]. The movement patterns of walking-natural
and walking-rider were very similar, which interfered with the learning ability of the
network for these two behavioral characteristics (Figure 8). It also revealed that there
was no major variability in equine walking patterns in the presence or absence of a rider.
This was consistent with a previous study that found no major changes in equine limb
kinematics, although the extension of the thoracolumbar region increased during walking
with a rider compared with non-ridden walking [43]. In addition, there was confusion
between galloping and trotting activities with misclassification of 6.93% of galloping as
trotting. This might be related to the misinterpretation by the annotator during labeling, as
it was not always clear when the activity transitions occurred [32]. Additionally, a sample
rate of 100Hz may limit the distinction in the transition between trotting and cantering
or galloping.
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100Hz may limit the distinction in the transition between trotting and cantering or gallop-
ing. 
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3.4. Limitations and Future Works

The first limitation of our proposed method is that our model was trained on a
public dataset that contained only six labeled activities, i.e., eating, standing, trotting,
galloping, walking-rider, and walking-natural. Indeed, there are some other activities such
as head shaking, scratch biting, rubbing, and rolling, all of which, although infrequent, are
physiologically critical to equine health and welfare, and should have been labeled and
included in the dataset. Due to the missing of these infrequent activities in the dataset,
inevitably, as a typical open-set recognition problem [44], these unlabeled activities that
occur in real behavior monitoring scenarios will be easily misclassified as the six defined
activities, resulting in loss of some key information. Thus, as a next step to further improve
classification performance for equine activities, we will investigate some feasible techniques
such as classification-reconstruction learning and weightless neural networks [44–46] to
enable our activity classifiers to not only accurately classify the defined classes appearing
in training but also effectively deal with unlabeled ones generated in practice.

The second limitation is that the algorithms we developed and adopted in this study
were based on supervised learning, which relied on a large number of annotated samples.
Data annotation is a labor-intensive and time-consuming task, and well-annotated data is
often limited as reflected by the fact that we can only find one public dataset for equine
activities. With regard to the found dataset [32], in fact, there are still vast amounts of
unlabeled samples that can be used to alleviate the overfitting problem and improve
the generalization ability of models. Thus, how we can best use the unlabeled samples
becomes a key. To this point, our work can be further expanded toward the direction of
semi-supervised learning to sufficiently exploit these unlabeled data. For instance, we may
first train models on the existing and well-labeled data and then apply the trained models
to conduct predictions for unlabeled data. The one-hot predictions can serve as pseudo
labels for those high-confidence samples, which, along with the original labels, can then be
further used to train the model iteratively until the unlabeled data no longer changes.

4. Conclusions

In this study, we developed a CMI-Net involving a dual CNN trunk architecture and a
joint CMIM to improve equine activity classification performance. The CMI-Net effectively
captured complementary information and suppressed unrelated information from multiple
modalities. Specifically, the dual CNN architecture extracted modality-specific features,
and the CMIM recalibrated temporal- and axis-wise features in each modality by utilizing
multi-modal knowledge and achieved deep intermodality interaction. To alleviate the
class imbalance problem, a CB focal loss was leveraged for the first time to supervise the
training of CMI-Net, which focused more on the difficult samples and samples of minority
classes during optimization. The results revealed that our CMI-Net with softmax CE loss
outperformed the existing methods, and the adoption of CB focal loss effectively improved
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the precision, recall, and F1-score while slightly decreasing the accuracy. In addition,
ablation studies demonstrated that applying the CMIM in the upper layer of CMI-Net
could obtain better performance since high-level features contained more general patterns.
CB focal loss also performed better than any class-level or sample-level reweighted losses
used alone. In short, the favorable classification performance indicated the effectiveness of
our proposed CMI-Net and CB focal loss.
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Abstract: Determining ingestive behaviors of dairy cows is critical to evaluate their productivity and
health status. The objectives of this research were to (1) develop the relationship between forage
species/heights and sound characteristics of three different ingestive behaviors (bites, chews, and
chew-bites); (2) comparatively evaluate three deep learning models and optimization strategies for
classifying the three behaviors; and (3) examine the ability of deep learning modeling for classifying
the three ingestive behaviors under various forage characteristics. The results show that the amplitude
and duration of the bite, chew, and chew-bite sounds were mostly larger for tall forages (tall fescue
and alfalfa) compared to their counterparts. The long short-term memory network using a filtered
dataset with balanced duration and imbalanced audio files offered better performance than its
counterparts. The best classification performance was over 0.93, and the best and poorest performance
difference was 0.4–0.5 under different forage species and heights. In conclusion, the deep learning
technique could classify the dairy cow ingestive behaviors but was unable to differentiate between
them under some forage characteristics using acoustic signals. Thus, while the developed tool is
useful to support precision dairy cow management, it requires further improvement.

Keywords: audio; dairy cow; deep learning; mastication; jaw movement; forage management;
precision livestock management

1. Introduction

Modern dairy farms continue to grow in herd size and technology adoption for
maintaining or improving the production and labor efficiencies needed to feed the growing
human population [1]. The U.S. is the largest dairy producer in the world with 9.39 million
milking cows on farms, producing 101.25 million metric tons of milk in 2020 [2]. Despite
only accounting for 6.3% of the total number of dairy farms, dairy farms containing over
500 cows have a 65.9% market share of the U.S. total milking cow inventory [3]. In these
intensive production systems, forage-fed dairy production comprises over 80% [4], in
which forage is a source of food and nutrients for dairy cows. Thus, sufficient provision
of forage is critical to meet cow daily nutrient requirements and sustain desired milk
production goals. On a short-time scale, forage intake of cows has been associated with
a sequence of three jaw movements or ingestive behaviors [5], namely bites, chews, and
chew-bites. A biting behavior is defined as the apprehension and severance of forage,
while a chewing behavior includes the crushing, grinding, and processing of ingested
grass inside the mouth [6]. A chewing-biting behavior results from the overlapping of
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chewing and biting events in the same jaw movement, in which the forage in the mouth is
chewed, and simultaneously, a new mouthful of forage is severed [7]. The frequency and
characteristics of the ingestive behaviors can change in correspondence with individual
animals and surrounding environments. Therefore, efficiently and precisely monitoring
and assessing the ingestive behaviors of dairy cows may provide useful insights into
resource management, nutrition supply, animal health, welfare, and production.

The efficiencies and accuracies of ingestive behavior monitoring can be influenced
by measurement methods. Early strategies for monitoring ingestive behavior relied on
observation by technicians [8], to obtain precise individual information on a few animals
but is costly and impractical for monitoring large herds [9]. Imaging methods combined
with image processing algorithms or deep learning techniques may provide contactless
and non-invasive measures and potentially automate the detection process [1]. However,
high-quality images/videos are prerequisites for this, and appropriately recording the
whole jaw movement process without occlusion within herds could be problematic. Wear-
able sensors including pressure sensors, accelerometers/pendulums, jaw switches, and
electromyography have been examined to detect jaw movements [7]. Most of the wearable
sensors focus on recognizing long-term activities (grazing or ruminating) or overall jaw
movements yet have difficulties differentiating bites, chews, and chew-bites. Andriaman-
droso et al. [7] compared and summarized three types of sensors to classify jaw movements.
They demonstrated that the accuracy of detecting jaw movement was 0.91–0.95 for nose-
band pressure sensors, 0.94–0.95 for microphones, and 0.65–0.90 for accelerometers, but
only microphone data supported differentiating bites, chews, and chew-bites and with a
relatively low accuracy of 0.61–0.95. The great potential of acoustic signals for ingestive
behavior monitoring lies in the fact that ingestive sounds can be clearly transmitted from
bones, skull cavities and soft tissues to recording devices typically attached to animal
foreheads. Additionally, the wearable sound collecting devices do not influence cattle’s
natural behaviors once the animals have acclimated to the devices [6].

Several automatic recognition systems based on acoustic signals have been developed
to detect and classify the three ingestive behaviors of dairy cows. Acoustic signals of dairy
cows suggest that the ingestive behavior characteristics (e.g., intake rate, bite mass, bite rate,
etc.) are associated with forage species (e.g., alfalfa and tall fescue) and grass heights (e.g.,
tall and short) [5,10], which provide critical suggestions on precision forage management
for dairy cows. However, relationships between forage species/heights and key features of
acoustic signals of the three ingestive behaviors remain unclear and should be explored
to supplement knowledge for precision dairy management, such as grass utilization es-
timation, grass preference evaluation, and other forage management. In previous work,
conventional machine learning models or knowledge-based algorithms have been exam-
ined [6,11–14], including random forest, support vector machine, multi-layer perceptron,
decision logic algorithm, and hidden Markov model. Despite great performance, these
methods require thorough designs of feature extractors to obtain appropriate features (e.g.,
duration, amplitude, spectrum, and power). Alternatively, deep learning techniques (e.g.,
convolutional neural network, CNN; and recurrent neural network, RNN) developed from
conventional machine learning are representation-learning methods and can automatically
discover features from raw data without extensive engineering knowledge on feature
extraction [15]. Thus, these techniques may have the potential to automatically classify
the ingestive behaviors of dairy cows based on acoustic signals, but the performance of
various architectures requires further investigation.

The objectives of this research were to (1) examine the effects of forage species and
forage height on key acoustic characteristics of bites, chews, and chew-bites for dairy
cows; (2) evaluate deep learning models and optimization strategies for automatic sound
recognition of these three ingestive behaviors; and (3) examine the efficacy of a deep
learning model for classifying the three behaviors for various forage characteristics.
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2. Materials and Methods
2.1. Dataset Description

A publicly available dataset of dairy cows was used in this research [16]. The dataset
contains data collected using three microphones (Nady 151 VR, Nady Systems, Oakland,
CA, USA) attached to the foreheads of three 4- to 6-year-old lactating Holstein cows weigh-
ing 608 ± 24.9 kg; and ingesting sounds (i.e., chews, bites, and chew-bites) from four types
of microswards were continuously recorded for five days. The microswards consisted of
sets of 4-L plastic pots with either alfalfa (Meicago sativa) or tall fescue (Lolium arundinaceum,
Schreb.) with two heights, tall (24.5 ± 3.8 cm) or short (11.6 ± 1.9 cm). An illustration
of the two forages used in the dataset is provided in Figure 1. The acoustic signals were
saved as WAV files and labeled for observed ingestion behavior by the technicians from
the same research team with a labeling agreement of over 99%. A total of 52 labeled WAV
files totaling 54 min 24 s were in the dataset, and the files were processed and segmented
based on ingestive behaviors, forage species, and forage height, resulting in 3038 segments
with a duration of 1647.37 s being used for model evaluation and experiments (Table 1).

Figure 1. Generic illustration of the two forages described in this manuscript—(a) Alfalfa
(Meicago sativa) and (b) tall fescue (Lolium arundinaceum, Schreb.) Sources: plantillustration.org.

Table 1. Number and duration of audio files used for model evaluation and experiments.

Forage Species Forage Height Number of Audio Files Duration of Audio Files Used (s)

Bites Chews Chew-Bites Bites Chews Chew-Bites

Alfalfa
Short 179 260 123 72.78 74.24 71.99
Tall 148 416 322 175.20 184.56 182.90

Tall fescue
Short 94 454 217 143.87 144.79 141.59
Tall 100 487 238 155.19 149.78 150.48

Total 521 1617 900 547.04 553.37 546.96

Sample illustrations of acoustic signals in frequency and time domains are presented in
Figure 2 for the three ingestive behaviors. The three behaviors showed apparent differences
in temporal and spatial signal patterns, and the acoustic signals of the behaviors were
mostly in low frequencies (<1 kHz) [14]. Additionally, based on the observation reports
from the technicians, each ingestive behavior event commonly lasted for less than 1 s [16].
The recorded acoustic signals are in 16 bit sample depth format taken at a 22.05 kHz
sampling rate. There were 216 = 65, 536 possible values for each recorded signal ranging
from −32,768 to 32,767. For Figure 2, amplitude values in the time domain were normalized
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using Equation (1), and the magnitudes in the frequency domain were normalized using
Equation (3).

Normalized amplitude = Recorded amplitude/216 (1)

FFT value = FFT.RFFT(Normalized amplitude) (2)

ANM = ABS[(FFT value)i]/
m

∑
i

ABS(FFT value)i (3)

where FFT is Fast Fourier Transform; RFFT is Real Fast Fourier Transform; the function
FFT.RFFT is to transform the discrete time domain signals into discrete frequency domain
components; ANM is absolute normalized magnitude; ABS is absolutization operation;
(FFT value)i is the ith FFT value normalized; and m is total number of FFT values converted
and its length is dynamically determined by an audio segment input. Normalized ampli-
tude and ANM range from 0 to 1. All operations in the above equations were vectorized to
improve calculation efficiency.

Figure 2. Sample illustrations of acoustic signals in time (top) and frequency (bottom) domains for the ingestive sounds.
Higher absolute normalized values indicate higher power of the acoustic signal.

2.2. Statstical Analysis for Evaluating Effects of Forage on Acoustic Features

Statistical analyses were conducted to investigate the relationships between forage
species and heights and acoustic features of the ingestive behaviors. The data used for
statistical analysis were all in the time domain. The normalized amplitude and duration of
the acoustic signals were extracted for each of the 3038 segments. The acoustic feature labels
provided with the dataset were processed by the research team [16]. A larger normalized
amplitude indicates that louder sounds were produced around cow mouths; and duration
is the length of a segment, with a longer duration indicating dairy cows spent more time
ingesting forage [16]. The effects of forage species, forage heights, and their interaction on
the amplitude and duration of the segments corresponding to the three ingestive behaviors
were analyzed with ANOVA using PROC MIXED in Statistical Analysis Software (version
9.3, SAS Institute Inc., Cary, NC, USA). Mean values were compared using Fisher’s least
significant difference with PDMIX800 [17], and a significant difference was considered
at p ≤ 0.05. The statistical model is the same for the three behaviors of bites, chews, and
chew-bites, which can be expressed as

Yijk = µ + αi + β j + (αβ)ij + εijk (4)
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where Yijk is the parameter examined (i.e., amplitude and duration); µ is the least square
mean of the parameter; αi is the forage species, i = al f al f a, tall f escue; β j is the forage
height, j = tall, short; (αβ)ij is the interaction effect of forage species and height; and εijk
is the random error.

2.3. Overall Deep Learning Algorithm Workflow

As shown in Figure 3, the overall workflow consisted of four steps. The first step was
to filter background noises (i.e., beeping sounds) from the input acoustic data in order
to reduce interference for classification. The second step was to remove the low power
signals, which can be considered as uninformative data. This may help to constrain model
attention to learn important features and improve inference efficiency and accuracy. The
first two steps were to clean data based on physical characteristics in the dataset. However,
unwanted signals and low-power signals still existed after the initial two steps of data
cleaning. The third step was to convert cleaned data into Mel-frequency cepstral coefficient
(MFCC) features which are used to highlight high-power data and transform the original
acoustic spectrogram into the human perception level [18]. The first three steps all involved
filtering, but only the first step was named “filtering” to differentiate the data cleaning
procedures. The final step was to classify the ingestive behaviors using the processed data
and deep learning models. Details of the four steps are elaborated in Sections 2.4–2.6. The
processing was conducted in a local machine with the processor of Intel(R) Core (TM)
i9-10900KF CPU @ 3.7GHz, installed memory (RAM) of 128 GB, graphics processing unit
(GPU) of NVIDIA GeForce RTX 3080, and Python-based computing environments.

Figure 3. Overall workflow of the algorithms. MFCC is Mel-frequency cepstral coefficient.

2.4. Data Cleaning
2.4.1. Noise Filtering

A routine beeping sound associated with the recording device was produced and
recorded along with the cow sounds and was randomly dispersed in the dataset, and
was removed to reduce interference with detection results (Figure 4). This beeping center-
frequency ranged from 3.6 to 4.5 kHz and could be effectively distinguished from cow
ingesting sounds. A bandstop filter with a stopband frequency range of 3.6–4.5 kHz was
used to exclude beeping sounds and maintain cow sounds.

2.4.2. Uninformative Data Removal

The noise-filtered dataset was then further processed to remove uninformative data.
To maximize the removal efficiency, data in 16 bits without normalization of time domain
were used (Figure 5). The input data were vectorized and averaged for every 1100 acoustic
samples. Several means were obtained at various steps of averaging but only the maxima
within groups were retained. If the maximal mean was smaller than a threshold, the
input data with the corresponding index were set FALSE and discarded once converted
to frequency domain. Based on the preliminary verification, a threshold value of 100 was
used as it can cover most uninformative data while reducing signal loss. Nothing needed
to be supplemented for the discarded data in time domain. Because in later step, the MFCC
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for behavior classification is in frequency domain, and a lack of a specific part in time
domain did not influence the workflow for the behavior classification.

Figure 4. Illustration of the algorithm and sample results for noise removal. White dotted rectangles
indicate period and frequency for device-related beeping before and after filtering.

Figure 5. Illustration of the algorithm for uninformative data removal (left) and a sample result with a signal envelope after
uninformative data removal (right). The amplitude values are in 16 bits and unitless.

2.5. Mel-Frequency Cepstral Coefficients Processing

The MFCC processing workflow involved several steps as summarized in Figure 6.
The short-time Fourier transform was first conducted to generate a short-time amplitude
spectrogram. Acoustic signals were assumed to be constant within short-time scales, and
a rolling window with a length of 23 ms (512 samples) and step of 10 ms (220 samples)
ran through each time-domain signal to the end of an audio file. Each windowed frame
was transformed to a frequency-domain signal using a Fast Fourier transform. To discon-
nect adjacent overlapping frames, the Discrete Fourier Transform was operated for each
frame, and a short-time amplitude spectrogram was produced accordingly. The amplitude
spectrogram was converted to dB-based mel-spectrogram for human-interpretable ranges,
and values in the y-axis were log-transformed for enhanced visualization, resulting in the
short-time power spectrogram. A total of 26 Mel filterbanks were generated to retain more
signals of lower frequency (which fits observed cow acoustic characteristics). The Mel
filterbanks were mapped to the power spectrogram for building Mel-scale spectrograms,
which were fed into deep learning models for behavior classification.
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Figure 6. Overall workflow for the Mel-frequency cepstral coefficient processing. FFT is Fast Fourier transform, and
DFT is Discrete Fourier Transform. Multiple mel-scale spectrograms were produced based on the short-time framing on
time-domain signals.

2.6. Architectures of Deep Learning Models

Three deep learning models, one-dimensional CNN (Conv1D), two-dimensional
CNN (Conv2D), and long short-term memory network (LSTM), were evaluated to classify
acoustic data (Figure 7) [19].

The core component of Conv1D was the time-distributed layer. When a Mel-scale
spectrogram was input into the model, the signal frequency at each time slot of the spec-
trogram was convolved in the time-distributed layer to extract high-level features. The
model included a sequence of a time distributed layer and then a max-pooling layer to
reduce acoustic signal dimensionality. Finally, dense and softmax layers were used to
flatten two-dimensional features and connect target classes (the three ingestive behaviors).
The model size and number of parameters were 706 kB and 348,770, respectively.

The Conv2D took the whole Mel-scale spectrogram as input and extracted major fea-
tures through two-dimensional convolution. The structure was similar to that of Conv1D,
in which a convolution layer followed by a max-pooling layer was repeatedly used to re-
duce dimensionality. The flatten, dense, and softmax layers were also used at the end of the
network. The model size and number of parameters were 2056 kB and 431,290, respectively.

The third network was mainly constructed with two serial LSTM units. In each LSTM
unit, a time distributed layer was to extract spectrogram features across time and skipped
the next-layer connection; then a bidirectional RNN layer was to obtain features both in
forward states (i.e., next frame of spectrogram) and backward states (i.e., previous frame of
spectrogram); and finally, features from the time distributed layer and bidirectional RNN
layer were concatenated to reinforce key components. After the two adjacent LSTM units,
several dense layers and one flatten/softmax layer were built. The model size and number
of parameters were 1862 kB and 392,050, respectively.
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Figure 7. Architectures of the three proposed deep learning models for ingestive behavior classifica-
tion. Conv1D represents one-dimensional convolutional neural network; Conv2D is two-dimensional
convolutional neural network; LSTM represents long short-term memory network; and STFT is
short-time Fourier transform.
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2.7. Optimization for Classifying the Ingestive Behaviors

The classification performance of the ingestive behaviors was optimized by comparing
the three models (Conv1D, Conv2D, and LSTM), two filtering strategies (original vs.
filtered), and two data organization methods (imbalanced vs. balanced). The three models
were trained with a dropout rate of 0.1, activation functions of relu/tanh, and training
epochs of 30. The dataset was randomized into training, validation, and testing sets with a
ratio of 0.7:0.1:0.2. Training and validation accuracy curves were calculated across epochs
to judge whether models were underfitted/overfitted in real time, and the hold-out dataset
was used for the final testing. The filtered dataset resulted from the noise filtering methods
mentioned in Section 2.4.1. Although duration of audio files in Table 1 was similar for the
three ingestive behaviors, the number of audio files was different (i.e., imbalanced), which
may lead to biased inference for the class (i.e., chew) with a large proportion of data. The
dataset was reshuffled and randomized, and the number of audio files was equalized to
521 for the three ingestive behaviors, resulting in a balanced dataset. After data reshuffling,
the duration of the audio files was 547.040 s for bites, 184.460 s for chews, and 328.180 s
for chew-bites.

2.8. Evaluation of Classification Performance under Various Forage Characteristics

After optimization, the optimal model, filtering strategy, and data organization
method were further used to evaluate the classification performance for ingestive be-
haviors under various forage characteristics. Two forage species (alfalfa vs. tall fescue)
and two forage heights (short vs. tall) were compared for the three ingestive behaviors.
The model was trained based on forage species and heights, using the similar training
hyperparameter configurations described in Section 2.7.

2.9. Evaluation Metrics

Three evaluation metrics were calculated using Equations (5)–(7), and higher values
of the metrics indicate better performance.

Precision =
True positive

True positive + False positive
(5)

Recall =
True positive

True positive + False negative
(6)

F1 score = 2 × Precision × Recall
Precision + Recall

(7)

where true positive is the number of cases in which models match manual labeling; false
positive is the number of cases in which models wrongly predict behavior presence; false
negative is the number of cases in which models wrongly predict behavior absence.

Based on the true positive, false positive, and false negative, confusion matrixes were
calculated to indicate class-level performance. Diagonal values in a matrix indicate correct
classification rates, and higher values suggest better class-level performance, whereas
off-diagonal entries are related to misclassification.

Processing time was reported by Python after all audio files were processed, and
processing speed was normalized by dividing the processing time by the total duration of
audio files tested.

3. Results
3.1. Ingestive Sound Characteristics under Various Forage Characteristics

Table 2 shows the mean characteristics (i.e., amplitude and duration) and results of
the statistical analysis for the bite, chew, and chew-bite behaviors with two forage species
and heights. Overall, the amplitude and duration of the acoustic data were 0.323–0.488
and 0.152–0.212 s for bites, 0.084–0.117 and 0.073–0.148 s for chews, and 0.343–0.549 and
0.230–0.301 s for chew-bites, respectively. Except for the amplitude of the chewing sound,
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the amplitude and duration of the three ingestive sounds were larger for tall fescue than for
alfalfa (p < 0.01). Between the two forage heights compared, tall forage resulted in larger
sound amplitude and duration (excluding amplitudes of bites and chew-bites) (p < 0.01).
Interaction effects of the forage species and heights on ingestive sounds were observed
for all parameters examined. Alfalfa, a tender forage, had a lower value for all behaviors
and for both amplitude and duration. The values were also greater for tall alfalfa than
for short alfalfa, but both tended to be less than for the tall fescue regardless of its height.
These results demonstrate that the three ingestive behaviors for the two forage species
and two forage heights can be differentiated by acoustic sound characteristics, namely the
amplitude and duration for specific ingestive behavior. The characteristics of the bite, chew,
and chew-bite sounds of dairy cows were distinct under various forage characteristics,
which could be indications of precision forage management, therefore, model ability to
classify the sounds of ingestive behaviors under different forage characteristics should be
further evaluated.

Table 2. Amplitude and duration of the bite, chew, and chew-bite sound under various forage conditions.

Factors
Bite Chew Chew-Bite

Amplitude Duration (s) Amplitude Duration (s) Amplitude Duration (s)

Forage species
Alfalfa 0.355b 0.176b 0.105 0.110b 0.389b 0.262b

Tall fescue 0.454a 0.208a 0.105 0.132a 0.520a 0.301a
SEM 0.012 0.004 0.002 0.003 0.008 0.004

Forage height
Tall 0.403 0.206a 0.117a 0.138a 0.464 0.297a

Short 0.406 0.178b 0.093b 0.105b 0.446 0.266b
SEM 0.012 0.005 0.002 0.003 0.009 0.004

Interaction
Alfalfa-Tall 0.387b 0.200a 0.127a 0.148a 0.435c 0.294a

Alfalfa-Short 0.323c 0.152b 0.084c 0.073c 0.343d 0.230b
Tall fescue-Tall 0.420b 0.212a 0.107b 0.128b 0.492b 0.301a

Tall fescue-Short 0.488a 0.205a 0.102b 0.137ab 0.549a 0.301a
SEM 0.017 0.006 0.003 0.005 0.012 0.005

p-Value
Forage species <0.01 <0.01 0.79 <0.01 <0.01 <0.01
Forage height 0.89 <0.01 <0.01 <0.01 0.16 <0.01

Forage species × Forage height <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

a,b,c,d Values within the same treatment groups with different letters aside indicate significant difference exists among the treatment
means (p ≤ 0.05) according to Fischer’s LSD test. SEM is pooled standard error of the least square means. Amplitude is the normalized
amplitude (unitless).

3.2. Performance for Classifying the Ingestive Behaviors

The performance for classifying the ingestive behaviors using three deep learning
models is summarized in Table 3 and Figure 8. The precision, recall, and F1 score ranged
from 0.615–0.941, 0.533–0.932, and 0.599–0.932 for classifying the ingestive behaviors. The
precision, recall, and F1 score of the LSTM were averagely 0.08 higher than those of Conv1D,
and 0.02 higher than those of Conv2D. Overall, the classification performance for the
original dataset was similar to that of the filtered dataset with a <0.01 difference on average,
while the average performance for the imbalanced dataset was 0.07 higher than that for the
balanced dataset. Based on the confusion matrixes (Figure 8), chewing behavior was more
accurately classified than biting and chewing-biting behaviors. The Conv1D, Conv2D, and
LSTM spent 70.048–74.419, 59.408–75.120, 85.366–88.035 ms for processing 1-s acoustic data.
The LSTM with the filtered and imbalanced dataset was selected for further development
because of better performance and comparably faster processing speed for classifying the
three ingestive behaviors.
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Figure 8. Confusion matrixes of the three deep learning models for classifying the ingestive behaviors in various datasets.
Conv1D represents one-dimensional convolutional neural network; Conv2D represents two-dimensional convolutional
neural network; and LSTM represents long short-term memory network. “Original” indicates the original dataset without
any filtering; “Filtered” indicates the dataset was filtered with the bandstop filter to remove background beeping sounds;
“imbalanced” indicates the dataset with unequal audio file sizes for the three ingestive behaviors; and “balanced” indicates
the dataset with equal audio file sizes for the three ingestive behaviors.

3.3. Performance for Classifying the Ingestive Behaviors under Various Forage Conditions

The classification performance to identify particular ingestive behaviors associated
with key forage characteristics was further investigated with the LSTM and filtered-
imbalanced dataset (Table 4 and Figure 9). The overall precision, recall, and F1 score were
0.1–0.2 lower than those in Section 3.2. On average, the LSTM had similar classification per-
formance for the two forage species (0.758 for alfalfa and 0.738 for tall fescue) and heights
(0.620 for short and 0.620 for tall). By contrast, the overall classification performance of
the ingestive behaviors for the forage species was approximately 0.1 higher than for the
two forage heights. As for forage species (Figure 9), classifying biting behavior under tall
fescue had the lowest accuracy (0.436) while classifying chewing under tall fescue had
the highest accuracy (0.905). As for forage heights, the highest (0.804) and lowest (0.418)
accuracies were observed when classifying chewing and biting for short forage.
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Table 4. Precision, recall, and F1 score for classifying the ingestive behaviors under various forage conditions.

Behavior Forage Species Precision Recall F1 Score Behavior Forage Height Precision Recall F1 Score

Bite
Alfalfa 0.742 0.697 0.719

Bite
Short 0.590 0.418 0.489

Tall fescue 0.630 0.436 0.515 Tall 0.500 0.480 0.490

Chew
Alfalfa 0.720 0.753 0.736

Chew
Short 0.594 0.603 0.599

Tall fescue 0.784 0.835 0.809 Tall 0.771 0.723 0.746

Chew-bite
Alfalfa 0.838 0.801 0.819

Chew-bite
Short 0.723 0.804 0.761

Tall fescue 0.851 0.905 0.877 Tall 0.746 0.779 0.762
Overall 0.793 0.797 0.795 Overall 0.694 0.698 0.696

Notes: The model performance was investigated with the long short-term memory model and the filtered and imbalanced dataset.

Figure 9. Confusion matrixes for classifying the ingestive behaviors under various forage characteristics. The model
performance was investigated with the long short-term memory model and the filtered and imbalanced dataset.

4. Discussion
4.1. Effects of Forage on Ingestive Sound Characteristics

Dairy cows can generate different sounds when ingesting grass materials (e.g., dif-
ferent grass/hay species, multiple heights, etc.) based on this research and previous
investigations [5]. Understanding such information, especially the relationship between
the forage characteristics and ingestive behaviors, is important to provide good cattle graz-
ing strategies with appropriate welfare status. The ingestive sounds can be further linked
with forage intake for providing supplemental information on precision management of
grass utilization and animal health status [5,20]. Variations in ingestive sound character-
istics may be attributed to grass/feed bulk density [21], dry matter content [20], surface
area [22], diurnal pattern of intake [10], and many other options e.g., relative sheer strength
of the forage. However, due to a lack of detailed information about forage characteristics,
individual information, and animal status in the open-access dataset, the actual reason for
the variations remains unclear and should be researched in the future.

4.2. Overall Classification Performance

The overall positive classification performance of this study and previous literature
is presented in Table 5. The performance of previous studies was mainly obtained with
machine learning models or knowledge-based models. One possible reason for the slightly
reduced performance of the current study was the inclusion of all performance cases in
the analysis (i.e., Conv1D, Conv2D, balanced dataset, etc.). With the optimal case (LSTM
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with filtered and imbalanced dataset), the classification performance (0.820–0.867 for bites,
0.895–0.935 for chews, and 0.824–0.861 for chew-bites) outperformed or was comparable to
previous studies. The successful classification could be attributed to obvious differences
in the acoustic signals among bites, chews, and chew-bites, robust data cleaning, and
appropriate design of model architectures. Current forage characteristics may have little in-
fluence on model performance improvement. Perhaps, more diverse forage characteristics
should be included in future research for optimizing model performance.

Table 5. Performance comparison for classifying bites, chews, and chew-bites of dairy cows among
different studies.

Positive Performance
Reference

Bites Chews Chew-Bites

0.728–0.895 0.638–0.941 0.533–0.861 Current study
0.620–0.900 0.880–0.990 0.430–0.940 [11]
0.760–0.900 0.880–0.990 0.610–0.940 [14]

– 0.670–0.990 – [23]
Notes: The positive performance includes accuracy, precision, recall, and F1 score. “–" indicates missing information.

4.3. Deep Learning Models

To the authors’ knowledge, this paper is the first to assess the application of deep
learning models for classifying dairy cow ingestive behavior sounds. During model devel-
opment, key features for effective classification were learned directly from the dataset, and
exhaustive labeling and dedicated manual design were not required for feature extractors
that are typically required in machine learning or knowledge-based algorithms [24], en-
abling scientists in other domains without extensive computer science expertise applying
deep learning techniques. Deep CNNs are good at handling acoustic signals because
of their efficient computation and powerful learning ability [15,25]. In this study, the
Conv1D and Conv2D did not perform as well as the LSTM, due to two possible reasons.
Firstly, more efficient and accurate connection schemes (e.g., residual connection [26],
inception connection [27], etc.) were not applied in the CNNs. Secondly, the LSTM can
learn backward and feedforward features from acoustic signals, which is critical for deal-
ing with sequential data [28]. Besides acceptable detection accuracy, decent processing
speed (85.366–88.035 ms for processing 1-s acoustic data) was also achieved by the LSTM.
Although powerful computing devices (with GPU of RTX 3080) are crucial components,
the extremely light weight (≤2 MB) of the network architectures was the primary factor for
the fast processing speed [29]. Because current networks can balance detection accuracy
and processing speed, they offer new opportunities for real-time monitoring of animal
conditions [30], behaviors [31], etc. for cattle industry.

4.4. Other Factors Influencing Classification Performance

Other possible influencing factors should be considered as well for future model
development of sound classification. Currently, deep learning experts are switching their
attention from model-centric to data-centric to improve detection performance [32]. Data
quality plays a crucial role in deep learning, where improving the model hits a bottleneck
now. For instance, particularly for acoustic datasets, data challenges of noise, balance, and
quantity must be addressed. Considerable data noise can downgrade model performance
to varying degrees. The dataset was recorded in a controlled environment with minimal
introduced noises, and therefore, there was no significant model performance improvement
after noise filtering. However, such a controlled environment with minimal background
noise is hard to achieve in on-farm or in-field conditions. Imbalanced datasets can result in
biased inference for classes with the larger proportions [33]. However, in this study the
balanced dataset with the same number of audio files but uneven durations had poorer
performance than the imbalanced dataset. Thus, the length of audio files may play a more
important role in classification improvement than audio file quantity when selected for
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balancing classes. Uneven duration of audio files also downgraded the performance for
different forages. Sufficient data is necessary to explore the optimal performance of deep
learning models [34]. The current dataset contained only 27.5 min of useful data, and such
audio length became smaller when the dataset was split based on ingestive behaviors and
forage characteristics. The relatively small ingestive sound dataset is typical of studies
with dairy cows (i.e., 13 min in the study of Chelotti et al. [11]) because of their quick
ingestive actions, challenging environment for data collection, laborious manual labeling,
etc. A large ingestive sound dataset is recommended to be built in the future to improve
model performance.

Forage characteristics also influenced the automatic classification of ingestive sounds.
The best and poorest performance difference for classifying the ingestive behaviors was
0.4–0.5 among different forage characteristics. Chelotti et al. [11] reported a 0.11–0.41 per-
formance difference and Milone et al. [14] demonstrated a 0.11–0.33 performance difference
for classifying the ingestive behaviors under similar forage characteristics used in this
study. Apart from uneven class balance and small datasets, similar acoustic features be-
tween the alfalfa and tall fescue or the two forage heights could decrease the classification
performance. This may indicate that current techniques may not be sufficient or gener-
alizable to differentiate the ingestive behaviors for various forage characteristics. When
sound classification for specific forage is needed, the model may need re-development
with custom datasets for robust classification.

5. Conclusions

Classification of the three ingestive behaviors (bites, chews, and chew-bites) of dairy
cows using deep learning models was conducted in this study. The results showed that
forage species (alfalfa vs. tall fescue) and heights (tall and short) significantly influenced
the amplitude and duration of the ingestive sounds of dairy cows. The LSTM using a
filtered dataset with balanced duration and imbalanced audio files had better performance
than its counterparts. Currently, it is difficult to differentiate the bites, chews, and chew-
bites between alfalfa and tall fescue under two different heights. In addition to training
the LSTM with more temporal data, sophisticated feature extraction techniques will be
considered in a future study.
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Abstract: Instance segmentation is an accurate and reliable method to segment adhesive pigs’ images,
and is critical for providing health and welfare information on individual pigs, such as body condition
score, live weight, and activity behaviors in group-housed pig environments. In this paper, a PigMS
R-CNN framework based on mask scoring R-CNN (MS R-CNN) is explored to segment adhesive
pig areas in group-pig images, to separate the identification and location of group-housed pigs. The
PigMS R-CNN consists of three processes. First, a residual network of 101-layers, combined with
the feature pyramid network (FPN), is used as a feature extraction network to obtain feature maps
for input images. Then, according to these feature maps, the region candidate network generates
the regions of interest (RoIs). Finally, for each RoI, we can obtain the location, classification, and
segmentation results of detected pigs through the regression and category, and mask three branches
from the PigMS R-CNN head network. To avoid target pigs being missed and error detections
in overlapping or stuck areas of group-housed pigs, the PigMS R-CNN framework uses soft non-
maximum suppression (soft-NMS) by replacing the traditional NMS to conduct post-processing
selected operation of pigs. The MS R-CNN framework with traditional NMS obtains results with
an F1 of 0.9228. By setting the soft-NMS threshold to 0.7 on PigMS R-CNN, detection of the target
pigs achieves an F1 of 0.9374. The work explores a new instance segmentation method for adhesive
group-housed pig images, which provides valuable exploration for vision-based, real-time automatic
pig monitoring and welfare evaluation.

Keywords: pig identification; mask scoring R-CNN; soft-NMS; group-housed pigs

1. Introduction

With the development of artificial intelligence and automation technology, utilizing
video cameras to monitor the health and welfare of pigs has become more important in
the modern pig industry. In group-housed environments, instance segmentation of pigs
includes detection, which automatically obtains the positions of all pigs, and segmenta-
tion, which distinguishes each pig in the images [1]. Many high-level and intelligent pig
farming applications, such as pig weight estimation [2], pig tracking [3], and behavior
recognition [4–7], require accurate detection and segmentation of pig objects in complex
backgrounds. The premise and foundation of pig behavior analysis involves the accurate
detection and segmentation of group pig images [8]. Therefore, detecting and segmenting
group-housed pigs can help improve the efficiency of instance segmentation, complete
high-level applications, and improve the welfare of pigs in pig farms.

Digital image processing combined with pattern recognition studies use automatic
detection and segmentation techniques to group-housed pigs [9]. Pig detection and seg-
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mentation methods include two categories based on non-deep learning and deep learning
algorithms. These non-deep learning approaches have more mature technologies and have
been widely applied in video surveillance of pigs [1,10–12]. Guo et al. [10] proposed a
pig’s foreground detection method based on the combination of a mixture of Gaussians
and threshold segmentation. This approach achieved an average pig object detection rate
with approximately 92% in complex scenes. Guo et al. [11] also proposed an effective
method for identifying individual group-housed pigs from a feeder and a drinker using a
multilevel threshold segmentation. The method achieved a 92.5% average detection rate
on test video data. An approach [5] was proposed to detect mounting events amongst
pigs for pig video files. The method used the Euclidean distances of the different parts of
pigs to automatically recognize a mounting event. This approach can obtain the results
of sensitivity, specificity, and accuracy, with 94.5%, 88.6%, and 92.7%, respectively, for
identifying mounting events. The algorithm [12] for the group-housed pig detection was
developed, and it used Gabor and LBP features for feature extraction and classified each
pig by SVM. A recognition rate with 91.86% was obtained by this algorithm. Li et al. [1]
combined appearance features and the template matching framework to detect each pig
under a group-housed environment. From these related studies, we found that these
non-deep learning methods have some disadvantages, and that feature extraction and
recognition of the pigs are separated. Meanwhile, feature extractions of these methods
obtain features with handed-design features and cannot automatically learn features from
the amount of data, which causes these methods to lack robustness.

The studies on pig detection and segmentation methods, based on deep learning
models, have increased in recent years, since Girshick et al. [13] proposed the R-CNN
method. These algorithms can automatically extract the pig’s target features in an image
and avoid the process of extracting the target features by artificial observation, so the
obtained model has strong universality. Faster R-CNN [14] was used to detect pig targets
and classify lactating sow postures, including standing, sitting, sternal recumbency, ventral
recumbency, and lateral recumbency, using depth images [15]. Yang et al. [16] first used
faster R-CNN to detect individual pigs and their heads. Then, a behavior identification
algorithm was implemented for feeding behavior recognition from a group-housed pen.
Finally, the results of a precision rate with 0.99 and recall rate with 0.8693 can be obtained
for feeding behavior recognition of pigs. Xue et al. [17] proposed an approach based on a
fully convolutional network (FCN) [18] and Otsu’s thresholding to segment the lactating
sow images. The approach achieved a 96.6% mean accuracy rate. He et al. [19] proposed
an end-to-end framework named mask R-CNN for object detection and segmentation. The
mask R-CNN achieved good results for the challenging instance segmentation dataset
COCO [13], and was used in cattle segmentation [20]. These recent research results show
that pig detection and segmentation approaches, based on deep learning models, were
effective and widely used under complex scene environments. However, when pigs are
under heavy overlap and adhesion, pig instance segmentation methods, based on non-
deep learning and deep learning algorithms, have some difficulty accurately detecting
individual pigs with a low miss rate.

Segmenting the adhesive pig images is important to the next extraction of pig herd
behavioral characteristic parameters. The adhesion segmentation methods mainly include
ellipse fitting, watershed transformation, and concave point analysis. In [4,9], the least
square method was used to conduct ellipse fitting for pigs, and then it separated the
adhered pig bodies according to the length of the major and minor axis, and the position
of the center point, but this method did not evaluate the performance of the ellipse fitting
method when several pigs adhered. Xiong et al. [21] divided piglet adhesion into four
cases, as follows: no adhesion, slight, mild, and severe adhesion. Firstly, the contour line
of the adhered part was extracted. Then, the contour line, according to the concave point,
was segmented. The ellipse fitting for the contour lines was carried out after segmentation.
Finally, five ellipse-screening rules were developed. The ellipses, which did not comply
with the rules, were integrated. The recognition accuracy of this method for pigs was
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over 86%. A Kinect-based segmentation of touching-pigs was used for segmentation of
touching-pigs, by applying YOLO and CPs [8], and this method was effective at separating
touching-pigs with an accuracy of 91.96%. Mask scoring R-CNN (MS R-CNN) [22] was
explored for instance segmentation of standing posture images of group-housed pigs, from
the top view and front view pig video sequences, which achieved a best F1 score with
0.9405 on pig test datasets in our previous work [23]. However, severe adhesion was not
analyzed, but is further researched in these studies.

Although these works have been performed effectively on pig detection and segmen-
tation, most approaches are designed under fewer pigs/one pig environments or top view
images; it is difficult for these algorithms to detect each pig in a group-housed condition
when the pigs are closely grouped. Based on the previous work of our team [23], we pro-
pose a PigMS R-CNN model, which can efficiently obtain the instance segmentation mask
for each pig, while simultaneously decrease the faulty detection results for group-housed
pigs. To reduce the missed rate of pigs in group-housed environments, soft-NMS [24] was
used in the PigMS R-CNN model. The algorithm gains improvements in precision mea-
sured over multiple overlap thresholds, which are especially suitable for group-housed pig
detection. The PigMS R-CNN model, combining the MS R-CNN and soft-NMS network, is
simple to implement and does not need extra resources. We can easily use the improved
approach for a pig instance segmentation application.

2. Materials and Methods
2.1. Data Acquisition

The experiment’s dataset was collected in “Lejiazhuang Pig Farm” of live pigs in
Foshan city, Guangdong Province, China. The settings of the cameras of the experimental
pigsty are shown in Figure 1. In Figure 1a, the pigsty was 3 m high, 7 m long, and 5 m
wide. Figure 1b,c present the images, in video surveillance, of top view and front view. A
camera was placed in the middle of the pigsty, 2 m above the ground. Another camera
was placed in front of the pigsty, 1.35 m above the ground. We used the FL3-U3-88S2C-C
camera, which obtained images at 1920 × 1080 pixels.
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To generate sufficient images in the experiments, we focused on 5 pigsties, where the
number of pigs included is 3–20; video data were randomly obtained during a course of
10 days, each day containing over 7 h of video, from 9 a.m. to 4 p.m. The video dataset
was saved in AVI format and the frame frequency of the video was 25 fps. We chose
420 images as the dataset. Among 420 images, 290 images that included 2838 pigs were
used for the training set, and 130 images that included 1147 pigs were used for the test set.
We marked pigs manually with VIA software for these images. The typical augmentation
methods, including left-right flipping, rotation, and re-scaling were automatically used
to enlarge the training dataset. With no external light used, all images showed uneven
illumination. Therefore, the dataset reflected the common characteristics of pig moni-
toring, and it can objectively estimate a pig’s instance segmentation performance in a
group-housed condition.

185



Sensors 2021, 21, 3251

2.2. Data Labeling

To evaluate the proposed algorithm, the frames with the standing status of pigs in
videos were labeled to illustrate the detection and segmentation results of the algorithm.
VIA (http://www.robots.ox.ac.uk/~vgg/software/via/ accessed on 7 May 2021) is an
open-source image annotation tool that can be used online or offline. VIA software can
label rectangles, circles, ellipses, polygons, points, and lines, set area properties, and save
the annotation information as CSV or JSON file formats.

In this study, we used it to label the contour of the group-house pigs with the shape of
the polygon area, extracted the annotation information of the pig’s contour, and saved as a
JSON file format. These JSON files included image name, image size, label name, anchor
coordinate information of each pig object in each image, and area attribute name. Labeling
the 420 images with each, including the 3–20 pig objects, cost about 180 person-hours. In
the 420 images, the total number of pigs was 3985, including some incomplete pigs (with
over half of their bodies visible) in the image borders.

3. The Proposed Approach
3.1. The PigMS R-CNN Model

The PigMS R-CNN model (as shown in Figure 2) based on MS R-CNN [22] included
three stages. In the first stage, a residual network of 101 (or 50) layers, combining the
feature pyramid network (FPN), was used as a feature extraction network to obtain feature
maps for input images. FPN can obtain different levels of the feature maps according
to three scales. In the second stage, the region proposal network (RPN) extracted the
regions of interest (RoIs), according to the feature maps. In the third stage, for each RoI, we
can get the location, classification, and segmentation results of detected pig targets in the
group-housed scenes through the category, and regression, and mask three branches in
the PigMS R-CNN head network. In the segmentation branch, the Maskiou head in FCN
was used to regress between the predicted mask and the true ground mask to improve the
segmentation accuracy.
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Figure 2. Flowchart of the detection and segmentation algorithm based on PigMS R-CNN.

In addition, the third stage extracted features using RoIAlign from each candidate RoI,
and performed BB regression, classification with softmax, and a binary mask prediction
for each potentially detected pig by FCN. During the process of BB regression, NMS was
applied to these potentially detected pigs to remove highly overlapping BB and obtain the
ultimate locations of the pigs. The steps are detailed in the following sections.

3.2. The Feature Extraction

The feature extraction uses backbone architecture to extract different levels of features
over an entire image. The backbone architecture includes two parts, named ResNet [25] and
FPN [26]. The deep ResNets are easy to optimize for training and obtain high accuracy from
greatly increased depth compared with other networks. ResNets with 50-layer, 101-layer,
and 152-layer depths are the most commonly used residual structures on detection and
segmentation. In this paper, with comprehensive consideration of accuracy and operation
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time, the ResNet-101 network of a depth of 101 layers was used in the implementation of
the mask R-CNN, and primarily extracted features from the three convolutional layers of
the third, fourth, and fifth stages, as shown in Figure 3, left, which fed to the next multiscale
backbone architecture.
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Figure 3. The architecture of feature pyramid network.

Another part of effective backbone architecture was FPN, proposed by Tsung Yi
Lin [26]. FPN can construct a multi-output feature pyramid from a single-scale input by
using top-down architecture and lateral connections, as shown in Figure 3, middle and
right. The detailed process of Figure 3 is described in the following.

The conv1, conv2, conv3, conv4, and conv5 outputs are obtained from the last residual
blocks in the ResNet101 network. First, the top-layer feature map (P5) can be achieved by
performing a 1 × 1 convolutional layer on conv5. Then, the upsampled feature map was
generated by a factor of 2 on P5, and the feature map P4 (Figure 3, right lateral connections)
can be obtained by element-wise addition operation for the upsampled feature map, and
the result, which is obtained by performing a 1 × 1 convolutional operation on C4. Finally,
according to {C3, C4, C5}, this final set of feature maps is {P3, P4, P5}.

The backbone architecture of PigMS R-CNN in this study uses ResNe-101+FPN. The
feature maps of backbone architecture for a housed-pig image are shown in Figure 4.
Figure 4a shows source image, Figure 4b–d extract low-level features, including texture
and edge contour information. Figure 4e represents high-level abstract features.
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Figure 4. The feature map of backbone architecture based on ResNe101+FPN. (a) shows source image, (b–d) extract
low-level features, and (e) represents high-level abstract features.

3.3. RoIs Generation Based on RPN

The candidate RoIs will be produced by RPN using the feature maps from the first
stage. The convolution layers of a pre-trained network are followed by a 3× 3 convolutional
layer in the RPN. The function of this operation is to map a large spatial window or
receptive field in the input image to a low-dimensional feature vector at a window location.
Then two 1 × 1 convolutional layers are used for classification and regression operations
of all spatial windows [14].
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In the RPN, the algorithm introduces anchors to manage different scales and aspect
ratios of objects. An anchor is located at each sliding location of the convolutional maps, and
lies at the center of each spatial window, which is associated with a scale and an aspect ratio.
Following the default setting of [26], five scales (322, 642, 1282, 2562, and 5122 pixels) and
three aspect ratios (1:1, 1:2, and 2:1) are used, and k = 15 anchors at each location are created
and used for each sliding window. These anchors go through a classification layer (cls) and
a regression layer (reg). The RPN then completes the following two tasks: (1) determining
whether the anchors are targets or non-targets (2k); (2) performing coordinate correction on
the target anchors (4k). In the classification layer branch, two scores (target and non-target)
are generated for each anchor; in the regression layer branch, the parameterizations of the
four coordinates are corrected, and shown as Equation (1). For each target anchor:

mx = (x− xa)/wa, my = (y− ya)/ha, mw = log(w/wa), mh = log(h/ha),
m∗x = (x∗ − xa)/wa, m∗y = (y∗ − ya)/ha, m∗w = log(w∗/wa), m∗

h
= log(h∗/ha),

(1)

where x, y denote the two coordinates of the box center, w, h is the width and height of the
box. The x, xa, and x∗ variables denote the predicted box, anchor box, and ground-truth
box respectively (likewise for y, w, h). Finally, after sorting scores of the target anchors in
descending order, the first n anchors are selected for the next stage of detection.

The loss function of training RPN is as follows:

L({pi}, {ti})=
1

Ncls
Σ
i
Lcls(pi, p∗i )+λ

1
Nreg

Σ
i

p∗i Lreg(ti, t∗i ) (2)

where i is the index of an anchor and pi is the predicted probability of anchor i, which
is taken as a positive object. If the anchor is positive sample, the ground-truth label p∗i
is 1, otherwise it is 0. The mi vector includes the 4 parameterized coordinates of the
predicted bounding box, and m∗i is a vector of the ground-truth box associated with a
positive anchor. Lcls is the classification loss to express log loss for two classes (object vs.
not object). Lreg(mi, m∗i ) = R(mi − m∗i ) is the regression loss, where R is the robust loss
function (smooth L1). The term p∗i Lreg denotes the regression loss which is activated only
for positive anchors (p∗i = 1) and is disabled otherwise (p∗i = 0). The outputs of the cls and
reg layers consist of {pi} and {mi}, respectively. The two terms are normalized with Ncls,
Nreg, and a balancing weight λ.

Some RPN proposals highly overlap with each other. To reduce redundancy, NMS,
on the proposal regions based on their cls scores, is adopted. The IoU threshold for NMS
is set 0.7, which leaves us about 2k proposal regions per image. NMS does not harm the
ultimate detection accuracy, but substantially reduces the number of proposals. After NMS,
the top-N ranked proposal regions are used for further detection and segmentation.

The process of bounding box generation based on RPN is shown in Figure 5. Figure 5a
shows the source image, Figure 5b shows the results that the anchors are targets or non-
targets; Figure 5c shows the results of the coordinate corrections on the target anchors.
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3.4. The Three Branches of Detection and Segmentation

The MS R-CNN outputs the three branches, including performing the proposal clas-
sification, regression, and a binary mask for each RoI in parallel. The first two branch
structures use two fully connected (FC) layers for the region of interest (RoI) performing
classification prediction and BB regression. The last branch is instance segmentation, which
uses a fully convolutional network (FCN) [18] for predicting a mask from each BB.

Formally, during training, a multi-task loss (Ltotal) on each BB is defined:

Ltotal = Lbox + Lcls + Lmask (3)

where Lbox and Lcls are the bounding-box and classification loss, Lmask was defined as the
average binary cross-entropy loss. For a BB associated with ground-truth class k, Lmask is
only defined on the k-th mask in MS R-CNN model, Lbox, Lcls and Lmask are identical as
those defined in [23].

The output of the three branches is shown in Figure 6. Figure 6a shows the BB’s
positions can be adjusted using a regression network. Figure 6b shows the BBs that are
assigned a score for each class label using a classification network after NMS. Figure 6c
shows the detection and segmentation final results of group-housed pigs.
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3.5. Improving Non-Maximum Suppression

For detection tasks, NMS is a necessary component after BB regression, which is a
post-processing algorithm for redundancy removal of detection results. It is a handcrafted
algorithm, to greedily select high-scoring detections, and remove their overlapping, low
confidence neighbors. The NMS algorithm first sorts the proposal boxes according to the
classification scores from high to low, then the detection box m with the highest score(sm)
is selected, and the other boxes with obvious overlap (Intersection over Union (IoU) >
threshold used Nt) are suppressed. This process is recursive until all proposal boxes are
traversed. Traditional NMS processing methods can be expressed by the following fraction
resetting function:

si =
{

si ,iou(bm ,bi)<Nt
0,iou(bm ,bi)>=Nt

(4)

where bm, bi, si and Nt denote the detection box with the maximum score, the i-th of
detection box, the score of the i-th detection box, and threshold value. NMS sets a hard
threshold Nt while deciding what should be kept or removed from the neighborhood of bm.

NMS performs well in generic object detection, adopting different thresholds; however,
due to local maximum suppression, there is missing detection for the easily overlapped
target objects. In the group-housed pig-breeding environment, there are serious adhesions
and high overlaps in group pigs. To improve the detection performance of group-housed
pigs, an improved NMS algorithm named soft-NMS [24] is used.

The soft-NMS algorithm process is as follows in Figure 7:
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where f (IoU(bm, bi)) is the overlap based weighting function with a Gaussian penalty
function in soft-NMS as follows,

f (IoU(bm, bi)) = e−
IoU(bm ,bi)

2

σ , ∀bi /∈ D (5)

This rule is applied in the algorithm for each iteration and scores of all remaining
detection boxes are updated. In the soft-NMS algorithm, the computational complexity
of each step is O(N), where N is the number of detection boxes. Moreover, the algorithm
updates the scores for all detection boxes that overlap with bm. Therefore, for N detection
boxes, the computational complexity of soft-NMS is O(N2), and it is the same as traditional
NMS. Soft-NMS hence does not require any additional training and uses the same running
time with NMS’s detectors.

3.6. Experiment Detail

The experimental environment is described below as follows:
PC: CPU, Intel® Xeon(R) CPU E5-2620 v4 @ 2.10 GHz × 8; Memory, 64 GB; Graphics,

Tesla K40c.
OS: Ubuntu 16.04, CUDA10.1, Python3, Pytorch1.0, PyCharm, Jupyter Notebook.
The procedure of the PigMS R-CNN model mainly involves three steps: image data

annotation, model training, and verification, as shown in Figure 8. Firstly, the training
set and test set are labeled via the annotation tool, and the corresponding annotation files
with JSON format are obtained. The train images, test images, and the corresponding
annotation JSON files form the pig object dataset for training. Then, the pig.py of the
training file adopts the PigMS R-CNN algorithm to set up an instance segmentation model
using python3.6 on the pig object dataset, which includes 290 training and 130 test images.
Finally, the validated pig file inspect_pig_model.ipynb written in jupyter notebook software
is used to test set and get the pig object detection and segmentation result by calling the
built model file of pig.py.
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Figure 8. Establishment process of the pig instance segmentation model based on the PigMS R-CNN. 
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Figure 8. Establishment process of the pig instance segmentation model based on the PigMS R-CNN.

Back-propagation and stochastic gradient descent (SGD) are used to train the PigMS
R-CNN model. For RPN networks, each mini batch comes from a single image con-
taining many positive and negative example anchors. The input image is resized to
800 pixels on its shorter side. Synchronized SGD is used to train the model on eight
GPUs. Each mini batch includes two images per GPU and 512 anchors in each image
with a weight decay of 0.001 and a momentum of 0.9. The learning rate is 0.01 for the
first 6000 mini-batches and 0.001 for the next 1000, and 0.0001 for the next 1000. NMS
is performed over the proposals with an IoU threshold of 0.7. Nt and σ in soft-NMS
are set to 0.7 and 0.5, respectively. The pre-trained model of ResNet-101 was available
at https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/MSRA/R-101.pkl (ac-
cessed on 7 May 2021). The experimental results, models, and images are obtained by the
Baidu network disk’s address (https://pan.baidu.com/s/1_BOpAJ8trdjhBZO1fe4hWA,
accessed on 23 April 2021), where the extracted code is a5h6. The precision–recall curve
with the corresponding F1 score is used as the evaluation metric for pig detection [23]. The
F1 score is computed as:

F1 =
2 ∗ Precision ∗ Recall

Precison + Recall
(6)

4. Results and Discussion
4.1. Experimental Results of the MS R-CNN Model

We verified the reliability and effectiveness of the algorithm using the test dataset,
which includes 130 images with 1920 × 1080 pixels. The precision–recall curve (PRC) of
MS R-CNN is shown in Figure 9. The black dotted line expresses the points where recall
and precision are identical. The more convex the purple line PRC is, the better the result
is. The results of the red line PRC show that this method is suitable for pig detection and
segmentation in a group-housed pig environment.
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The pig segmentation recall, and precision, are also shown in Table 1. Among
130 images, 50 images were taken from the front view images, including 352 pig objects.
Moreover, 80 images were taken from the top view images, including 795 pig objects.
Among a total of 1147 test pig objects, there were 1159 pigs detected, and 1064 pigs were
correctly detected. The MS R-CNN model achieved a recall(R) rate of 92.76%, a precision
(P) rate of 91.80%, and an F1 value of 0.9228. In the front view, 296 pig objects were correctly
detected among a total of 369 pigs, the recall rate was 84.09%, and the precision rate was
80.22%. In the top view, 768 pig objects were correctly detected among a total of 790 pigs,
the recall rate was 96.60%, and the precision rate was 97.22%. The average detection time
for each image was 0.5233 s—favorable for the actual production requirements.

Table 1. The detection results of 130 images based on MS R-CNN.

Image Type The Total of
Pig Objects

The Detected
Number

The Correct
Detected
Number

Recall (%) Precision (%) F1

Front view 352 369 296 84.09 80.22 0.8211
Top view 795 790 768 96.60 97.22 0.9691

Total number 1147 1159 1064 92.76 91.80 0.9228

As can be seen from Table 1, the result of the top view are significantly better than that
of the front view. There are two main reasons: (1) by comparison with the top view, the
overlap and adhesion between pigs in the front view were more serious. At the same time,
the morphology and features were more complicated. (2) The number of verified images in
the front view was close to that from top view. However, due to the limited range from
the front view and serious occlusion of pigs, the number of pig objects in the front view
was far lower than that in top view, accounting for only 30.69% of the total number of pig
objects. Due to the influence of these two factors, the detection results of pig objects in the
front view was lower than that of pig objects from the top view.

Figure 10 shows some experimental results of the detection and segmentation of
pig objects. The dotted lines in the figure indicate all pig objects detected; the yellow
solid line is marked as a pig object detected by mistake, and the red solid line is marked
as a pig object detected by omission. The MS R-CNN model achieved good detection
and segmentation accuracy for pig objects. However, it had some defects, mainly due to
imprecise segmentation of the mask, incomplete detection of pig ears, legs, and tails, and a
few cases of false or missed detection.

The results of the top and front view image detections are analyzed below. For the
front view images, the main reasons for failure in the detection results are as follows: (1) the
front view images included small pig objects, which caused false and missed detection.
(2) The front view images included an overlap of pig bodies and disturbance of the light
shadow, resulting in missed pigs (as shown with a solid line red box in Figure 10f,h, and
false detection of the pig objects (as shown with the solid line yellow box in Figure 10f,h.
For the top view images, the main reason for failure in detection and segmentation results
was the serious adhesion of the pigs. If the distance between pigs in group-housed pigs
is relatively close, it is prone to missed pig objects (as shown in the solid line red box in
Figure 10d).
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Figure 10. Detection and instance segmentation of the pig objects. Results include a small number of
pigs (a), a medium number of pigs (b,c), a large number of pigs (d) in the top view images. Results
include a small number of pigs (e), a medium number of pigs (f,g), a large number of pigs (h) in the
front view images.

In addition, for the missed detection caused by adhesion, the results of the top view
images are more serious than that of the front view images. The missed detection in two
pig objects caused from top view images can be divided into two cases, where the two pigs
were mistaken as a pig object (solid line orange box marked in Figure 11); one pig was
correctly detected while another pig was missed, as shown with the solid line blue box
marked in Figure 11.
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4.2. The Instance Segmentation and Detection Result of the PigMS R-CNN

To improve the missed and wrong detection of target pigs caused by overlapping,
adhesion, and other complex environmental issues in a crowded room, the paper used the
soft-NMS method instead of the traditional NMS in the MS R-CNN model, without adding
extra times. The same 130 images of the test were used for validation, using soft-NMS with
a threshold value of 0.5 and a traditional NMS algorithm.

The results of PigMS R-CNN are illustrated in Table 2. Among a total of 1147 test pig
objects, 1138 pigs were detected, and 1071 pigs were correctly detected. The PigMS R-CNN
model achieved a recall rate of 93.37% and a precision rate of 94.11%, which is better than
the MS R-CNN model (Table 2, columns 6 and 7). The PigMS R-CNN based on soft-NMS
leads to less missed and incorrectly detected objects.

Table 2. Detection and instance segmentation result of PigMS R-CNN.

Image Type The Total of
Pig Objects

The Detected
Number

The Correct
Detected
Number

Recall (%) Precision (%) F1

Front view 352 350 294 83.52 84.00 0.8376
Top view 395 788 777 97.74 98.60 0.9817

Total number 1147 1138 1071 93.37 94.11 0.9374

4.3. Discussion

A PigMS R-CNN method is developed for group-housed pig detection and instance
segmentation under the natural scene. Previous studies demonstrated that the MS R-CNN
method can achieve good detection accuracies with a recall rate of 0.9276 and a precision
rate of 0.918. However, the method would not work well to separate the touching-pigs
under the overlapping backgrounds of group-housed pigs. To solve the problems, the
improved approach was developed by soft-NMS.

First, the comparison of the touching-pigs detection between the MS R-CNN method
with NMS and soft-NMS is discussed. Figure 12 presents the comparisons of some examples
of detection results between NMS and soft-NMS, with the same threshold of 0.5. The
different solid lines in the figure indicate all pig objects detected, the red dotted line is
marked as the pig object, detected successfully with the red arrows, and the blue arrows
point to the missed detection.
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Figure 12. The comparison of detection between NMS and soft-NMS. The left column of (a–d) shows that the MS R-CNN
method with NMS produces serious missed detection results under dense touching-pig conditions. The right column of
(a–d) shows that the PigMS R-CNN approach with the soft-NMS algorithm overcomes the influence of the connected pigs
by a Gaussian penalty function.

The MS R-CNN method with NMS and soft-NMS can successfully detect the group-
housed pig under a “non-close together: environment. However, the MS R-CNN method
with NMS (e.g., Figure 12 left column) produces serious missed detection results under
dense touching-pig conditions. For example, the pigs in Figure 12a,c,d are too close together
to distinguish individual pigs. The reason is that NMS selects the BB with the max score
and sets the scores for neighboring detections to zero. Therefore, if an object actually
existed in the overlap threshold, it would be missed, and this would reduce the recall rate.
By contrast, the soft-NMS algorithm can overcome the influence of the connected pigs by
decaying the scores of neighboring detection boxes, which have an overlap by a Gaussian
penalty function, and obtain reliable pig detection results (e.g., Figure 12 right column).
The soft-NMS method proved significantly effective at improving the missed detection of
touching-pigs.

Table 3 shows the comparison of results between MS R-CNN and PigMS R-CNN
when the IoU thresholds were set at different values (0, 0.3, 0.5, 0.8, and 0.9). It is observed
that the PigMS R-CNN model is stable with an average recall of 94% and average precision
of 93%. By contrast, the MS R-CNN model achieves an average recall of 93.5% and average
precision of 90%. In particular, when the IoU threshold value is set to zero, the precision of
MS R-CNN is 86.33%, which is lowest in other IoU threshold value situations, and that of
the PigMS R-CNN, is 92.77%. Therefore, PigMS R-CNN can obtain better results than MS
R-CNN in precision when the two methods achieve almost equal the recall rates.

Table 3. The comparison of results of different IoU thresholds between MS R-CNN and PigMS R-CNN.

Method
0 0.3 0.5 0.8

R P F1 R P F1 R P F1 R P F1

MS
R-CNN 94.68% 86.33% 0.9031 93.55% 91.59% 0.9256 93.27% 90.19% 0.9170 92.68% 92.6% 0.9264

PigMS
R-CNN 94.85% 92.77% 0.9380 93.85% 92.99% 0.9342 93.95% 92.69% 0.9332 93.33% 93.80% 0.9356

Next, some detection errors of the soft-NMS algorithm are analyzed and given in
Figure 13. In our experiments, most of the false detections occur under two situations.
First, false detections can occur when pigs from top view show incomplete appearances
and severe shape deformation when compared with the pigs in the training images, such
as the pigs show part appearances, as shown with the green box in Figure 13a. Second, for
pigs from the front view, due to the heavy overlapping, false detections in the soft-NMS
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algorithm can occur, as shown in Figure 13b. Therefore, inferior environments will reduce
the detection performance for front view images. To overcome these limitations, more
advanced detection and segmentation techniques can be used to improve image quality.
A pig key-point detection algorithm based on human posture [27,28] can be studied and
utilized to enhance the reliability of the detection results.
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Figure 13. Example of detection failures of the proposed algorithm. (a) shows that false detections can occur when pigs
from top view show incomplete appearances and severe shape deformation. For pigs from the front view, (b) shows that
due to the heavy overlapping, false detections in the soft-NMS algorithm can occur.

5. Conclusions and Future Work

The group-housed instance segmentation of pigs in a natural environment is a sig-
nificant operation to efficiently manage pig farms. However, using a traditional method,
group-housed pigs cannot be separated accurately in real-time for heavily overlapped pigs
in complex backgrounds.

In this paper, an improved MS R-CNN framework with soft-NMS was proposed to
obtain the locations and segmentation of each pig in group-housed pig images. To prevent
the missed and wrong detection of target pigs, caused by overlapping, adhesion, and
other complex environmental issues in a crowded room, this paper employs the soft-NMS
method instead of the traditional NMS in the MS R-CNN model, without adding extra
times. All boxes, which have an overlap greater than a threshold Nt in traditional NMS,
are given a zero score. Compared with NMS, soft-NMS rescores neighboring boxes instead
of suppressing them altogether, which obtains improvement in precision and recall values.

Based on the pig detection and segmentation results for 130 images, with 1147 for
top view and front view, the basic MS R-CNN framework obtained results with an F1
of 0.9228, while the target pigs using PigMS R-CNN had an F1 of 0.9374 in complex
scenes. This algorithm can achieve good performance in terms of F1 without adding
extra time. Our work on pig instance segmentation supports the foundation for pig
behavior monitoring, posture recognition, and other related applications, such as body size
and weight measurement estimations of pigs. Furthermore, it provides a deep learning
framework for detecting and segmenting animals using overhead and front view cameras
in a natural environment. In the future, we will develop pig behavior applications, such as
pig monitoring of drinking water and fighting behavior under group-housed pigs’ scenes.
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Abstract: Pig weight and body size are important indicators for producers. Due to the increasing
scale of pig farms, it is increasingly difficult for farmers to quickly and automatically obtain pig
weight and body size. Due to this problem, we focused on a multiple output regression convolutional
neural network (CNN) to estimate pig weight and body size. DenseNet201, ResNet152 V2, Xception
and MobileNet V2 were modified into multiple output regression CNNs and trained on modeling
data. By comparing the estimated performance of each model on test data, modified Xception was
selected as the optimal estimation model. Based on pig height, body shape, and contour, the mean
absolute error (MAE) of the model to estimate body weight (BW), shoulder width (SW), shoulder
height (SH), hip width (HW), hip width (HH), and body length (BL) were 1.16 kg, 0.33 cm, 1.23 cm,
0.38 cm, 0.66 cm, and 0.75 cm, respectively. The coefficient of determination (R2) value between the
estimated and measured results was in the range of 0.9879–0.9973. Combined with the LabVIEW
software development platform, this method can estimate pig weight and body size accurately,
quickly, and automatically. This work contributes to the automatic management of pig farms.

Keywords: pig weight; body size; estimation; deep learning; convolutional neural network

1. Introduction

Animal husbandry is shifting toward automation, intelligence, and precision [1,2]. Pig
weight and body size, two of the most important indicators for pig producers, provide
information about feed conversion ratio (FCR), growth rate, uniformity, and health condi-
tions [3,4]. Weight and body size also provide important references to regulate nutrition
and the environment [5,6]. Precisely and automatically weighing pigs and measuring their
body size can improve the feeding, breeding management, and selling, as well as prevent-
ing raisers from incurring unnecessary costs, humanpower, and materials, consequently
improving the economic benefits [7,8].

Pig weight and body size are traditionally measured using ground scales and mea-
suring sticks. This process causes stress to the animals and requires tremendous effort on
behalf of the farm workers [9]. With the development of machine vision technology over
the last 30 years, several researchers have searched for methods to estimate pig weight and
body size using images to avoid direct measurements [10–13]. The estimation methods can
be divided into four categories:

(i) Projection method. Project a slide with grids onto the back of a pig, then calculate
the pig shoulder height and area according to the principle of stereo projection to
estimate pig weight [14]. This method is difficult to automate.

(ii) Two-dimensional image method. Extract the pig body size, back area size, and other
parameters from 2D images of pig backs, and use the model of the relationship
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between the pig weight and these parameters to achieve weight estimation. The
average error of the weight estimation using this method is 3.38–5.3% [15–18].

(iii) Three-dimensional image method. After acquiring 3D images of pig backs using
a depth camera, extract the pig back height, body size, back area size, and other
parameters from the 3D image and use these parameters to estimate the pig weight.
The 2D image mainly shows color, texture and contour information of the pig back,
but the color and texture information are not related to the pig weight and body
size. The 3D image shows outline and height information on the pig back; these
parameters are highly correlated with the body size and pig weight. In addition, it
was impossible to estimate the pig height using the 2D image. Therefore, this method
is more promising than the 2D image method. The mean absolute error (MAE) of
estimating pig body size for this method is 1.44–5.81% [9,19–25].

(iv) Ellipse fitting method. The ellipse fitting method is used to fit the area of a pig back
image and estimate the weight of the pig based on the relationship model between
the pig weight and center of mass, the length of the long axis and the short axis, the
area, and the regional eccentricity of the fitted ellipse. The average relative error when
using the ellipse fitting method to estimate pig weight is 3–3.8% [26–29].

In most of the aforementioned studies, the pig body images generally need to be
processed as follows: background removal, image enhancement, image binarization, fil-
tering and denoising, and head and tail removal, followed by the extraction of body size,
volume, back area, and other parameters. The entire image process is cumbersome and
time-consuming, and there is a chance of failure, all of which pose obstacles to automation.

The convolutional neural network (CNN) is one of the representative algorithms
of deep learning. It is a type of feed-forward neural network that includes convolution
calculation and has a deep structure. A CNN generally includes convolutional layers,
pooling layers, fully connected layers, and an output layer, using the back propagation
algorithm for the model training process [30]. Trained CNNs can extract information from
images in an end-to-end manner with fast processing speed, and have been widely used in
animal farming [31], clinical diagnosis [32], industrial production [33], and other aspects.
In some equipment such as sorting systems for fattening pigs and breeding stations, there
are strict requirements on the speed of pig weight and body size acquisition to improve
operating efficiency. Due to the cumbersome and time-consuming process of the existing
weight estimation methods and the real-time processing of images by CNN, a multiple
output regression CNN model may be able to extract body shape features and estimate pig
weight and body size quickly and accurately.

Given the above rationale, we aimed to develop a pig weight and body size estimation
method using 3D images and a multiple output regression CNN. The study objectives
were: (i) to train and select a pig weight and body size estimation model, (ii) to test the
accuracy of this model, and (iii) to apply the method.

2. Materials and Methods
2.1. Design of the Pig Weight and Back Image Acquisition System

To train and evaluate the pig weight and body size estimation model, pig weight data,
body size data, and 3D images of pig backs were needed. For pig weight data and 3D images
of pig backs, the pig weight and back image acquisition system was designed (Figure 1).
The size of the system is 1.5 mL × 0.5 mW × 0.9 mH. In the top of the system, there is
an Intel RealSense D435 depth camera with a resolution of 1280 × 720 pixels to acquire 3D
and 2D images simultaneously. There are 4 weighing sensors with a measurement range
of 0–500 kg at the bottom of system, and the measurement accuracy after calibration was
±0.1 kg. The limit bars on both sides of the system ensure that the whole pig is on the scale
when weighing. The acquisition system could easily move when necessary as it is on wheels.
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Figure 1. Pig weight and back image acquisition system: (a) three-dimensional diagram of system; (b) distribution of
weighing sensors; (c) photo of system.

The system control program was developed based on the Internet of Things and
the LabVIEW V18.0 software development platform, using Client-Server (C/S) architec-
ture. The specific control scheme and program interface used are shown in Figure 2. The
depth camera was connected to the server through a USB interface, and the pig weight data
obtained by the weighing sensors were converted into a network signal by the USR-TCP232
and transmitted to the server through a switchboard. All software and hardware were
controlled by the server, and MySQL version 5.5 database was installed in the server to
store pig weight and image data. To ensure the quality of the acquired images, the running
time of the system for this study was 8:00–17:00. When the program started, the depth
camera and weighing sensors were initialized. Then, the system read the weighing data
every 0.2 s. When 4 consecutive weighing data points were within the range of the pig
population, and the difference between the maximum and minimum of the 4 data points
was less than 0.2 kg, it was assumed that there was a pig on the weighing platform and that
the pig was relatively quiet. When these requirements were met, the camera acquired the
3D and 2D images of the pig back simultaneously and the pig weight data and back images
were saved in the database, so pig weight and back image data were able to be acquired
continuously. Pig back images could also be manually acquired by using the capture button.
The acquired 3D and 2D images were in PNG and APD format, respectively, and the file
name of the 3D and 2D images was the acquisition time (accurate to milliseconds).

Figure 2. Pig weight and back image acquisition system: (a) data acquisition scheme; (b) software interface.
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2.2. Acquisition Method of Body Size

As shown in Figure 3a, the body size data includes body length (BL), shoulder width
(SW), shoulder height (SH), hip width (HW), and hip height (HH). BL is the length of line
L1–L2, which is the straight-line distance from the root of the ears to the root of the tail. The
SW is the length of line S1–S2, which is the transverse horizontal straight-line distance at
the widest part of the shoulder. SH is the height of point M, which is the highest point of
the shoulder along the line S1–S2. HW is the length of line H1-H2, which is the transverse
horizontal straight-line distance at the widest part of the hip. HH is the height of point N,
which is the highest point of the hip along the line H1–H2. Each body size data point was
measured using a measuring stick (Figure 3b). To match the body size data to each pig,
different marks were used to identify different pigs.

Figure 3. Specific locations of body size parameters and measurement of body size: (a) specific locations of body size
parameters; (b) body size measurement using a measuring stick.

2.3. Data Collection and Preprocessing

In this study, two types of data were collected: modeling data and test data. The
modeling data were used to train the models, and the test data were used as unknown
data to test the generalization ability of the trained models. The data collection process in
this study was in compliance with European Union legislation concerning the protection of
animals for scientific purposes (European Parliament, 2010).

The modeling data were collected in a pig house at the Rongchang Experimental
Station, Chongqing, China. There were 50 pens in this pig house and 5 pigs per pen. The
area of each pen was 4.2 mL × 2.5 mW × 1.0 mH, and it was equipped with a duckbill
drinker. The pig weight and back image data were obtained with the acquisition system.
The acquisition system was placed in front of the duckbill drinker. Pigs would enter
the system and stand on the weighing platform every time they drank. Therefore, the
acquisition system could obtain the back images and body weight (BW) data automatically
whenever a pig come to drink throughout the running time of the acquisition system. The
body size data of each pig were measured manually once in the morning and once in the
afternoon. Each body size data point was measured 5 times. The maximum and minimum
were removed and the average of the remaining 3 values was taken as the final result. The
result was accurate to within millimeters. Combined with the marks on the pig back, the
measured body size data point could be matched to 3D images by the 2D images. The
system was cleaned and disinfected every night and put into the following pig pen the
next day to start a new collection. Since the pigs had been living in the pig house for some
time before the experiment began, they were familiar with the drinking methods, so the
pigs were not trained to go to the weighing platform to drink. The data collection period
lasted for 88 days. During the experiment, 8 pigs were sold, and 3 pigs died of illness, and
a total of 38,112 pig back images and corresponding weight and body size data in various
postures from 239 Duroc× Landrace× Yorkshire growing and finishing pigs (121 castrated
boars and 129 gilts) were collected (159 images per pig). Pig weight data were in the range
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of 16.5–117.0 kg, and the number of data points in the weight categories of 16.5–40 kg,
>40–65 kg, >65–90 kg, and >90–117 kg was 8094, 10,340, 11,330, and 8348, respectively.

The test data were collected at a commercial pig farm belonging to the Shandong
Rongchang Breeding Company, Binzhou, China. At this farm, pig houses were divided
into 10 pens and 20 Duroc × Landrace × Yorkshire growing and finishing pigs were reared
in each pen. The area of each pen was 7.5 mL × 4.0 mW × 0.95 mH. The collection method
of the test data was the same as that used for the modeling data. The data collection period
lasted for 60 days. During the experiment, 4 pigs died of illness and 8 pigs were eliminated,
and a total of 20,026 test data in various postures (Figure 4) from 188 pigs in the weight
range of 22.0–105.4 kg were collected (106 images per pig). The number of data points in
the weight categories of 22.0–42.0 kg, >42.0–62.0 kg, >62.0–82.0 kg, and >82.0–105.0 kg was
6506, 5180, 4154, and 4186, respectively.

Figure 4. Samples of pig images in various postures.

The size of the original 3D images was 1280 × 720 pixels. To improve training speed,
all images were preprocessed in the same way (Figure 5). The distance from the depth
camera to the weighing platform was 1650 mm, and the pixel value of each point in the
original image was the distance in millimeters from the point to the depth camera. To
convert this distance to true height, each pixel value in the images was inverted as

Pi = 1650 − Po (1)

where Pi represents the pixel’s value in the inverted image, and Po represents the pixel’s
value in the original image. After inversion, the pixel value of each point was the distance
from the point to the weighing platform in the range of 0–1650 mm. Then, the pixel value
of the inverted image was scaled into 0–255 and converted into a gray scale image, where
the lighter the color, the greater the height. The gray scale image was then resized into
2 different sizes (299 × 299 pixels and 224 × 224 pixels) as the inputs for different models.
Since all images were processed in the same way, the process did not change the relative
position and size of the pigs in the images, so it had little impact on the final estimation.
Finally, each image was tagged with 6 labels in the order of BW, SW, SH, HW, HH, and BL.
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299 × 299 pixels 

224 × 224 pixels 

Figure 5. Image preprocessing process.

2.4. Construction, Training and Testing of Pig Weight and Body Size Estimation Models

As many CNNs have achieved excellent results in the ImageNet Large Scale Visual
Recognition Challenge, 4 state-of-the-art classification CNNs (DenseNet201 [34], ResNet152
V2 [35], Xception [36], and MobileNet V2 [37]) were used as base models and trans-
formed into multiple output regression CNNs for pig weight and body size estimation.
DenseNet201 uses dense blocks. In a dense block, the inputs of each layer contain the
output of all previous layers and this mechanism can reduce the disappearance of gradi-
ents and make the network much deeper. ResNet152 V2 is built based on VGGNet and
residual block. The core idea of a residual block is to apply an identity shortcut connection
to skip one or more layers directly. This operation can also deepen the network depth.
Xception uses depthwise separable convolutions to reduce model size and uses an extreme
inception module to fuse features extracted from different convolution kernels. MobileNet
V2 is characterized by the use of depthwise separable convolutions and inverted residual
structure. The depthwise separable convolution can reduce the parameters of the model
and the inverted residual structure can reduce the information loss caused by activation
function. The specific transformation process was: (i) the last classification layer of each
model was removed; (ii) 6 dense layers (DLs) with only one node and no activation func-
tion were added to each model in parallel (Figure 6) to output BW, SW, SH, HW, HH, and
BL, separately.

Figure 6. Pig weight and body size estimation model and estimate process. DL: dense layer; BW: body
weight; SW: shoulder width; SH: shoulder height; HW: hip width; HH: hip height; BL: body length.

All models were written with the available libraries in Python 3.7.0 and tensorflow-
gpu-2.2.0. All code was run on a desktop computer with an Intel i7-9700 processor, 32 GB
RAM, Windows 10 (64 bit), and a NVidia GeForce GTX 1660 Ti 6 GB graphics card with
TuringTM architecture. The developed computer code was available in GitHub: https:
//github.com/18801389568/Pig-weight-and-body-size-estimation (accessed on 11 April
2021). Model training is the process of continuously changing model parameters to make
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the estimation results more accurate. The data used to train the models were modeling data.
In all models, the modeling data were randomly divided into training sets and validation
sets in a ratio of 7:3 after the order was shuffled. The preprocessed 3D images were used as
input during model training, and the output was the corresponding pig weight and body
size. As the quantity of data across the weight ranges was similar, the mean square error
(MSE) was used as the loss function to evaluate the estimation ability of the models. The
MSE was calculated as

MSE = MSEBW + MSESW + MSESH + MSEHW + MSEHH + MSEBL (2)

where MSEBW, MSESW, MSESH, MSEHW, MSEHH, and MSEBL are the MSE generated by
estimating BW, SW, SH, HW, HH, and BL, respectively. The calculation methods of MSEBW,
MSESW, MSESH, MSEHW, MSEHH, and MSEBL are similar and can be calculated as

MSEV =
1
M

M

∑
m=1

(
yV

m − ŷV
m

)2
(3)

where V can be any one of BW, SW, SH, HW, HH, and BL; M is the total number of data
points in the validation set; m is the sample number of the data in the validation set; yV

m
is the measured value for V of the mth sample; and ŷV

m is the estimated result for V of the
mth sample. In order to compare the performance of each model under the same condition,
the configuration of the hyper-parameters used in each model was the same, as shown in
Table 1. The loss of each model on the validation set was used as the evaluation standard
to retain the best parameters in the training process for each model.

Table 1. Hyper-parameters of models.

Optimization Function Learning Rate Loss Function Batch Size Iterations

Adam 0.001 MSE 16 150

Information about the trained models is shown in Table 2. The number of parameters
is the number of all parameters in the model and the number of trainable parameters
is the number of parameters except the parameter in batch-normalization layers and
global-average-pooling layers. Among the 4 models, the input image size for the mod-
ified Xception model is 299 × 299 pixels, while the image size for the other 3 models is
224 × 224 pixels. The model size and number of parameters for modified ResNet152 V2
were largest, while the training time for modified Xception was longest due to the big input
image size. Due to modified MobileNet V2 having the smallest model size, the lowest
number of parameters, and the smallest input image size, the training time for this model
was the shortest.

Table 2. Model information.

Model
Size of Input

Image
(pixels)

Model
Size
(MB)

Number of
Parameters

Number of
Trainable

Parameters

Training
Time

(h)

Modified DenseNet201 224 × 224 229 18,333,510 18,104,454 29.1
Modified MobileNet V2 224 × 224 31 2,265,670 2,231,558 12.9
Modified ResNet152 V2 224 × 224 683 58,343,942 58,200,198 35.7

Modified Xception 299 × 299 243 20,873,774 20,819,246 54.0

After model training, test data were used to examine the generalization capability of
each model. The models were investigated from the aspect of the estimated root mean
square error (RMSE), MAE, mean relative error (MRE), and mean estimation time (MET) of
an image.
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3. Results and Discussion
3.1. Model Training Results

The change in loss (MSE) of each model on the validation set during the training steps
is shown in Figure 7. During the training process, modified MobileNet V2 was observed to
experience a larger fluctuation on the validation set. This may be due to the fact that the
model has fewer parameters and cannot estimate pig weight and body size well. When
the 80th iteration was reached, the other three models had converged and achieved good
estimation results. Finally, the lowest MSE obtained by modified DenseNet201, modified
MobileNet V2, modified ResNet152 V2, and modified Xception on the validation set were
0.132, 1.243, 0.221, and 0.092, respectively. The modified Xception achieved the highest
estimation accuracy.

Figure 7. Loss change on validation set of each model.

3.2. Model Test Results

Table 3 presents the results of investigating the generalization performance of the
models using the test data collected from a commercial pig farm. Similar to the results for
the validation set, the four trained models also had good estimation performance. The
lowest errors when estimating BW, SW, SH, HW, HH, and BL were obtained by modified
Xception, Xception, ResNet152, MobileNet V2, Xception, and ResNet152, respectively. As
for the validation set, modified Xception produced the most accurate estimation perfor-
mance among the four models. This may be because the Xception module in the model
can more effectively synthesize information. Although modified MobileNet V2 fluctuated
during the training process, it performed well on the test set after training. This is because
the task of pig weight and body size estimation is not as complicated as object classification,
as it does not need to extract complex textures and edge information from images. When
the four models were tasked with estimating body size, the largest MRE was generated
by estimating SH. This is because the movement of a pig head when drinking can cause a
change in SH. According to observations, when the head of an 80 kg pig moves up and
down, it will cause an SH change of about 4 cm. The MET of the four models were all
within 27.1 ms, which could meet the requirement of real-time operation.
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Table 3. Performance of the models on the test set. BW: body weight; SW: shoulder width; SH:
shoulder height; HW: hip width; HH: hip height; BL: body length; RMSE: root mean square error;
MAE: mean absolute error; MRE: mean relative error; MET: mean estimation time; MSE: total mean
square error.

Items Modified
DenseNet201

Modified
MobileNet V2

Modified
ResNet152 V2

Modified
Xception

BW
RMSE (kg) 2.51 1.84 1.73 1.53
MAE (kg) 2.03 1.49 1.31 1.16

MRE 3.44% 2.54% 2.26% 1.99%

SW
RMSE (cm) 0.48 0.44 0.46 0.43
MAE (cm) 0.38 0.34 0.37 0.33

MRE 1.49% 1.35% 1.47% 1.31%

SH
RMSE (cm) 1.53 1.38 1.31 1.36
MAE (cm) 1.42 1.22 1.17 1.23

MRE 2.79% 2.38% 2.30% 2.40%

HW
RMSE (cm) 0.50 0.40 0.47 0.47
MAE (cm) 0.45 0.31 0.38 0.38

MRE 1.84% 1.29% 1.55% 1.58%

HH
RMSE (cm) 1.11 0.96 1.10 0.87
MAE (cm) 0.90 0.76 0.89 0.66

MRE 1.59% 1.34% 1.58% 1.16%

BL
RMSE (cm) 1.16 0.89 0.84 0.94
MAE (cm) 0.97 0.69 0.63 0.75

MRE 1.05% 0.74% 0.69% 0.82%

MET (ms) 17.98 5.99 27.10 12.32

MSE (kg2) 11.699 7.357 7.057 6.236

Considering the total MSE of each model, modified Xception was selected as the final
pig weight and body size estimation model. Measured and estimated pig weights and
body sizes are shown in Figure 8. The coefficient of determination (R2) value between the
measured and estimated BW, SW, SH, HW, HH, and BL were as high as 0.9973, 0.9922,
0.9911, 0.9937, 0.9879, and 0.9971, respectively. Even if the pig body is not straight, high
estimation accuracy can still be obtained. The estimation accuracy of this model is higher
than the projection method [14], the 2D image method [15–18], and the ellipse fitting
method [26–29], as this model estimates pig weight and body size based on the height and
distance of all points in a 3D image rather than the individual information points extracted
by these other methods. The accuracy is same when using the 3D image method [9,19–25],
but the processing operation of the model is simpler. The estimation accuracy of pig
weight and body size cannot be further improved because pig weight changes with eating,
drinking, and excretion. Pig weight is also affected by the lean meat ratio. Such changes
are difficult to see in images of a pig back, and thus the model cannot tell the difference in
pig weight.
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Figure 8. Comparison between measured and estimated BW (a), SW (b), SH (c), HW (d), HH € and BL (f).

3.3. Feature Maps

Models can detect elementary features, such as texture and outline, in their shallow
convolutional layers and learn to detect more comprehensive features in their deeper
layers. To determine what information had been learned and on what basis the modified
Xception estimates pig weight and body size, the feature maps that were output by the
first convolutional layer were examined. After the original image (Figure 9a) was input to
the first convolutional layer of modified Xception, a total of 32 feature maps were output
(Figure 9b). When comparing the input image with the feature maps, we found that the
input image was smoothed after the first convolutional layer, the background interference
was eliminated, the contour, edge, and depth features of the pig body were extracted.
Therefore, it was demonstrated that the model estimated pig weight and body size based
on a pig height and body shape characteristics. Notably, the model is not necessarily based
on the distance between specific points to estimate the body size: it could be based on the
overall body physique of the pig, but nevertheless, the performance on the test set showed
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that the method still produced accurate results. Compared with the method of estimating
body size based on the distance of the points in an image, this method might reduce the
estimation error caused by posture changes of the pig.

Figure 9. Original image (a) and feature maps (b) output from the first convolutional layer of modified Xception.

3.4. Application Prospect

Benefitting from the powerful development capability and Python Integration Toolkit
provided by LabVIEW, this method can be used to measure pig weight and body size in a
fully automated way (Figure 10). Pig weight and body size can be quickly estimated with-
out a complex operation after the preprocessed 3D image was input into the model. Such a
simple and convenient operation will reduce the workload and technical requirements for
farm breeders. In addition, this non-contact measurement method can also avoid stress or
injury to pigs. It is also feasible for the model to be integrated into control programs and
be applied to commercial farms.

Figure 10. LabVIEW panel of the pig weight and body size estimation system.

In conclusion, multiple output regression CNN can be used to accurately estimate pig
weight and body size. The estimation process only requires the simple preprocessing of
acquired 3D images and can be automated. The high estimation speed of this method can
ensure real-time operation in commercial farms. The influence of light on the estimation
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accuracy can be reduced by using 3D images. Even when we are estimating the weight of
pigs of different breeds, only a small amount of pig data need to be collected and corrected
on the basis of the original mode output.

4. Conclusions

We propose an innovative method of estimating pig weight and body size using a
multiple output regression CNN. After training the modified DenseNet201, ResNet152 V2,
Xception, and MobileNet V2 on modeling data and comparing the estimation results on
test data, modified Xception was finally selected as the optimal pig weight and body size
estimation model. This method estimates pig weight and body size based on a pig height,
contour, and body shape, and yielded a MAE of 1.16 kg, 0.33 cm, 1.23 cm, 0.38 cm, 0.66 cm,
and 0.75 cm when estimating BW, SW, SH, HW, HH, and BL, respectively. The MAT for
modified Xception was 0.012 s. This method can successfully estimate pig weight and body
size on the LabVIEW platform in a fully automated way. It is feasible to apply this method
to sorting systems for fattening pigs, breeding stations and other occasions where there
are strict requirements on the speed of pig weight and body size acquisition. This method
can also be used to estimate the weight and body size of other animals such as cattle and
sheep. Future work should combine modified Xception with object detection technology to
realize pig weight and body size estimation through the depth camera installed on the top
of the pig house.
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